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Abstract.  In this study, free vibration analyses of symmetric laminated cantilever and simply supported 

damaged composite beams are investigated by using finite element method (FEM). Free vibration responses 

of damaged beams are examined using Euler Bernoulli beam and classical lamination theories. A computer 

code is developed by using MATLAB software to determine the natural frequencies of a damaged beam. 

The local damage zone is assumed to be on the surface lamina of the beam by broken fibers after impact. 

The damaged zone is modeled as a unidirectional discontinuous lamina with 0
o
 orientations in this study. 

Fiber volume fraction (vf), fiber aspect ratio (Lf/df), damage length (LD) and its location (λ/L), fiber 

orientation and stacking sequence parameters effects on natural frequencies are investigated. These 

parameters are affected the natural frequency values significantly. 
 

Keywords:  fiber reinforced composites; finite element method (FEM); structural design; vibration/ 

vibration control 

 
 
1. Introduction 
 

Fiber reinforced composite materials are being increasingly used in aircraft, spacecraft 

constructions, automotive industry and in civil engineering applications due to their high stiffness 

to weight ratios. If a traditional engineering material, steel or aluminum, experiences low velocity 

impact, the energy is typically absorbed through plastic deformation. Although this deformation is 

permanent, it usually does not significantly reduce the load carrying capability of the structure 

(Bradshaw et al. 1972). However, this is not true for fiber reinforced composites due to the brittle 

nature of the epoxy matrix and low plastic deformation capability of the fibers. Three failure 

modes can be observed in fiber reinforced composites caused by low-velocity impact; (i) matrix 

cracking, (ii) delamination, and (iii) fiber failure (Lagace and Wolf 1993, Choi and Chang 1991, 

Cantwell and Morton 1990, Cantwell and Morton 1991). Delamination may cause stiffness 

reduction and sudden failure of the structure. The reduction in stiffness also affects the vibration 

characteristics of the composite structure. Therefore, dynamic behavior of composite structures 

must be taken into account in design. In the absence of analytical solutions, dynamic responses of 
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structural systems are calculated by computational methods, finite element methods (FEM) have 

been widely used.  

Sun and Chen (1985) performed the dynamic analysis of laminated plates under impact loading 

by using three-dimensional finite element method. Cairns and Lagace (1989) investigated the 

effect of different parameters on the impact behavior of laminated composite plates. Chun and 

Kassegne (2005) studied the response of graphite/epoxy laminated composite non-prismatic folded 

plates subjected to impact loads by using the higher-order shear deformation theory. Tiberkak et al. 

(2008) also investigated fiber-reinforced composite plates subjected to low velocity impact, by the 

use of finite element analysis. Setoodeh et al. (2009) analyzed a three-dimensional elasticity based 

approach coupled with layer-wise laminated plate theory employed to conduct low velocity impact 

analysis of general fiber reinforced laminated composite plates, with a finite element computation 

algorithm. Aydogdu (2014) used the Ritz method to determine natural frequencies of aligned single 

walled carbon nanotube (CNT) reinforced composite beams. As previously mentioned, the effect 

of impact loading on dynamic response of composite beams has engaged the attention of scientists 

for many years and it is not a new concept; however, local damage zone is identified by broken 

fibers on the surface lamina of the beam. It is assumed that continuous fibers are converted into 

unidirectional discontinuous fibers (0
o
) after impact. This modeling approach has not been studied 

in literature. Free vibration characteristics of the symmetric laminated composite beams 

(healthy/damaged) are investigated. The natural frequencies for the first three flexural modes of 

both the healthy and damaged beams are calculated. The effects of fiber volume fraction (vf), fiber 

aspect ratio (Lf/df), damage length (LD) and its location (λ/L), fiber orientation and stacking sequence on 

the natural frequencies are also investigated for both cantilever and simply supported boundary 

condition. 

 

 

2. Finite element analysis of laminated composite beams 
 

Laminated composite beams are generally made of multiple layers. In that case, to compute the 

stiffness matrix of symmetrically laminated composite beams the classical laminated plate theory 

(CLPT) is used. The classical plate theory constitutive equations for symmetric laminates, in the 

absence of in plane forces, are given by the following equations (Reddy 1992) 

     

2

0

2

11 12 16 2

0
12 22 26 2

16 26 66 2

02

xx

yy

xy

w

x
M D D D

w
M D D D

y
M D D D

w

x y

 
 

    
                   
 

   

 (1) 

or, in inverse form 
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where *

ijD denote the elements of the inverse matrix of Dij. The laminated composite beam is 

assumed be long enough so that the effects of the Poisson ratio and shear coupling on the 

deflection is negligible. In deriving the laminated beam theory it is assumed that 

     0yy xyM M   (3) 

Eq. (1) can be rewritten as 
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where b is the width and h is the thickness of the composite beam. In the finite element 

formulation, Langrange interpolation functions are used. Derivation of the stiffness and mass 

matrices of an element are based on the energy approach (Kiral 2009). For free vibration of a beam, 

the eigenvalue problem is defined in the following equation (Kumar et al. 2011) 

          2 0K M d   (6) 

where ω is the angular natural frequency in radians per second, {d} is the mode shape, [K] is the 

stiffness matrix and [M] is the mass matrix of the beam system. 

 

 

3. 0o lamina with discontinuous fibers 

 
Computation of elastic properties of a unidirectional discontinuous fiber 0

o
 lamina is derived 

from the Halpin- Tsai equations with the following assumptions (Kaw 2006); 

• Fiber cross sectional area is circular. 

• Fibers are arranged in the form of square array. 

• Fibers are uniformly distributed throughout the matrix phase. 

• Perfect bonding assumed between the fibers and the matrix. 

• Matrix does not have any voids.  

Elastic properties of a unidirectional discontinuous fiber 0
o
 lamina are calculated using the 

following equations (Kaw 2006) 
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where indices m and f denote matrix and fiber, respectively. E, G, and ν are the modulus of 

elasticity, modulus of rigidity, and the Poisson’s ratio respectively. The terms in Eqs. (7)-(9) can 

be calculated as follows (Kaw 2006) 
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Fiber aspect ratio, defined as the ratio of average fiber length Lf to fiber diameter df, has a 

significant effect on the longitudinal modulus E1. On the other hand, the transverse modulus E2 is 

not affected by the fiber aspect ratio. Moreover, the longitudinal modulus E1 for a discontinuous 

fiber 0
o
 lamina is always less than that for a continuous fiber 0

o
 lamina. 

 

 

4. Numerical verification 
 

In this study, a finite element code is generated by using MATLAB program. 2D beam 

elements (2 DOF per node) are used for the numerical modeling. The FE model is validated by 

comparing with results from the literature for a four-layer symmetric cross-ply [0/90]s. Numerical 

analyses are carried out for the following composite beam data: length (L) 0.381 m, thickness (h) 

0.0254 m, width (b) 0.0254 m. The material properties of graphite/epoxy composite are: 

longitudinal modulus E1=144.80 GPa, transverse modulus E2=9.65 GPa, shear modulus G23=3.45 

GPa, G12=G13=4.14 GPa, Poisson ratio (ν)=0.3 density ρ=1389 kg/m
3
. The non-dimensional 

natural frequency is given as (Cunedioglu 2011, Cevik 2010) 

     
2

2

1

L
E h


   (15) 

where   is the non-dimensional natural frequency. The analytical solution of the cantilever 

composite beam for the first mode is given by the following equation (Harris 2002) 
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Table 1 Non-dimensional fundamental frequencies of a [0/90]s Graphite/Epoxy cantilever composite beam 

Numayr et al.(2006) Yildirim and Kiral (2000) Chen et al. (2003) Present study Analytical 

0.95582 0.9215 0.9149 0.95394 0.95383 

 

 
Fig. 1 The geometrical characteristics of the composite beam 

 

 

Non-dimensional fundamental frequencies of graphite-epoxy composite beam are given in 

Table 1. It is seen that the results of the developed finite element beam model show good 

agreement with the analytical and finite element results given in the literature. After the validation 

step, the model is extended to study the following problem. 

 

 

5. Problem statement 

 

The aim of this study is to investigate free vibration characteristics of the symmetric 

graphite/epoxy laminated composite beams (healthy or damaged). The damaged composite beams 

are modeled by assuming the following condition: the continuous fibers on the surface lamina of 

the beam are converted into unidirectional discontinuous fibers (0
o
) after impact. The material 

properties of the graphite fiber-reinforced polyamide composite, in terms of fibers and matrix, 

identified by the indices f and m, respectively, are given as follows (Kisa 2004); 

Modulus of elasticity: Ef=275.6 MPa, Em=2.756 MPa  

Shear modulus: Gf=114.8 MPa, Gm=1.036 MPa 

Poisson ratio: υf=0.2; υm=0.33 

Density: ρf=1900 kg/m
3
, ρm=1600 kg/m

3
 

Fig. 1 shows the geometrical characteristics of the beam. The length (L), height (h) and width 

(b) of the composite beam are chosen as 1.2 m, 0.012 m and 0.06 m; respectively. Each lamina 

contains thirty fibers and the fiber orientation is [0/90/0]s.  

For Ld = 120 mm, 240, 360 and 480 mm; 6, 12, 18 and 24 elements are used in the damaged 

zone; respectively. Two boundary conditions are considered; cantilever and simply supported. 

Converge studies are conducted to choose best finite element mesh (Table 2) and the authors 

decided to use sixty elements for each model. The damage length (Ld) is varied as 120, 240, 360 

and 480 mm. Fiber aspect ratio (Lf/df) is changed from 1 to 60 by an increment of 15. The 

calculated fiber diameters for νf=0.4, 0.5, 0.6 and 0.7 are 0.001427, 0.001596, 0.001748 and 

0.001888 m; respectively. 

The mechanical properties of laminated composite beam are calculated by using following 

formulas (Kisa 2004) 
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Table 2 Results of converge studies* 

Cantilever 

boundary 

condition 

Natural 

Frequency 

(Hz) 

20 elements 30 elements 40 elements 50 elements 60 elements 

1st mode 9.4521 9.4521 9.4521 9.4521 9.4521 

2nd mode 59.2355 59.2354 59.2354 59.2354 59.2354 

3rd mode 165.8635 165.8613 165.8610 165.8609 165.8608 

Simply-

supported 

boundary 

condition 

Natural 

Frequency 

(Hz) 

20 elements 30 elements 40 elements 50 elements 60 elements 

1st mode 26.5325 26.5324 26.5324 26.5324 26.5324 

2nd mode 106.1306 106.1301 106.1300 106.1299 106.1299 

3rd mode 238.8005 238.7940 238.7929 238.7926 238.7925 

(*) Fiber volume fraction νf=0.4 and lamination sequence: [0/90/0]s 
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6. Results and discussion 
 

Fig. 2 shows variation of the first three natural frequency with respect to the fiber aspect ratio 

(Lf/df) and fiber volume fraction (νf). The damage length and damage location are kept constant as 

0.12 m and 0.5 respectively. It is seen that the natural frequency for every fiber aspect ratio 

increases with the respect to an increase in the fiber volume fraction and a higher aspect ratio leads 

to a higher natural frequency. This is because natural frequency is a function of elastic moduli 

which increases with the increase of fiber aspect ratio and volume fraction. For cantilever 

boundary condition, this increase is uniform for all modes but the second mode natural frequency  
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Table 3 The first three natural frequency of a [0/90/0]s Graphite/Epoxy cantilever composite beam (vf=0.4, 

λ/L=0.5) 

Lf/df ω1 (Hz) ω2 (Hz) ω3 (Hz) 

1 9.288 55.315 165.228 

15 9.359 56.915 165.506 

30 9.389 57.621 165.620 

45 9.404 57.998 165.678 

60 9.413 58.233 165.714 

84.09
*
 9.452 59.236 165.860 

Healthy beam 9.452 59.235 165.860 

(*) For this value, Lf =120 mm. 

 

 

being affected more than others. For simply supported condition, the natural frequency values 

increase with the increase of fibers aspect ratio and fiber volume fraction (νf). The second mode is 

slightly affected. Damage zone becomes unidirectional as fiber aspect ratio increases. The 

validation of this statement is shown in Table 3 for [0/90/0]s cantilever beam. 

Variation of the first three natural frequencies with respect to the fiber aspect ratio (Lf/df) and 

damage length (Ld) is shown in Fig. 3. Fiber volume fraction νf=0.4 and damage location λ/L=0.5 

are kept constant. It is seen that the natural frequency decrease with the increase of damage length 

for all modes but for cantilever boundary condition the third mode is not affected significantly 

when damage length (Ld) 120 mm. Same trend is observed for second mode simply supported 

boundary condition.  

Fig. 4 shows the variation of the first three natural frequency with respect to the fiber aspect 

ratio (Lf/df) and damage location (λ/L). Ld=0.12 m, νf=0.4 are kept constant. For cantilever 

boundary condition, the first mode frequency values continuously increase when the damage zone 

is become closer to the free end of the beam (λ/L increases). The increase of natural frequency is 

well detected as λ/L increases from 0.55 to 0.75 then the frequency values are become less affected 

by damage location. The frequencies of the second and third modes show different behavior in this 

case so that the second mode natural frequencies tend to increase gradually until λ/L=0.25 then the 

frequency values decrease almost linearly until λ/L ratio is 0.55. After that the values start to 

increase with the increase of λ/L ratio. The third mode response is similar to the previous mode. It 

is worth noticing that the minimum second and third mode natural frequency are observed as the 

λ/L ratio reaches to 0.55 and 0.75 respectively for all Lf/df ratios. For simply-supported boundary 

condition, the first mode natural frequency values decrease with the increase of λ/L ratio until this 

ratio reaches to 0.5. The minimum second mode natural frequency values are observed when λ/L 

ratio is 0.25 and 0.75 and the minimum third mode natural frequency values are observed when 

λ/L ratio is 0.15 and 0.85 for all Lf/df ratios. 

Variation of the first three natural frequency with respect to different stacking sequence and 

damage location (λ/L) for Ld=0.12 m, νf=0.4 is shown in Fig. 5. For both cantilever and simply-

supported boundary condition, as expected, the maximum natural frequencies was obtained for 

[0]3s composite beam because the beam is stiffer than the others. For cantilever boundary condition, 

it is seen that the increase of damage location λ/L cause a noticeable increase in the first mode 

natural frequencies. For both boundary conditions, the second and third mode natural frequencies 

are also affected by stacking sequence but in a different manner so that the variation of these  
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modes shows a series of maxima and minima respectively with the increase of damage location. 

For simply supported boundary condition, the first mode natural frequency decreases until the 

damage location is 0.5 then the frequency values begin to increase. The minimum frequency 

values are observed for the beam with [0/90/0]s stacking sequence for all cases. 

Fig. 6 shows variation of the first three natural frequency of the healthy/damaged beam as a 

function of θ and fiber aspect ratio (Lf/df) for Ld=0.12 m, νf=0.4. For both cantilever and simply 

supported boundary condition, it is noteworthy that the increase of the angle of θ causes a 

reduction in natural frequency values. When the angle of θ is higher than 60
o
, a small increase is 

observed for all cases. It is also seen that the healthy beam has the highest frequency values for all 

modes. As seen in the figure, second mode for cantilever boundary condition is not affected 

significantly by fiber aspect ratio and the same tendency is observed for third mode for simply 

supported boundary condition. 

 

 

7. Conclusions 
 

In this study, free vibration characteristics of the symmetric laminated composite beams 

(healthy/damaged) are investigated. A new local damage model is proposed by broken fibers on 

the upper surface lamina of the beam. It is assumed that continuous fibers are broken into 

unidirectional discontinuous fibers (0
o
) after impact. The modal frequencies for the first three 

flexural modes of both the healthy and the damaged beams are calculated. The following 

conclusions can be drawn from the results: 

• The natural frequency values increase with the increase of fibers aspect ratio (Lf/df) and fiber 

volume fraction (νf).  

• The increase in damage location (λ/L) causes a noticeable increase in the first mode natural 

frequency. 

• The increase of the angle of θ causes a reduction in natural frequency values. 
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