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Abstract.  This paper presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the 

nonlinear vibration of single walled carbon nanotubes (CNTs). The present model is capable of capturing 

both small scale effect and transverse shear deformation effects of CNTs, and does not require shear 

correction factors. The surrounding elastic medium is simulated based on Pasternak foundation. Based on the 

nonlocal differential constitutive relations of Eringen, the equations of motion of the CNTs are derived using 

Hamilton’s principle. Differential quadrature method (DQM) for the natural frequency is presented for 

different boundary conditions, and the obtained results are compared with those predicted by the nonlocal 

Timoshenko beam theory (TBT). The effects of nonlocal parameter, boundary condition, aspect ratio on the 

frequency of CNTs are considered. The compar¬ison firmly establishes that the present beam theory can 

accurately predict the vibration responses of CNTs. 
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1. Introduction 
 

Nanostructures are widely used in micro- and nano-scale devices and systems such as 

biosensors, atomic force microscopes, micro-electro-mechanical systems (MEMS) and nano-

electro-mechanical systems (NEMS) due to their superior mechanical, chemical, and electronic 

properties (Libhushan  Takashima, Beak and Kim 2003). In such applications, small scale effects 

are often observed. These effects can be captured using size-dependent continuum mechanics such 

as strain gradient theory (Nix and Gao 1998), modified couple stress theory (Ma and Reddy 2008), 

and nonlocal elasticity theory (Eringen 1972). Among these theories, the nonlocal elasticity theory 

initiated by Eringen is the most commonly used theory. Unlike the local theories which assume 

that the stress at a point is a function of strain at that point, the nonlocal elasticity theory assumes 

that the stress at a point is a function of strains at all points in the continuum. 

                                                 
Corresponding author, Ph.D. Student, E-mail: h.rahimipour@pogc.ir 



 

 

 

 

 

 

Hasan Rahimi Pour et al. 

 

Based on the nonlocal constitutive relation of Eringen, a number of papers have been published 

attempting to develop nonlocal beam models for predicting the responses of carbon nanotubes. 

The nonlocal Euler-Bernoulli beam theory (EBT) and Timoshenko beam theory (TBT) first 

proposed by Peddieson et al. (2003), Wang (2005), respectively, were adopted by many 

researchers to investigate bending (Civalek and Demir 2011, Wang et al. 2008, Wang and Liew 

2007), buckling (Murmu and Pradhan 2009, Wang et al. 2006, Wang et al. 2006), and vibration 

(Wang and Varadan 2006, Wang et al. 2007, Zhang et al. 2005) responses of carbon nanotubes.  

A complete development of EBT and TBT was presented by Reddy and Pang (2008) who 

provided the ana-lytical solutions for the deflection, buckling load, and natural frequency of 

nanobeams with various boundary conditions. It should be noted that the EBT is only applicable 

for slender beams where the shear deformation effect is negligible. However, it underestimates 

deflection and overestimates buckling load as well as natural frequency for short beams. The TBT 

accounts for the shear deformation effect for short beams by assuming a constant shear strain 

through the height of the beam. Therefore, a shear correction factor is required to compensate for 

the difference between the actual stress state and the constant stress state. To avoid the use of shear 

correction factor, higher-order shear deformation theories were developed based on the assumption 

of the higher-order variation of axial displacement through the height of the beam, notable among 

them are the third-order theory of Reddy (2007), generalized theory of Aydogdu (2009), refined 

theory of Thai (2012), and sinusoidal shear deformation theory of Touratier (1991). 

The sinusoidal shear deformation theory of Touratier (1991) is based on the assumption that the 

transverse shear stress vanishes on the top and bottom surfaces of the beam and is nonzero 

elsewhere. Thus there is no need to use shear correction factors as in the case of TBT. This theory 

is also employed to predict the response of laminate plate (Zenkor 2004) and functionally graded 

sandwich plates (Zenkour 2005a). The aim of this paper is to propose a nonlocal SDBT which 

accounts for both small scale and shear deformation effects of CNTs. The small scale effect is 

taken into account by using the nonlocal constitutive relations of Eringen, while the shear 

deformation effect is captured using the SDBT (Touratier 1991). The nonlocal equations of motion 

are derived using Hamilton’s principle. DQM for natural frequency of CNT with different 

boundary conditions is presented, and the obtained results are compared with those predicted by 

the TBT to verify the accuracy of the present solution. The effects of nonlocal parameter, 

boundary condition, aspect ratio are discussed in detail. 

 

 

2. Equations of motion of the sinoisoidal beam theory 
 

Consider a beam length L and rectangular cross section b×h, with b being the width and h being 

the height. The x, y and z coordinates are taken along the length width, and height of the beam, 

respectively.  

According to the sinusoidal theory, the displacement field is chosen based on the assumption 

that the transverse shear stress vanishes on the top and bottom surfaces of the beam and is nonzero 

elsewhere. The displacement field is given as (touratier) 
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where f=(h/p)sin(πz/h) u and w are the axial and transverse displacements, respectively, of a point 

on the mid-plane of the beam and φ is the rotation of the cross section about the y-axis. The only 

nonzero strains are 
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It can be observed from Eq. (2) that the transverse shear strain γxz is zero at the top (z=h/2) and 

bottom (z=−h/2) surfaces of the beam thus satisfying the traction free conditions for σxz. 

 

 

3. Nonlocal theory 
 

Unlike the local theory, the nonlocal theory assumes that the stress at a point depends not only 

on the strain at that point but also on strains at all other points of the body. According to Eringen 

(1983), the nonlocal stress tensor r at point x is expressed as 

               2

 
(3) 

where s is classical stress tensor at a point x related to the strain by the Hooke’s law; μ=(e0a)
2

 
is 

the nonlocal parameter which incorporates the small scale effect, a is the internal characteristic 

length and e0 is a constant appropriate to each material. The nonlocal parameter depends on the 

boundary conditions, chirality, mode shapes, number of walls, and type of motion (Arash and 

Wang 2012). So far, there is no rigorous study made on estimating the value of the nonlocal 

parameter. It is suggested that the value of nonlocal parameter can be determined by experiment or 

by conducting a comparison of dispersion curves from the nonlocal continuum mechanics and 

molecular dynamics simulation (Arash and Ansari 2010, Wang 2005). In general, a conservative 

estimate of the nonlocal parameter is e0a<2 nm for a single wall carbon nanotube (Wang and 

Wang 2007). 

For an isotropic material in a one-dimensional case, the nonlocal constitutive relation in Eq. (3) 

takes the following forms 
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where E and G are the elastic and shear modulus of the CNT, respectively. 

 
 
4. Energy method 
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Equations of motion are derived using Hamilton’s principle. The principle can be stated in 

analytical from as (Reddy)  
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where δu is the variation of the strain energy δv is variation of external works; and δk is the 

variation of the kinetic energy. 

The variation of the strain energy of the CNT can be stated as 
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where N, M, P and q are the stress resultants defined as 
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The variation of the external works of the CNT can be stated as 
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where q is the Pasternak medium force which may be expressed as 

              
2

2

dx

wd
KwKq gw 

 
(10) 

where Kw and Kg are respectively spring constant of Winkler type and shear constant of Pasternak 

type.  

The variation of the kinetic energy is obtained as 
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(11) 

where dot-superscript convention indicates the differentiation with respect to the time variable t; ρ 

is the mass density; and (m0, m2) are mass inertias defined as 
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Substituting the expressions for, δu, δv and δk from Eqs. (7), (6) and (11) into Eq. (6) and 

integrating by parts, and collecting the coefficients of, δu, δw
 
and, δφ the following equations of 
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motion of the CNT are obtained 
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By substituting Eq. (2) into Eqs. (4) and (5) and the subsequent results into Eq. (8), the stress 

resultants are obtained as 
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The nonlocal equations of motion of the proposed CNT theory can be expressed in terms of 

displacements (u, w, φ) by substituting stress resultants in Eqs. (13)-(15) as 
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The equations of motion of local CNT theory can be recovered from Eqs. (21)-(23) by setting 

the nonlocal parameter μ equal to zero.  
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5. GDQM  
 

In this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 

special problem and only depend on the grid spacing. In other words, the partial derivatives of a 

function (say φ, w here) are approximated with respect to specific variables (say x), at a 

discontinuous point in a defined domain (0<x<L) as a set of linear weighting coefficients and the 

amount represented by the function itself at that point and other points throughout the domain. The 

approximation of the n
th
 derivative function with respect to x may be expressed in general form as 
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where Nx, denotes the number of points in x direction, f(x) is the function and Aik is the weighting 

coefficients defined as 
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where M is Lagrangian operators defined as 

            

jixxxM
xN

j

jii 


,)()(
1  

(26) 

The weighting coefficients for the second, third and fourth derivatives are determined via 

matrix multiplication 
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Using the following rule, the distribution of grid points in domain is calculated as 
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where ω is frequency of system. Substituting Eq. (24) into the governing equations turns it into a 

set of algebraic equations expressed as 
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Finally, the governing equations (i.e., Eqs. (30)-(32)) in matrix form can be expressed as  
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where [K] and [M] are respectively, stiffness and mass matrixes which can be defined as 
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Table 1 First three non-dimensional frequency ϖ of simply supported nano-beams 

L/h μ (nm
2
) 

ϖ1 ϖ2 ϖ3 

TBT 

(Thai 2012) 
Present 

TBT 

(Thai 2012) 
Present 

TBT 

(Thai 2012) 
Present 

5 

0 9.2740 9.2752 32.1665 32.1948 61.4581 61.6192 

1 8.8477 8.8488 27.2364 27.2604 44.7247 44.8420 

2 8.4752 8.4763 24.0453 24.0664 36.8831 36.9798 

3 8.1461 8.1472 21.7642 21.7833 32.1036 32.1878 

4 7.8528 7.8536 20.0293 20.0470 28.8023 28.8778 

10 

0 9.7075 9.7077 37.0962 37.1009 78.1547 78.1855 

1 9.2612 9.2614 31.4105 31.4146 56.8753 56.8977 

2 8.8713 8.8710 27.7303 27.7339 46.9034 46.9219 

3 8.5269 8.5271 25.0996 25.1079 40.8254 40.8415 

4 8.2196 8.2198 23.0989 23.1019 36.6272 36.6416 

20 

0 9.8281 9.8282 38.8299 38.8308 85.6619 85.6671 

1 9.3763 9.3764 32.8786 32.8793 62.3385 62.3422 

2 8.9816 8.9816 29.0263 29.0270 51.4087 51.4118 

3 8.6328 8.6329 26.2727 26.2733 44.7469 44.7496 

4 8.3218 8.3218 24.1785 24.1790 40.1454 40.1478 

1000 

0 9.8679 9.8679 39.4517 39.4517 88.6914 88.6915 

1 9.4143 9.4143 33.4051 33.4051 64.5431 64.5432 

2 9.0180 9.0180 29.4911 29.4912 53.2268 53.2269 

3 8.6678 8.6678 26.6934 26.6934 46.3294 46.3295 

4 8.3555 8.3555 24.5657 24.5657 41.5652 41.5653 

 

 

The above nonlinear equation can now be solved using a direct iterative process as follows: 

First, nonlinearity is ignored by taking to solve Eq. (33). This yields the linear frequency and 

displacements. The displacements are then scaled up. 

Using linear deflection, nonlinear coefficient could be evaluated. The problem is then solved by 

substituting nonlinear coefficient into Eq. (33). This would give the nonlinear frequency and 

displacements.  

The new nonlinear deflection is scaled up again and the above procedure is repeated iteratively 

until the difference between displacements values from the two subsequent iterations becomes less 

than 0.01%. 

 

 

6. Results and discussion 
 

In order to show the effects of nonlocal parameter, surrounding elastic medium, aspect ratio 

and boundary condition, the frequency reduction percent is defined as follows 

100















local
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In the absence of similar publications in the literature covering the same scope of the problem, 

one can not directly validate the results found here. However, the present work could be partially 

validated based on a simplified analysis suggested by Thai (2012) neglecting nonlinear terms in 

motion equations and elastic foundation. Table 1 shows the non-dimensional fundamental  

frequency (i.e., EImL /0

2  ) of a simply supported nano-beam. The obtained results are  

compared with those reported by Thai (2012) based on nonlocal TBT. It can be seen that the 

results of present theory are in excellent agreement with those predicted by TBT for all values of 

small scale coefficient and length-to-depth ratio even for short beams at the higher vibration 

modes where the effects of transverse shear deformation and rotary inertia are significant. It is 

worth noting that the TBT requires a shear correction factor to satisfy the free transverse shear 

stress conditions on the top and bottom surfaces of the beam, whereas the present theory satisfies 

the free transverse shear stress conditions on the top and bottom surfaces of the beam without 

using any shear correction factors. 

Fig. 1 illustrates the FRP versus the nonlocal parameter for four cases including: 

Case1: linear vibration analysis of TBT 

Case 2: Nonlinear vibration analysis of TBT 

Case3: linear vibration analysis of SDBT 

Case 4: Nonlinear vibration analysis of SDBT 

As can be seen, the FRP increases with increasing μ. It means that with increasing μ, the 

frequency of the nano-beam becomes lower. This is due to the fact that the increase of nonlocal 

parameter decreases the interaction force between nano-beam atoms, and that leads to a softer 

structure. It is also concluded that the FRP (or frequency) of SDBT is lower (or higher) than TBT. 

Hence, application of SDBT in modeling of nanostructures based vibration analysis is better than 

TBT. Furthermore, the FRP of SDBT and TBT in nonlinear vibration response is higher than  

 

 

 

Fig. 1 FRP versus nonlocal parameter for TBT and SDBT 
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Fig. 2 The effect of elastic medium on the FRP versus the nonlocal parameter 

 

 

Fig. 3 The effects of boundary conditions on the FRP versus nonlocal parameter 

 

 

linear one. It is due the fact that in nonlinear analyzing the accuracy of the obtained results is 

higher than linear one.  

The effect of elastic medium on the FRP versus the nonlocal parameter of nano-beam, is shown 

in Fig. 2. Three different cases of elastic medium are considered. Case 1, Case2 and Case 3 depict 

the (i) without elastic medium (ii) with Winkler medium (iii) with Pasternak medium, respectively.  
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Fig. 4 The effect of aspect ration on the FRP of system versus nonlocal parameter 

 

 

As can be seen, the FRP (or frequency) increases (or decreases) with increasing nonlocal 

parameter. It can be observed that the FRP for cases 1 and 3 is maximum and minimum, 

respectively. In the other words, the frequency of the system for the case of nano-beam embedded 

in elastic medium is higher than other cases. It is because considering elastic medium increases the 

stiffness of the system. It is also obvious that the FRP (or frequency) of the case 3 is lower (or 

higher) than case 2. It is due to the fact that in Winkler medium, a proportional interaction between 

pressure and deflection of nano-beam is assumed, which is carried out in the form of discrete and 

independent vertical springs. Whereas, Pasternak medium considers not only the normal stresses 

but also the transverse shear deformation and continuity among the spring elements. 

Fig. 3 demonstrates the influence of boundary conditions on the FRP with respect to the 

nonlocal parameter. Three boundary conditions namely as clamped-clamped (CC), clamped-

simply (CS) and simply-simply (SS) are considered. It could be said however, that FRP (or 

frequency) of nano-beam for CC boundary condition is minimum (or maximum). This is perhaps 

because in CC boundary condition, the stiffness of structure is higher than other cases. In addition, 

the effect of boundary conditions on the FRP becomes more prominent at higher nonlocal 

parameter. 

Fig. 4 illustrates the effect of aspect ration (i.e., length to diameter of SWCNT) on the FRP of 

system versus nonlocal parameter. As can be seen, increasing aspect ratio, decreases frequency of 

SWCNT. It is due to the fact that, increasing aspect ration leads to soffer structure. 

 

 

7. Conclusions 
 

A nonlocal sinusoidal beam theory is developed for the nonlinear vibration of CNTs embedded 

in Pasternak medium. The present model is capable of capturing both small scale and shear 
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deformation effects of CNTs, and does not require shear correction factors. Based on the nonlocal 

differential constitutive relations of Eringen, the equations of motion of the CNT are derived using 

Hamilton’s principle. DQM for natural frequency is presented for different boundary conditions, 

and the obtained results are compared well with those predicted by the TBT. It is concluded that 

the FRP (or frequency) of SDBT is lower (or higher) than TBT. The FRP of SDBT and TBT in 

nonlinear vibration response is higher than linear one. It is also obvious that the FRP (or 

frequency) of the Pasternak medium is lower (or higher) than Winkler medium. Furthermore, 

increasing aspect ratio, decreases frequency of CNT. It could be said however, that FRP (or 

frequency) of nano-beam for CC boundary condition is minimum (or maximum). In addition, the 

effect of boundary conditions on the FRP becomes more prominent at higher nonlocal parameter. 

Meanwhile, the FRP (or frequency) increases (or decreases) with increasing nonlocal parameter. 
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