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Abstract.  A three-dimensional (3-D) method of analysis is presented for determining the natural 

frequencies of a truncated shallow and deep conical shell with linearly varying thickness along the 

meridional direction free at its top edge and clamped at its bottom edge. Unlike conventional shell theories, 

which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic 

equations of elasticity. Displacement components ur, uθ, and uz in the radial, circumferential, and axial 

directions, respectively, are taken to be periodic in θ and in time, and algebraic polynomials in the r and z 

directions. Strain and kinetic energies of the truncated conical shell with variable thickness are formulated, 

and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the 

frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies 

converge to the exact values. Convergence to four-digit exactitude is demonstrated. The frequencies from 

the present 3-D method are compared with those from other 3-D finite element method and 2-D shell 

theories. 
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1. Introduction 
 

Conical shells play an important role in many industrial fields and are widely used as structural 

components of loudspeakers, aircrafts, space vehicles, and so on. However, the vibration of 

truncated conical shells has been studied to a lesser extent than that of cylindrical shells because of 

the greater mathematical complexity involved in characterizing their geometry and dynamic 

behavior, and the greater difficulty in solving the governing equations. 

Most of the existing literature describes the vibration analysis for thin conical shells with 

uniform thickness and is based on a thin shell or membrane type of two-dimensional (2-D) shell 

theory (Leissa 1993). Even though the analysis is based on 2-D classical thin shell theory, 

sufficient engineering data have not been obtained since the analysis requires considerable 

analytical labor and computational time.  

Recently, Qu et al. (2013a, b) describe a variational general formulation for predicting the free, 

steady-state and transient vibration analyses of functionally graded conical shells of revolution 
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subjected to various combinations of classical and non-classical boundary conditions. Jin et al. 

(2014) developed a unified modified Fourier solution based on the first order shear deformation 

theory for the vibrations of various composite laminated structure elements of revolution with 

general elastic restraints including conical shells. Sofiyev (2014a) investigated the large-amplitude 

vibration of non-homogenous orthotropic composite truncated conical shell, and he (2014b) also 

analyzed the non-linear vibration of laminated non-homogenous orthotropic truncated conical 

shell. 

Three-dimensional (3-D) analysis of structural elements has long been a goal of those who 

work in the field. With the current availability of computers of increased speed and capacity, it is 

now possible to perform 3-D structural analyses of bodies to obtain accurate values of static 

displacements, free vibration frequencies and mode shapes, and buckling loads and mode shapes. 

The literature that addresses the free vibration of truncated conical shells based on 3-D analyses 

is quite limited. The first contribution to the 3-D analysis of the truncated conical shells was by 

Leissa and So (1995). Buchanan (2000) and Buchanan and Wong (2001) analyzed the truncated 

conical shells by a 3-D finite element method. However, the above mentioned works (Leissa and 

So 1995, Buchanan 2000, Buchanan and Wong 2001) were all confined to uniform shell thickness, 

and were all based upon the conical coordinate system. Recently, a 3-D free vibration analysis of 

the functionally graded truncated conical shells subjected to thermal environment was presented 

using the differential quadrature method (Malekzadeh et al. 2012). The study on the vibrations of 

truncated conical shells with variable thickness having various boundary conditions based on the 

circular cylindrical coordinate system from a 3-D theory has not been reported. 

In the present study, a 3-D analysis on the vibrations of a truncated conical shell with linear 

thickness variation free at the top edge and clamped at the bottom edge is presented. Instead of 

attempting to solve the equations of motion, an energy approach is applied. Recently, an energy-

oriented modified Fourier method can also be used to solve the tiled problem. Vibration of 2-D and 

3-D plates, cylindrical, conical and spherical shells with general boundary conditions has been 

carried out by this method (Jin et al. 2013a, Jin et al. 2013b, Ye et al. 2013, Jin et al. 2014a, Jin et 

al. 2014b, Jin et al. 2014c, Su et al. 2014a, Su et al. 2014b, Ye et al. 2014). 

The analysis uses the 3-D equations of the theory of elasticity in their general forms for 

isotropic materials. They are only limited to small strains. No other constraints are placed on the 

displacements. This is an obvious difference between the 3-D analysis and the classical 2-D thin 

shell theories, which make very limiting assumptions about the displacement variation through the 

shell thickness. Therefore the present 3-D method can be applied to very thick shells as well as 

thin shells. 

To evaluate the energy integrations over the truncated conical shell volume, displacements and 

strains are expressed in terms of the circular cylindrical coordinates, instead of the conical 

coordinate system or related 3-D shell coordinates which are normal and tangent to the shell mid-

surface, mainly because it takes more time to compute the energy integration numerically based on 

the 3-D shell coordinates than based on the circular cylindrical coordinates. The frequencies from 

the present 3-D method are also compared with results from other 3-D finite element method and 

2-D thin shell theories. 

 

 

2. Method of analysis 
 

A representative cross-section of a truncated conical shell with linear thickness variation along  
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Fig. 1 A representative cross-section of a truncated conical sell of revolution with linear thickness 

variation along the meridional direction, and the cylindrical coordinate system (r, θ, z) 

 

 

the meridional direction with the vertex half-angle α, the inner radius of the top edge Ri, and the 

outer radius of the bottom edge Ro is shown in Fig. 1. The thicknesses at its top and bottom edges 

are h and H, respectively. The circular cylindrical coordinate system (r, θ, z), also shown in the 

figure, is used in the analysis, where θ is the circumferential angle. The coordinates of the points 

P, Q, R, and S in the figure are P=(Pr, Pz), Q=(Qr, Qz), R=(Rr, Rz), and S=(Sr, Sz). The origin of the 

(r, z) coordinates is located at the vertex of the mid-surface of the conical shell. The truncated 

conical shell of revolution is obtained by rotating the cross-section for r≥0 in Fig. 1 360° about the 

z-axis. The straight lines zi,m,o in Fig. 1 are the inner, middle, and outer surfaces of the truncated 

conical shell, respectively, and their equations are expressed as 

 cotrzm ,                              (1) 
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 ir RR  ,                                  (8)
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 coshRS ir ,                             (10) 
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The top and bottom edges zt,b are normal to the mid-surface of the shell and their equations are 

expressed as 

zrt RRrz  tan)( ,                          (12) 

zrb PPrz  tan)( .                           (13) 

The domain (Λ) of the truncated conical shell of revolution is described by 

rr SrR  , ti zzz  ,  20 ,                      (14) 

and 

rr PrS  , oi zzz  ,  20 ,                      (15) 

and 

rr QrP  , ob zzz  ,  20 .                     (16) 

The domain (Λ) expressed in terms of the non-dimensional circular cylindrical coordinates (ψ, 

θ, ζ), defined by ψ≡r/Ro 
and ζ≡z/H, is given by 

**
rr SR  , ti  ,  20 ,                    (17) 

and 

**
rr PS  , oi  ,  20 ,                    (18) 

and 

**
rr QP  , ob  ,  20 ,                    (19) 

where 

  cos1/ ** HRPP orr  ,                        (20) 

 1/*  orr RQQ ,                             (21) 

 oiir RRRR /**  ,                            (22) 

  cos/ **** HhRRSS iorr ,                       (23) 

and 
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**
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Employing tensor analysis, the three equations of motion in terms of the circular cylindrical 

coordinate system (r, θ, z) are found to be 

rrrrzrzrrr ur   /)( ,,, , 

zzrzzzzrrz ur   /)( ,,, ,
 

  urrzzrr
/)2( ,,, ,                      (34) 

where the ζij are the normal (i=j) and shear (i≠j) stress components; ur, uz, and uθ are the 

displacement components in the r, z, and θ directions, respectively; ρ is mass density per unit 

volume; the commas (,) indicate spatial derivatives; and the dots (.) denote time derivatives. The 

well-known relationships between the tensorial stresses (ζij) and strains (εij) of isotropic, linear 

elasticity are 

ijijij G 2 ,                            (35) 

where λ and G are the Lamé parameters, expressed in terms of Young’s modulus (E) and Poisson’s 

ratio (v) for an isotropic solid as 

)2ν)(1(1/  E , )1(2/  EG ,                 (36) 

ε≡εrr+εzz+εθθ 
is the trace of the strain tensor, and δij is Kronecker’s delta. The 3-D tensorial strains 
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(εij) are related to the three displacements ur, uz, and uθ, by 

rrrr u , ,  zzzz u , ,  ruur /)( ,  , 

rzzrrz uu ,,2  ,  ruuu rrr /)(2 ,,   ,  ruu zzz /2 ,,   .         (37) 

Substituting Eqs. (35) and (37) into Eqs. (34), one obtains a set of three second-order partial 

differential equations in ur, uz, and uθ governing the free vibrations. However, in the case of the 

conical shell, exact solutions are intractable because of the variable coefficients that appear in 

many terms. Alternatively, one may approach the problem from an energy perspective. 

During vibratory deformation of the body, its strain energy (V) is the integral over the domain 

(Λ) 




  ddzdrrV zzrrrzrzzzzzrrrr )](2[
2

1
.       (38) 

Substituting Eq. (35) into Eq. (38) results in the strain energy (V) in terms of the strains 




  ddzdrrGV rzrzzzrrzzrr )}](2{2)([
2

1 2222222

     

(39) 

where the tensorial strains εij are expressed in terms of the three displacements by Eqs. (37). 

The kinetic energy (T) is simply 




  ddzdrruuuT zr )(
2

1 222  .                     (40) 

For the free, undamped vibration, the time (t) response of the three displacements is sinusoidal 

and, moreover, the circular symmetry of the body of revolution allows the displacements to be 

expressed by 

)sin(cos),(),,,(  tnUtu rr , 

)sin(cos),(),,,(  tnUtu zz , 

)sin(sin),(),,,(   tnUtu ,                    (41) 

where Ur, Uz, and Uθ are displacement functions of ψ and ζ, ω is a natural frequency, and β is an 

arbitrary phase angle determined by the initial conditions. The circumferential wave number is 

taken to be an integer (n=0, 1, 2, …, ∞), to ensure periodicity in θ. It may be verified by 

substituting the displacements into the 3-D equations of motion that the variables separable form 

of Eqs. (41) does apply. Then Eqs. (41) account for all free vibration modes except for the 

torsional ones. These modes arise from an alternative set of solutions which are the same as Eqs. 

(41), except that cosnθ and sinnθ are interchanged. For n≥1, this set duplicates the solutions of 

Eqs. (41), with the symmetry axes of the mode shapes being rotated. But for n=0 the alternative  

set reduces to ur=uz=0, )sin(),(*   tUu , which corresponds to the torsional modes. The  

displacements uncouple by circumferential wave number (n), leaving only coupling in r (or ψ) and 

z (or ζ). 

The Ritz method uses the maximum potential energy (Vmax) and the maximum kinetic energy 
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(Tmax) functionals in a cycle of vibratory motion. The functionals for the truncated conical shell 

with linearly varying thickness along the meridional direction in terms of the non-dimensional 

coordinates ψ(≡r/Ro) and ζ(≡z/H) were given by 


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and Γ1 and Γ2 are constants, defined by 
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From Eqs. (36) it is seen that the non-dimensional constant λ/G in Eq. (44) involves only v as 

λ/G=2v/(1−2v). 

The displacement functions Ur, Uz, and Uθ are assumed as double summations of algebraic 

polynomials 
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where i, j, k, l, m, and n are integers; I, J, K, L, M, and N are the highest degrees taken in the 

polynomial terms; Aij, Bkl, and Cmn 
are arbitrary coefficients to be determined; and the functions 

ηr,z,θ(ψ, ζ)
 
are depending upon the geometric boundary conditions to be enforced. For example,  

1. completely free boundary conditions: ηr=ηz=ηθ=1, 

2. bottom edge fixed and remaining boundaries free: ηr=ηz=ηθ=ζ−ζb, 
3. top edge fixed and remaining boundaries free: ηr=ηz=ηθ=ζ−ζt, 
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4. both top and bottom edges fixed: ηr=ηz=ηθ=(ζ−ζt)(ζ−ζb). 
The eigenvalue problem is developed by minimizing the free vibration frequencies with respect 

to the arbitrary coefficients Aij, Bkl and Cmn, thereby minimizing the effects of the internal 

constraints present, when the function sets are finite. This corresponds to the equations 

),...,2,1,0;,...,2,1,0(,0)( *
max

2
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where 
*

max
2

max TT  . The minimizing Eq. (49) yield a set of (I+1)(J+1)+(K+1)(L+1)+(M+1) 

(N+1) linear, homogeneous, algebraic equations (or Ritz system) in the unknowns Aij, Bkl, and Cmn. 

The equations can be written in the form (K−ΩM)x=0, where K and M are stiffness and mass 

matrices resulting from the maximum strain energy (Vmax) and the maximum kinetic energy (Tmax), 

respectively, and Ω is the square of non-dimensional frequency GRo /22  , and the vector x is 

defined in the following form 
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In the present problem, the Ritz system has the following form 
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where Pαβ is defined by Pαβ≡ψ
α
ζ
β

 
and 

 ˆˆ
K  and 

 ˆˆ
M  (α=i,k,m, β=j,l,n; ,ˆ,ˆ,ˆˆ mki

)ˆ,ˆ,ˆ=ˆ nlj denote the submatrices of the stiffness and mass matrices, respectively. The symbol of  

< , > denotes an inner product defined by 

 


 ddgfgf ),(),(),(, .                  (53) 

For a nontrivial solution, the determinant of the coefficient matrix |K−ΩM| is set equal to zero, 

which yields the frequencies (eigenvalues). These frequencies are upper bounds of the exact 

values. The mode shape (eigenfunction) corresponding to each frequency is computed, in the usual 

manner, by substituting each Ω back into the set of algebraic equations, and solving for the ratios 

of coefficients. 

 

 

3. Convergence study 
 

To ensure the accuracy of frequencies computed by the procedure described above, it is 

necessary to carry out some convergence studies to decide the number of terms required in the 

power series of Eqs. (48). A convergence study is based on the fact that, if the displacements are 

expressed as power series, all the frequencies obtained by the Ritz method should converge to their 

exact values in an upper bound manner. 

To make the study of convergence less complicated, equal numbers of polynomial terms were 

taken in both the r (or ψ) coordinate (i.e., I=K=M) and z (or ζ) coordinate (i.e., J=L=N), even 

though some computational optimization could be obtained for some configurations and some 

mode shapes by using unequal numbers of polynomial terms. The symbols TZ and TR in the tables 

stand for the total numbers of polynomial terms used through the axial (z or ζ) and the radial (r or 

ψ) directions, respectively. Note that the frequency determinant order DET is related to TZ and TR 

as follows 

DET= ,

).1( modes generalfor     3

)0( modes icaxisymmetrfor     2

),0( modes nalfor torsio         

A

T
















nTRTZ

nTRTZ

nTRTZ

                

(54) 
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Table 1 Convergence of frequencies GRo   of a truncated (Ri/Ro=1/5) conical shell with variable  

thickness (h/H=1/5) free at the top edge and clamped at the bottom edge (F-C), for the five lowest bending 

modes for n=1 with α=30° and H/Ro=1/5 (v=0.3)  

TZ TR DET 1 2 3 4 5 

4 

4 

4 

4 

4 

4 

2 

4 

6 

8 

10 

12 

24 

48 

72 

96 

120 

144 

1.530 

1.513 

1.511 

1.510 

1.510 

1.510 

2.490 

2.384 

2.367 

2.366 

2.366 

2.366 

3.241 

3.076 

3.022 

3.016 

3.015 

3.015 

4.205 

3.903 

3.786 

3.752 

3.750 

3.750 

4.549 

4.202 

4.178 

4.172 

4.169 

4.169 

5 

5 

5 

5 

5 

5 

5 

2 

4 

6 

8 

10 

11 

12 

30 

60 

90 

120 

150 

165 

180 

1.529 

1.512 

1.510 

1.510 

1.510 

1.510 

1.510 

2.476 

2.366 

2.365 

2.364 

2.364 

2.364 

2.364 

3.200 

3.026 

3.016 

3.013 

3.013 

3.013 

3.013 

4.139 

3.814 

3.746 

3.743 

3.742 

3.742 

3.742 

4.262 

4.186 

4.171 

4.168 

4.168 

4.167 

4.167 

6 

6 

6 

6 

6 

6 

6 

2 

4 

6 

8 

10 

11 

12 

36 

72 

108 

144 

180 

198 

216 

1.528 

1.511 

1.510 

1.510 

1.510 

1.510 

1.510 

2.469 

2.365 

2.364 

2.363 

2.363 

2.363 

2.363 

3.172 

3.016 

3.014 

3.013 

3.013 

3.012 

3.012 

4.073 

3.749 

3.743 

3.742 

3.741 

3.741 

3.741 

4.246 

4.173 

4.169 

4.168 

4.167 

4.167 

4.167 

TZ=Total numbers of algebraic polynomial terms used in the z (or ζ) direction 

TR=Total numbers of algebraic polynomial terms used in the r (or ψ) direction  

DET=Frequency determinant order 

 

 

One sees in Table 1, for example, that the first non-dimensional frequency GRo   for n=1 

converges to four digits 1.510 when (TZ, TR)=(5,6) terms are used, which results in DET=3×(5×6) 

=90. 

Table 1 shows the convergence of non-dimensional frequencies GRo   of a thick 

(H/Ro=1/5), truncated (Ri/Ro=1/5) conical shell of revolution with linear thickness variation 

(h/H=1/5) free at the top edge and clamped at the bottom edge (F-C) for the five lowest bending 

modes (n=1) with  30  for  =0.3. It is seen in Table 1 that the frequencies have converged 

monotonically up to four significant figures as TZ (=J+1, L+1, and N+1 in Eqs. (48)) as well as TR 

(=I+1, K+1, and M+1 in Eqs. (48)) are increased. Underlined, bold-faced values in the table 

represent the converged results achieved with the smallest determinant size. The four-digit 

convergence for the first five frequencies requires determinants of order DET=90 to 198. 

 

 

4. Comparisons 
 

Buchanan (2000) and Buchanan and Wong (2001) analyzed the truncated conical shells by a 3-

D finite element method. The effects of different boundary conditions, including fixed-free and 

fixed-fixed, were studied. However, their works were all confined to the shells with uniform  
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Table 2 Comparisons of non-dimensional frequencies GL /  of a truncated (Ri/L=0.25) conical shell  

with constant thickness (h/H=1) free at the top edge and clamped at the bottom edge (F-C) for H/L=0.25 and 

α=30° from the present 3-D Ritz method (3DR) and the 3-D finite element method (3DF) (v=0.3) 

n s 3DF 3DR % Difference 

0
T
 

1 

2 

2.435(3) 

5.149 

2.435 

5.151 

0% 

-0.04% 

0
A
 

1 

2 

3 

4 

2.553(4) 

3.125 

3.980 

5.317 

2.555 

3.126 

3.981 

5.321 

-0.07% 

-0.03% 

-0.03% 

-0.08% 

1 

1 

2 

3 

4 

5 

6 

1.609(1) 

2.866(5) 

3.430 

4.456 

5.471 

6.444 

1.608 

2.868 

3.429 

4.457 

5.468 

6.449 

0.06% 

-0.07% 

0.03% 

-0.02% 

0.05% 

-0.08% 

2 

1 

2 

3 

4 

5 

6 

1.881(2) 

3.161 

4.485 

5.837 

6.127 

7.603 

1.880 

3.164 

4.485 

5.836 

6.127 

7.600 

0.05% 

-0.09% 

0% 

0.02% 

0% 

0.04% 

3 

1 

2 

3 

4 

3.149 

4.463 

5.796 

6.692 

3.149 

4.465 

5.796 

6.695 

0% 

-0.04% 

0% 

-0.04% 

4 

1 

2 

3 

4 

4.402 

6.196 

7.243 

7.903 

4.404 

6.201 

7.248 

7.910 

-0.05% 

-0.08% 

-0.07% 

-0.09% 

n=circumferencial wave number; s=mode number 

 

Table 3 Comparisons of non-dimensional frequencies 4 242 /)2/cos)(1(6 GHHRo   for torsional  

(n=0
T
) and axisymmetric modes (n=0

A
) of a truncated conical shell with linear thickness variation (h/H=1/2) 

clamped at the top edge and free at the bottom edge (C-F) with α=30°, H/Ro=0.09957, and Ri/Ro=0.4957
 

from the present 3-D Ritz method and 2-D shell theories (v=0.3) 

n s 
3-D 

Present 

2-D thin shell theories 

Flügge theory Love’s first approximation theory 

Irie et al. Sankaranarayanan et al. Viswanatham et al. 

0
T
 1 13.00 12.99 13.00 12.98 

0
A
 

1 15.89 15.88 15.89 15.87 

2 17.57 17.57 17.57 17.57 

n=circumferencial wave number; s=mode number 

 

 

thickness. Table 2 shows comparisons of non-dimensional frequencies GL /  of a truncated  

(Ri/L=0.25) conical shell of revolution with constant thickness (h/H=1) free at the top edge and  
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Table 4 Comparisons of non-dimensional frequencies GRo 
 

for the first five modes of annular plates  

(α→90°) with linearly varying thickness for Ri/Ro=1/5, h/H=3, and H/Ro=1/9
 
(v =0.3) 

Boundary 

conditions 
Methods 

Mode sequence number 

1 2 3 4 5 

F-F 

Present 

(n,s) 

0.6399 

(2,1) 

1.094 

(0
A
,1) 

1.255 

(3,1) 

1.874 

(4,1) 

1.999 

(1,1) 

Taher et al. 0.6399 1.094 1.255 1.875 2.000 

C-C 

Present 

(n,s) 

2.378 

(0
A
,1) 

2.426 

(1,1) 

2.790 

(2,1) 

3.534 

(3,1) 

3.757 

(0
T
,1) 

Taher et al. 2.380 2.427 2.789 3.533 3.760 

C-F 

Present 

(n,s) 

0.7498 

(0
A
,1) 

1.519 

(1,1) 

2.423 

(2,1) 

2.909 

(1,2) 

3.026 

(0
A
,2) 

Taher et al. 0.7499 1.518 2.423 2.908 3.024 

F-F: Completely free 

C-C: Clamped inner edge and clamped outer edge 

C-F: Clamped inner edge and free outer edge 

n=circumferencial wave number; s=mode number 

 

 

clamped at the bottom edge (F-C) for H/L=0.25 and α=30° from the present 3-D Ritz method and 

the 3-D finite element method (Buchanan and Wong 2001) for v=0.3, where L is equal to csc 

α(Ro−RiHcosα)
 

as the slant length of the truncated conical shell. The percent difference in 

frequencies obtained by the present 3-D Ritz analysis (3DR) and the 3-D finite element method 

(3DF) is given by 

Difference (%)= 100
3DR

3DR3DF



.                      (55) 

The table shows good agreement in frequencies. The 1st and 2nd frequencies from 3DR are 

smaller than those from 3DF. 

Some researchers (Irie et al. 1982, Sankaranarayanan et al. 1987, Viswanatham and 

Navaneethakrishnan 2005) investigated the natural frequencies of truncated conical shells with 

linear thickness variation based upon 2-D thin shell theories of Flügge theory (Irie et al. 1982) or 

Love’s first approximation theory (Sankaranarayanan et al. 1987, Viswanatham and 

Navaneethakrishnan 2005). Table 3 shows comparisons of non-dimensional frequencies 

4 242 /)2/cos)(1(6 GHHRo  
                   

(56) 

for torsional (n=0
T
) and axisymmetric modes (n=0

A
) of truncated conical shell with linear 

thickness variation (h/H=1/2) clamped at the top edge and free at the bottom edge (C-F) with 

α=30°, H/Ro=0.09957, and Ri/Ro=0.4957
 
from the present 3-D Ritz method and 2-D shell theories 

(Irie et al. 1982, Sankaranarayanan et al. 1987, Viswanatham and Navaneethakrishnan 2005) for 

v=0.3. The table shows good agreement in frequencies. However, it is strange that some of the 

frequencies by the present 3-D analyses are larger than those by 2-D shell theories, mainly because 

shear deformation and rotary inertia effects are accounted for in a 3-D analysis, but not in most of 

2-D thin shell theories. 

Taher et al. (2006) computed the natural frequencies of circular and annular plates with variable 
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thickness and combined boundary conditions using 3-D elasticity theory. An annular plate with 

variable thickness is a special case of a truncated conical shells with variable thickness when  

α→90°. Table 4 shows comparisons of non-dimensional frequencies GRo 
 
for the first five  

modes of annular plates with linearly varying thickness for Ri/Ro=1/5, h/H=3, H/Ro=1/9, and v=0.3 

from the present 3-D method and their 3-D study. The table shows very good agreement in 

frequencies irrespective of the boundary conditions.
 

 

 

Table 5 Non-dimensional frequencies GRo   of truncated (Ri/Ro=1/5) conical shells with linear  

thickness variation (h/H=1/5) free at the top edge and clamped at the bottom edge (F-C) with H/Ro=1/5
 

(v=0.3)  

n s 
α 

15° 30° 45° 60° 75° 

0
T 

1 

2 

3 

4 

5 

1.313(5) 

2.305 

3.354 

4.453 

5.583 

2.502(7) 

4.388 

6.377 

8.461 

10.60 

3.465(9) 

6.066 

8.801 

11.66 

14.61 

4.133(9) 

7.222 

10.46 

13.84 

17.32 

4.477(10) 

7.806 

11.27 

14.90 

18.62 

0
A 

1 

2 

3 

4 

5 

1.519(7) 

2.344 

2.636 

3.121 

3.481 

2.464(6) 

2.710(8) 

3.549 

4.378 

5.262 

2.366(4) 

3.170(7) 

4.305 

5.228 

6.047 

2.001(3) 

3.033(5) 

4.744 

5.743 

7.195 

1.381(1) 

2.714(4) 

4.957 

6.082 

7.817 

1 

1 

2 

3 

4 

5 

0.6577(1) 

1.208(4) 

1.902(10) 

2.493 

2.616 

1.510(2) 

2.363(5) 

3.012 

3.741 

4.167 

1.898(2) 

3.062(6) 

3.655 

4.453 

5.025 

1.839(1) 

3.126(6) 

4.166(10) 

4.909 

5.697 

1.491(2) 

2.937(6) 

4.454(9) 

5.151 

6.053 

2 

1 

2 

3 

4 

5 

0.7419(2) 

1.071(3) 

1.521(8) 

2.108 

2.755 

1.197(1) 

1.983(4) 

3.102 

4.334 

4.646 

1.635(1) 

2.805(5) 

4.325 

5.092 

6.247 

1.882(2) 

3.326(7) 

4.976 

5.452 

6.866 

1.939(3) 

3.528(7) 

5.115 

5.725 

7.083 

3 

1 

2 

3 

4 

5 

1.431(6) 

1.898(9) 

2.365 

2.806 

3.276 

1.906(3) 

2.756(9) 

3.693 

4.879 

5.887 

2.318(3) 

3.544(10) 

5.056 

6.436 

6.969 

2.615(4) 

4.166(10) 

6.038 

6.687 

8.355 

2.753(5) 

4.505 

6.497 

6.732 

8.588 

4 

1 

2 

3 

4 

5 

2.307 

2.902 

3.477 

4.044 

4.605 

2.846(10) 

3.926 

4.984 

6.038 

7.142 

3.289(8) 

4.774 

6.275 

7.775 

8.012 

3.592(8) 

5.397 

7.278 

8.098 

9.499 

3.722(8) 

5.728 

7.820 

8.150 

10.21 

T=Torsional mode; A=Axisymmetric mode. 

Numbers in parentheses identify frequency sequence. 
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Table 6 Non-dimensional frequencies GRo   of truncated (Ri/Ro=1/5) conical shells with linear  

thickness variation (h/H=1/10) free at the top edge and clamped at the bottom edge (F-C) with H/Ro=1/5
 

(v=0.3) 

T=Torsional mode; A=Axisymmetric mode. 

Numbers in parentheses identify frequency sequence. 

 

 

5. Numerical results  
 

Tables 5 and 6 present the non-dimensional frequencies GRo   of truncated (Ri/Ro=1/5)  

conical shells with linear thickness variation along the meridional direction free at the top edge and 

n s 
α 

15° 30° 45° 60° 75° 

0
T 

1 

2 

3 

4 

5 

1.274(10) 

2.216 

3.181 

4.178 

5.201 

2.445 

4.254 

6.104 

8.016 

9.977 

3.425 

5.955 

8.542 

11.21 

13.95 

4.144 

7.201 

10.32 

13.54 

16.85 

4.558 

7.914 

11.34 

14.87 

18.49 

0
A 

1 

2 

3 

4 

5 

1.479 

2.097 

2.301 

2.627 

2.900 

2.171 

2.454 

2.915 

3.417 

4.047 

2.022(7) 

2.595 

3.370 

4.105 

4.891 

1.654(4) 

2.361(9) 

3.222 

4.199 

5.688 

1.086(3) 

1.741(5) 

2.745 

4.308 

6.132 

1 

1 

2 

3 

4 

5 

0.6381(2) 

1.128(8) 

1.694 

2.100 

2.423 

1.402(4) 

2.077(10) 

2.530 

3.078 

3.495 

1.633(3) 

2.413(10) 

3.145 

3.697 

4.139 

1.463(3) 

2.289(8) 

3.162 

4.235 

4.240 

1.039(1) 

1.768(6) 

2.810 

4.384 

4.601 

2 

1 

2 

3 

4 

5 

0.3920(1) 

0.6709(3) 

1.073(6) 

1.516 

1.940 

0.8267(1) 

1.424(6) 

2.149 

2.866 

3.617 

1.145(1) 

1.907(6) 

2.794 

3.787 

4.774 

1.198(1) 

2.038(6) 

3.041 

4.317 

5.101 

1.052(2) 

1.860(8) 

3.006 

4.612 

5.231 

3 

1 

2 

3 

4 

5 

0.6994(4) 

0.9029(5) 

1.080(7) 

1.361 

1.722 

0.9497(2) 

1.361(3) 

1.969(8) 

2.703 

3.508 

1.186(2) 

1.833(5) 

2.741 

3.815 

5.051 

1.333(2) 

2.117(7) 

3.199 

4.575 

6.251 

1.374(4) 

2.199(10) 

3.377 

4.994 

6.580 

4 

1 

2 

3 

4 

5 

1.135(9) 

1.414 

1.660 

1.839 

2.042 

1.417(5) 

1.869(7) 

2.301 

2.927 

3.710 

1.654(4) 

2.283(9) 

3.062 

4.120 

5.395 

1.826(5) 

2.619 

3.639 

5.024 

6.729 

1.913(9) 

2.803 

3.942 

5.534 

7.526 

5 

1 

2 

3 

4 

5 

1.678 

2.028 

2.345 

2.630 

2.853 

2.005(9) 

2.598 

3.068 

3.549 

4.246 

2.274(8) 

3.047 

3.744 

4.708 

5.956 

2.467(10) 

3.394 

4.343 

5.670 

7.354 

2.567 

3.601 

4.698 

6.233 

8.186 
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clamped at the bottom edge (F-C) for α=15°, 30°, 45°, 60°, 75° with h/H=H/Ro=1/5
 
in Table 5 and 

h/H=H/Ro=1/10 in Table 6 for v=0.3. The conical shell configurations for Table 5 are depicted in 

Fig. 2. The mode shapes of the conical shells at z=z0 are given in Fig. 3 for each value of n except 

for the torsional ones (n=0
T
). The mode shapes have 2n nodal points (ur=0) for each n. Thirty 

frequencies are given for each shell configuration, which arise from six circumferential wave 

numbers (n=0
T
, 0

A
, 1, 2, 3, 4) and the first five modes (s=1, 2, 3, 4, 5) for each value of n, where 

the superscripts T and A indicate torsional and axisymmetric modes, respectively. The numbers in 

parentheses identify the first ten frequencies for each shell configuration. For example, in the case 

of α=15°
 
in the first column of Table 5, the first ten frequencies are modes for (n,s) = (1,1), (2,1), 

(2,2), (1,2), (0
T
,1), (3,1), (0

A
,1), (2,3), (3,2), (1,3) in this order. 

It is seen in Tables 5 and 6 that most of the frequencies become larger as α increases. It is also 

observed that the torsional (n=0
T
) modes are more important as α

 
becomes smaller, and the 

axisymmetric (n=0
A
) modes are more important as α

 
becomes larger. The modes for higher 

circumferential wave number of relatively thin conical shells (H/Ro=1/10) are more important 

 

 

 

α=15° 

 

 

α=30° α=45° 

 
 

α=60° α=75° 

Fig. 2 Cross-sections of truncated, free-clamped (F-C) conical sells having linear thickness variation for 

Ri/Ro=1/5, h/H=1/5, and H/Ro=1/5 
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 n=0
A
 n=1 n=2  

    

n=3 n=4 n=5 n=6 

Fig. 3 Mode shapes for each n 

 

 

compared with those of thick conical shells (H/Ro=1/5). That is, they are among the lowest 

frequencies of the conical shells. 

 

 
6. Conclusions 
 

Accurate frequency data determined by the 3-D Ritz analysis have been presented for truncated 

shallow and deep conical shells with linear thickness variation along the meridional direction free 

at the top edge and clamped at the bottom edge. The present analysis is based on the circular 

cylindrical coordinate system instead of the conical one, mainly because the latter takes more time 

to compute the energy integration numerically than based on the former. The analysis uses the 3-D 

equations of the theory of elasticity in their general forms for isotropic materials. They are only 

limited to small strains. No other constraints are placed on the displacements. This is an obvious 

difference between the 3-D analysis and the classical 2-D thin shell theories, which make very 

limiting assumptions about the displacement variation through the shell thickness. 

The method is able to determine frequencies as close to the exact ones as wanted. Therefore, 

the data in Tables 5 and 6 may be regarded as benchmark results against which 3-D results 

obtained by other methods, such as finite elements and finite differences, may be compared to 

determine the accuracy of the latter. Moreover, the frequency determinants required by the present 

method are at least an order of magnitude smaller than those needed by finite element analyses of 

comparable accuracy. McGee and Leissa (1991) demonstrated extensively in their paper. The Ritz 

method guarantees upper bound convergence of the frequencies in terms of functions sets that are 

mathematically complete, such as algebraic polynomials. Some finite element methods can also 

accomplish this, but at much greater costs, and others cannot. 
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