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Abstract.  In this paper, the influence of the polled direction of piezoelectric materials on the stress 

distribution is studied under time-harmonic dynamical load (time-harmonic Lamb’s problem). The system 

considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the 

harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by 

utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain 

state is considered. It is assumed that the perfect contact conditions between the covering layer and half-

plane are satisfied. The boundary value problems under consideration are solved by employing Fourier 

exponential transformation techniques with respect to coordinates directed along the interface line. 

Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, 

PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the 

interface plane are presented and discussed. As a result of the analyses, it is established that the polled 

directions of the piezoelectric materials play an important role on the values of the studied stresses and 

electric potential. 
 

Keywords:  piezoelectric layered material; polled direction; time-harmonic dynamical loading; stress 

distribution; resonance behavior 

 
 
1. Introduction 
 

Piezoelectric materials are widely used in electromechanical and electronic devices systems 

such as transducers, sensors and actuators. Because of their suitable properties, piezoelectric 

structural materials can have a function as deployed sensors and actuators for observing and 

controlling the response of a structure. In these devices, both electrical and mechanical loads 

applied on the piezoelectric system can cause to quite high stresses. To understand their dynamical 

behaviors, many research have been performed so far. 

The problems with the half-plane boundary, Sosa and Castro (1994) investigated a piezoelectric 

half-plane indented by a concentrated line force and a concentrated line electric charge by using 

the state space approach. Fan et al. (1996) investigated the two-dimensional contact on a 

piezoelectric half-plane. In this study, the stress and electric field distributions in the system under 
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contact loads at the surface was investigated by using Stroh’s formalism. Gao and Fan (1998) 
studied the two-dimensional Green's functions for a transversely isotropic piezoelectric half-plane. 
The principle of analytical continuation of complex potentials was used. Chen (2000) studied the 
transversely isotropic piezoelectric half-space subjected to a rigid smooth punch with an arbitrarily 
shaped profile by using the complex potential function method.  

A crack embedded in a half-plane piezoelectric solid with traction-induction free and electric-
open boundary conditions was analyzed in Yang et al. (2007). The plane problem considered 
multilayered piezoelectric laminates were investigated by Ruan et al. (2000) and by Tarn and 
Huang (2002), Borrelli et al. (2006). Ma et al. (2014) have investigated the two-dimensional 
sliding frictional contact of a piezoelectric half-plane. Plane strain state cases are discussed under 
the action of a rigid flat or a triangular punch. Fourier integral transform and the superposition 
theorem were used. The unknown contact pressure and surface electric charge distribution were 
determined. 

The study of Lamb’s problem for the system consisting of the elastic layer and elastic half-
space were made in recent papers by Akbarov (2006a, 2006b, 2006c, 2006d, 2013), Akbarov and 
Guler (2007), Akbarov and Ilhan (2008, 2009, 2010), Ilhan (2012), Akbarov and Salmanova 
(2009), Akbarov et al. (2013), Akbarov et al. (2005), Emiroglu et al. (2009). In a paper by 
Akbarov and Ilhan (2013) the first attempt was made to study the time-harmonic Lamb’s problem 
for a system consisting of a covering piezoelectric layer and piezoelectric half-plane. However, in 
the paper by Akbarov and Ilhan (2013) it was assumed that the polled direction of the materials of 
the constituents of the system directed along the direction which is perpendicular to the interphase 
plane. But in many real cases the polled direction of the materials cannot coincide and how this 
statement can effect on the dynamic stress field caused by linearly-located time harmonic forces 
acting on the covering layer is the novelty of the present paper. 
 
 
2. Formulation of the problem 
 

As in the paper by Akbarov and Ilhan (2013), consider a system consisting of a half-plane and 
covering layer and assume that a linearly-located time harmonic force acts on the upper free face 
plane of the covering layer (see Fig. 1(a)). It is required to determine the dynamical response of the 
considered system under the plane-strain state in the Oxz plane. Note that the covering layer and 
half-plane occupy the regions {−∞<x<+∞, −h<z<0} and {−∞<x<+∞, −∞<z<−h }, respectively. 
The materials of the constituents are taken piezoelectric ones. 

To distinguish between the values related to the covering layer and half-plane, we will use the 
upper indices (1) and (2), respectively. 

It is presume that the materials of the constituents are transversally isotropic. We write the 
equations of motion based on the linear theory of electro-elasticity (Eringen and Maugin 1990, 
Yang 2005). 

( ) ( ) 2 ( )
( )

2
,

k k k
kxx xz u

x z t

    
 

  
 

( ) ( ) 2 ( )
( )

2

k k k
kxz zz w

x z t

    
 

  
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( ) ( )

0
k k

x zD D

x z

 
 

 
,       1,2k                                                 (1) 

Consider the formulation of the electro-mechanical relations for the piezoelectric materials of 
the constituents. If the polled direction of the k-th piezoelectric material is directed along the Oz  
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Fig. 1(a) Geometry of the considered system Fig. 1(b) Sommerfeld contour 
 
 

axis (Fig. 1(a)), the electro-mechanical relations are written in the following form 

( ) ( ) ( ) ( ) ( )
11 13 31

k k k k k
xx xx zz zc c e E     ,  ( ) ( ) ( ) ( ) ( )

13 33 33
k k k k k

zz xx zz zc c e E     , 

 ( ) ( ) ( ) ( )
44 15

k k k k
xz xz zx xc e E     ,  ( ) ( ) ( ) ( )

15 11
k k k k

x xz zx xD e E     , 

   ( ) ( ) ( ) ( ) ( )
31 33 33

k k k k k
z xx zz zD e e E     .                                             (2) 

But in the case where the polled direction of the k-th piezoelectric material is directed along the 
Ox axis (Fig. 1(a)) the electro-mechanical relations for this material are written as follows 

( ) ( ) ( ) ( ) ( )
33 13 33

k k k k k
xx xx zz xc c e E     , ( ) ( ) ( ) ( ) ( )

13 11 31
k k k k k

zz xx zz xc c e E     , 

 ( ) ( ) ( ) ( )
44 15

k k k k
xz xz zx zc e E     ,    ( ) ( ) ( ) ( ) ( )

33 31 33
k k k k k

x xx zz xD e e E     , 

 ( ) ( ) ( ) ( )
15 11

k k k k
z xz zx zD e E     .                                                  (3) 

We also write the strain-displacement and electric field vector-electric potential relations as 
follows 

( )
( )

k
k

xx

u

x
 




,
( )

( )
k

k
zz

w

z
 




,
( ) ( )

( ) ( )
k k

k k
xz zx

u w

z x
   

  
 

,
( )

( )
k

k
xE

x


 


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( )

k
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
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In Eqs. (1), (2), (3) and (4) ( )
11

kc , ( )
13

kc , ( )
33

kc and ( )
44
kc are elastic constants well known from 

classical linear theory of elasticity; ( )k
xD  and ( )k

zD  are components of the electric displacement 
vector; ( )k

xE and ( )k
zE  are components of the electric field vector; ( )k  is an electric potential; ( )

31
ke , 

( )
33

ke and ( )
15

ke are piezoelectric constants; ( )
11

k and ( )
33

k are dielectric constants; ( )ku and ( )kw are 
components of the displacement vector in the direction of the Ox and Oz axes respectively, ( )k

xx , 
( )k
zz and ( )k

xz are components of the strain tensor, and ( )k
xx , ( )k

zz  and ( )k
xz are components of the 

stress tensor. 
Assume that the following perfect contact conditions are satisfied on the interface plane 
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between the covering layer and half plane 

(1) (2)
xz xzz h z h

 
 

 , (1) (2)
zz zzz h z h

 
 

 , (1) (2)

z h z h
u u

 
 , (1) (2)

z h z h
w w

 
 ,             (5) 

(1) (2)

z h z h
 

 
 , (1) (2)

z zz h z h
D D

 
 .                                         (6) 

On the free upper face plane of the covering layer the mechanical load conditions are given 
below 

(1)

0
0xz z



 , (1) i

0
e ( )t

zz z
P x 


                                           (7) 

where δ(x) is a Dirac delta function.  
In a further discussion the following cases will be considered: 
Case 1. The face plane of the covering layer is electroded and grounded, i.e. 

(1)

0
0

z



        (8) 

Case 2.  The face plane of the covering layer is unelectroded, i.e.  

(1)

0
0z z

D

 .      (9) 

In addition, there are the following boundedness conditions 

(2)u ; (2)w ; (2) constM   as z  .                                    (10) 

This completes the formulation of problem. It should be noted that the formulated problem in 
the case where the electro-mechanical relation (Eq. (2)) occurs for both covering layer and half-
plane materials simultaneously, has been considered in the paper by Akbarov and Ilhan (2013). 
The case where the electro-mechanical relations of the both materials of the covering layer and 
half-plane are given through the Eq. (3), as well as the case where the electro-mechanical relations 
of the covering layer material (half-plane material) are given through the Eq. (2) (through the Eq. 
(3)). However, the electro-mechanical relations for the half-plane material (covering layer 
material) are given through the Eq. (3) (through the Eq. (2)) will be investigated in the present 
paper. 
 
 
3. Method of solution 

 
According to the boundary condition in Eq. (7) we will describe the sought values as: 

( ) ( ) i( , )ek k tu u x z  , ( ) ( ) i( , )ek k tw w x z  , ( ) ( ) i( , )ek k tx z   ,                          (11) 

and consider the finding the amplitudes ( ) ( , )ku x z , ( ) ( , )kw x z and ( ) ( , )k x z in the case where the 
electro-mechanical relation (Eq. (4)) occur. Note the solution procedure related to the case where 
the electro-mechanical relation (Eq. (2)) occurs was considered in the paper by Akbarov and Ilhan 
(2013).  

Thus, according to Eq. (11), (4) and (3), we obtain the following equations for the amplitudes
( ) ( , )ku x z , ( ) ( , )kw x z and ( ) ( , )k x z  from Eq. (1) as 
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0

k

x
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where ( ) ( ) ( )
2 44
k k kc c  . In Eq. (12) and the subsequent equations, the over-bars on the sought 

values are omitted for the sake of brevity. The contact conditions (5) and (6), the boundary 
conditions (8) and (9), and the first boundary condition in (7) also hold for the amplitudes of the 
corresponding values. In this case, the second boundary condition in (7) is transformed into the 
following one 

(1)

0
( )zz z

P x 

  .                                                          (13) 

To proceed further, we define the dimensionless coordinates and dimensionless frequency as 
follows 

'
x

x
h

 , '
z

z
h

 , 
(1)
2

h

c


  .                                                     (14) 

The prime on the 'x  and 'z  will be omitted below. Now we consider the solutions to Eq. (12). 
For this purpose, as in the paper Akbarov and Ilhan (2013) we employ the exponential Fourier 
transformation with respect to the x coordinate defined as  

i( , ) ( , )e dsx
Ff s z f x z x






  .                                                  (15) 

in Eq. (12) and given the corresponding boundary and contact conditions. From (12), (13) and (15) 
we obtain the following relations 

( ) ( )

( )

( )

2( ) ( ) ( ) ( )2 ( ) 2 (1)
2 ( ) 215 13 33 332

2 ( ) 2 ( ) ( ) ( ) ( )
44 44 44 2 44
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1311
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k k k kk
kF F F
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 
      
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 
  
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( )
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215 31 2
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44 2
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e e d c
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2 ( ) 215 15 31 33 3311
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kF F F
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      (16) 

(1)

0Fzz z
P


  .                                                             (17) 

The contact conditions, the boundary conditions, and the first boundary condition in Eq. (7) 
also hold for the Fourier transformation Eq. (15) of the amplitudes of the corresponding values. 
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For the particular solution of Eq. (16), we select the components of the displacement vector and 
electric potential as follows 

( )( ) ( ) e
kk k z

Fu A  ,
( )( ) ( ) e
kk k z

Fw B  , 
( )( ) ( ) e
kk x z

F C   .                                (18) 

Substituting Eq. (18) into Eq. (16) and doing the corresponding mathematical manipulations 
yield the following equations 

2( ) ( ) ( ) ( )(1)
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44 2 44 44 44

( ) ( )
( ) ( ) ( ) 213 11
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c c
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We obtain the characteristic equation from Eq. (19) so as to determine the values of ( )k  
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44 44 44 44 44 44 44

2 2 4
k k k k k kk

k k k k k k k

e e c e e

c c c c c c c

  
         
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s
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 

    
              

    
            

                         (21) 

From Eq. (19) it can be stated that  

( )( ) ( ) ( )
( ) 4
1 ( )

2 cos
3 3 3

kk k k
k

k

aP 


 
   

 
, 

( )
( )

( )
arctan 2

k
k

k

D

Q


 
    

, 

( )( ) ( ) ( ) ( )
( ) 4
2 ( )

2 cos 3 sin
3 3 3 3

kk k k k
k

k

aP  


    
             

, 

( )( ) ( ) ( ) ( )
( ) 4
3 ( )

2 cos 3sin
3 3 3 3

kk k k k
k

k

aP  


    
             

, 

 2( )
4( ) ( )

23

k

k k
a

P a   , 
 3( ) ( ) ( )

4( ) ( )2 4
0

2

27 3

k k k
k k

a a a
Q a   , 

   2 3( ) ( )

( )

4 27

k k

k
Q P

D   .            (22) 

We will consider the cases where 

( ) ( ) ( )
1 2 3
k k k     ,                                                          (23) 

According to the condition in Eq. (23), it can be written that 

( ) ( )
1 1

k k   , ( ) ( )
2 1
k k    , ( ) ( )

3 2
k k   , ( ) ( )

4 2
k k    , ( ) ( )

5 3
k k   , ( ) ( )

6 3
k k    .     (24) 

From the foregoing results we can present the general solution of the Eq. (16) for the covering 
layer as follows 

(1)
6

(1) (1)

1

e n z
F n

n

u A 



 , 
(1)

6
(1) (1) (1)

1

e n z
F n n

n

w A 


 , 
(1)

6
(1) (1) (1)

1

e n z
F n n

n

A  


 . 

(1)
(1) (1)6

(1) (1) (1) (1) (1) (1)33 33
13 (1) (1)

1 13 13

(i ) i e n z
xxF n n n n

n

c e
c A s s

c c
   



 
   

 
  , 

(1)
(1)(1)6

(1) (1) (1) (1) (1) (1)3111
13 (1) (1)

1 13 13

(i ) i e n z
zzF n n n n

n

ec
c A s s

c c
   



 
   

 
  , 
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(1)
(1)6

(1) (1) (1) (1) (1) (1) (1)15
44 (1)

1 44

(i ) e n z
xzF n n n n n

n

e
c A s

c
    



 
   

 
  , 

  (1)
6

(1) (1) (1) (1) (1) (1) (1) (1)
33 31 33

1

i i e n z
xF n n n n

n

D A e s e s    


   , 

  (1)
6

(1) (1) (1) (1) (1) (1) (1) (1)
15 11

1

( i ) e n z
zF n n n n n

n

D A e s     


   .                               (25) 

Taking into account the condition Eq. (10), the general solution of the Eq. (16) for the half-
plane is 

( 2)(2) (2)

1;3;5

e n z
F n

n

u A 



  , 
( 2)(2) (2) (2)

1;3;5

e n z
F n n

n

w A 


  , 
( 2)(2) (2) (2)

1;3;5

e n z
F n n

n

A  


  , 

( 2)
(2) (2)6

(2) (2) (2) (2) (2) (2)33 33
13 (2) (2)

1 13 13

(i ) i e n z
xxF n n n n

n

c e
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   



 
   

 
  , 

( 2)
(2)(2)6
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1 13 13
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n

ec
c A s s

c c
   



 
   

 
  , 

( 2)
(2)6

(2) (2) (2) (2) (2) (2) (2)15
44 (2)

1 44

(i ) e n z
xzF n n n n n

n

e
c A s

c
    



 
   

 
  , 

  ( 2 )
6

(2) (2) (2) (2) (2) (2) (2) (2)
33 31 33

1

i i e n z
xF n n n n

n

D A e s e s    


   , 

  ( 2 )
6

(2) (2) (2) (2) (2) (2) (2) (2)
15 11

1

( i ) e n z
zF n n n n n

n

D A e s     


   .                                (26) 

From the Eq. (19) we determine the constants ( )k
n and ( )k

n  which enter the expressions Eq. 
(25) and Eq. (26) as follows 

 

 

 

( ) ( ) ( )
2( ) ( ) 213 15 33

( ) ( ) ( )
44 44 44( )

( )( )( ) ( ) 2( ) 233( ) 1115 31
( ) ( )( )
44 4444

1 ( ) ( )

( )( )

k k k
k k

n nk k K
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n kkk k
kk

nk knk

c e e
s s
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e e
ss

c cc

 


 

    
        
                        
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
                           
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 



 
            
    

                          

1

               (27) 

If the Eq. (20) has repeated roots, the foregoing procedures are done with the use of the well-
known solution rules of ordinary differential equations.  

Consider satisfaction of boundary conditions Eqs. (7)-(8) (or (9)) and contact conditions Eq. (5) 
and Eq. (6) from which we obtain the following algebraic equations for determination of the 
unknown constants (1)

nA  ( 1,2,3,4,5,6)n   and (2)
kA ( 1,3,5)k  . 

6
(1) (1) (1)

10
1

0 0xzF n nz
n

A 




   , 
6

(1) (1) (1)
20

1
zzF n nz

n

P A P 




     ,                    (28) 

6
(1) (1) (1)

30
1

0 0F n nz
n

A 




   , or                                             (29) 

6
(1) (1) (1)

30
1

0 0zF n nz
n

D A 




   ,                                              (30) 

6
(1) (2) (1) (1) (2) (2)

4 4
1 1;3;5

0 0xzF xzF n n k kz h z h
n k

A A   
 

 

      , 

6
(1) (2) (1) (1) (2) (2)

5 5
1 1;3;5

0 0zzF zzF n n k kz h z h
n k

A A   
 

 

      , 

6
(1) (2) (1) (1) (2) (2)

6 6
1 1;3;5

0 0F F n n k kz h z h
n k

u u A A 
 

 

      , 

6
(1) (2) (1) (1) (2) (2)

7 7
1 1;3;5

0 0F F n n k kz h z h
n k

w w A A 
 

 

      , 

6
(1) (2) (1) (1) (2) (2)

8 8
1 1;3;5

0 0F F n n k kz h z h
n k

A A   
 

 

      , 

6
(1) (2) (1) (1) (2) (2)

9 9
1 1;3;5

0 0zF zF n n k kz h z h
n k

D D A A 
 

 

      .                        (31) 
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Expressions for (1)
mn   (m=1,2,...,9, n=1,2,...,6) and (2)

rk  (r=4,5,...,9, k=1,3,5) can be determined 
from the Eqs. (25)-(26). Thus, after determination of the unknowns (1)

nA  (n=1,2,3,4,5,6) and (2)
kA   

(k=1,3,5) from the Eqs. (28)-(29)-(31) for Case 1 or from the Eqs. (28)-(30)-(31) for Case 2 we 
determine completely the Fourier transformations of the sought values. According to the inverse 
Fourier transformation, the originals of the stresses and displacements can be presented formally 
as follows 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i1
, , , , , , , , , , e d

2
k k k k k k k k k k k k sx

xx xz zz xxF xzF zzF F Fu w u w s       






   .            (32) 

Using the symmetry properties of the stresses and displacements with respect to x=0 we can 
simplify the equation Eq. (32) in the following manner 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1
, , , , , , cos( )dk k k k k k k k

xx zz xxF zzF Fw w sx s     




  , 

 ( ) ( ),k k
xz u 

i


 ( ) ( )

0

, sin( )dk k
xzF Fu sx s



 .                                     (33) 

According to the paper by Akbarov and Ilhan (2013), we will evaluate the wave-number 
integrals (Eq. (33)) along the Sommerfeld contour (Fig. 1(b)), by using Cauchy’s theorem, the 
contour [−∞,+ ∞] of integration is deformed into the contour C (Fig. 1(b)) in the complex plane 
s=s1+is2. The advantage of the Sommerfeld contour method for calculation of the mentioned 
integrals is discussed in the paper by Akbarov and Ilhan (2013).  

Thus, the sought values are determined from the relation 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i1
, , , , , Re , , , , , e d

2
k k k k k k k k k k k k sx

xx xz zz xxF xzF zzF F F

C

u w u w s       


    
  
 .        (34) 

According to Fig. 1(b), we can write the following relation 

1 2 1

0
i( i ) i( i )i

1 1 2 2 1 1

0

( )e d ( i )e d i (i )e d ( i )e ds x s x s xsx

C

f s s f s s f s s f s s


 



 


  

 

        ,      (35) 

Using the transformations 

1 1 1

0
i( i ) i( i ) i( i )

1 1 1 1 1 1

0 0

( i )e d ( i )e d ( i )e ds x s x s xf s s f s s f s s    
 

   



           

1 1 1 1

0

( i )(cos(( i ) ) isin(( i ) ))df s s x s x s  


       , 

1i( i )
1 1 1 1 1 1

0 0

( i )e d ( i )(cos(( i ) ) isin(( i ) ))ds xf s s f s s x s x s   
 

       , 

the integral (Eq. (35)) can be rewritten as follows 

i( )e dsx

C

f s s   1 1 1 1

0

( i ) ( i ) cos(( i ) )df s f s s x s  


      
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 1 1 1 1

0

i ( i ) ( i ) sin(( i ) )df s f s s x s  


      2
2 2(i ) ds xf s e s










  .                   (36) 

Taking the fact that the values of the integral i( ) dsx

C

f s e s  are independent on the values of the 

parameter ε>0 into account, as usual (see, for example Jensen et al. 2011, Tsang 1978), to simplify 

the calculation procedure of the integral 
i( ) dsx

C

f s e s , where the parameter   is assumed as a small 

parameter. According to this assumption and according to the theorem given in Akbarov and Ilhan 

(2013) and to the relation 2
2 2( ) d ( )s xf is e s O












 , we use the following approximate expressions 

for calculation of the integral  i( ) dsx

C

f s e s : 

For the even functions 

i
1 1 1

0

( ) d 2 ( i )cos(( i ) )dsx

C

f s e s f s s x s 


    ,                                   (37) 

For the odd functions 

i
1 1 1

0

( ) d 2i ( i )sin(( i ) )dsx

C

f s e s f s s x s 


    .                                  (38) 

The accuracy of the expressions Eq. (37) and Eq. (38) with respect to values of the parameter ε 
has been discussed in the paper by Akbarov and Ilhan (2013) and therefore we here do not 

consider this question. Under the calculation procedure the improved integral 1

0

( )ds


  in (37) and 

in Eq. (38) is replaced by the corresponding definite integral 
*
1

1

0

( )d
S

s


 . The values of *
1S  are 

determined from the convergence requirement of the corresponding improved integrals. Note that 

under calculation of the latter integral, the interval 
*
10, S    is further divided into a certain number 

of shorter intervals, which are used in the Gauss integration algorithm. In this integration 
procedure the values of the integrated expressions, i.e., the values of the unknowns 

(1) (1) (1)
1 2 6( ), ( ),..., ( ),A s A s A s  (2) (2) (2)

1 3 5( ), ( ), ( )A s A s A s  in Gauss’s integration points are determined 

through Eqs. (28) – (31). In the aforementioned integration procedure it is assumed that in each of 
the shorter intervals the sampling interval of the numerical integration Δs1 must satisfy the relation 
|Δs1|<<min{ε,1|x|} . 

All these procedures are carried out automatically in the PC by using the programs constructed 
by the author. At the same time, we note that all numerical results which will be discussed below 
are obtained in the case where *

1 30S   and ε=0.01 for some pairs of piezoelectric materials which 
are given in Yang (2005). 
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(a) Covering layer material is PZT-5A and 
half-plane PZT-5H 

(b) Covering layer material is PZT-5A 
and half-plane PZT-4 

(c) Covering layer material is PZT-5A and 
half-plane PZT-7A 

(d) Covering layer material is PZT-5H 
and half-plane PZT-5A 

(e) Covering layer material is PZT-4 and 
half-plane PZT-5A 

(f) Covering layer material is PZT-7A 
and half-plane PZT-5A 

Fig. 2 Graphs of the dependence between normal stress σzz (x=0, z=−h) and dimensionless frequency Ω 
 
 
4. Numerical results  
 

In this section, some numerical results are presented to examine the influence of the polled 
direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the 
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normal stresses, shear stresses and electric potential acting on the interface plane. Although it is 
possible to calculate the problem unknowns in anywhere on the Oxz plane, we will focus interface 
plane i.e., z=−h to consider the normal and shear stresses and electric potential.  

We obtain the numerical results with respect to the dependence between the stresses, electric 
potential and dimensionless frequency Ω determined by expression (14), where 

(1) (2)

( 0; ) ( 0; )zz zz zzx z h x z h
  

   
   (1) (2)

( 0.7; ) ( 0.7; )xz xz xzx z h x z h
  

   
   , 

(1) (2)

( 0; ) ( 0; )x z h x z h
  

   
  .                                              (39) 

The graphs of these response are given in Figs. 2-4 and in these figures the symbol a/b 
indicates that the polled direction of the covering layer (half-plane) material with the a (with the b) 
direction. For instance, the symbol x/z means that the polled direction of the covering layer 
material (half-plane) material coincides with the direction of the Ox (of the Oz) axis. Moreover, in 
these figures the graphs drawn with thin lines relate to Case 1, i.e., the case where the condition 
Eq. (8) takes place, but the graphs drawn with thick lines relate to Case 2, i.e., the case where the 
condition Eq. (9) takes place.  

Figs. 2(a), 2(b) and 2(c) (Figs. 3(a), 3(b) and 3(c)) show the frequency response of the normal 
stress σzz (of the shear stress σxz) in the cases where the half-plane material is PZT-5H, PZT-4 and 
PZT-7A respectively, but the covering layer material is PZT-5A. The graphs of the frequency 
response of the normal stress σzz (of the shear stress σxz) obtained in the cases where the covering 
layer material is PZT-5H, PZT-4 and PZT-7A, but the half-plane material is PZT-5A, are given in 
Figs. 2(d), 2(e) and 2(f) (in Figs. 3(d), 3(e) and 3(f)), respectively. The numerical results related to 
the frequency response of the dimensionless electric potential (  (1) (1) (1)

15 44( 0, ) ( ))x z e C h   are 
given in Figs. 4(a), 4(b) and 4(c) in the cases where the half-plane material is PZT-5H, PZT-4 and 
PZT-7A respectively, but the covering layer material is PZT-5A, and in the Figs. 4(d), 4(e) and 
4(f) in the cases where the covering layer material is PZT-5H, PZT-4 and PZT-7A respectively, 
but the half-plane material is PZT-5A. Note that in these figures the graphs indicated by the 
symbol z/z are the results obtained in the paper by Akbarov and Ilhan (2013).  

To simplify the formulation of the conclusions which follow from the foregoing results, we 
introduce the notations zz a b

 , xz a b
  and a b

  which indicate the stresses σzz, σxz and 

dimensionless electric potential Ф in the case where the polled direction of the covering layer 
(half-plane) material is the a (the b) direction. For instance, the notation zz x z

 indicates the values 

of the normal stress σzz in the case where the polled direction of the covering layer (half-plane) 
material coincides with the Ox (the Oz) axis direction. Thus, taking the foregoing assumption and 
notation we attempt to formulate the related results. 

The polled direction of the covering layer and half-plane materials can influence significantly 
on the values of the studied interphase stresses and dimensionless electric potential. The character 
of this influence can be determined according to the following conclusions which are made 
according to the foregoing numerical results: 

Figs. 2 and 3 show that in the all considered cases dependencies among the stresses σzz, σxz and 
Ω have non-monotonic character, i.e., there exists such value of the dimensionless frequency Ω 
(denote it by Ωres) under which the absolute values of the stresses σzz and σxz have its absolute 
maximum. The values of the Ωres depend significantly not only on the selected pairs of materials 
but also on the polled directions of these materials. 
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(a) Covering layer material is PZT-5A 
and half-plane PZT-5H 

(b) Covering layer material is PZT-5A 
and half-plane PZT-4 

(c) Covering layer material is PZT-5A 
and half-plane PZT-7A 

(d) Covering layer material is PZT-5H 
and half-plane PZT-5A 

(e) Covering layer material is PZT-4 and 
half-plane PZT-5A 

(f) Covering layer material is PZT-7A 
and half-plane PZT-5A 

Fig. 3 Graphs of the dependence between shear stress σxz (x=0, z=−0.7h) and dimensionless frequency Ω 
 
 

It can be seen from Figs. 2-4 that for the all selected pair of materials both Case 1 and Case 2 
the following relations are satisfied 

zz zzx x z z
  , xz xzx x z z

  , 
x x z z

   ; 
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(a) Covering layer material is PZT-5A 
and half-plane PZT-5H 

(b) Covering layer material is PZT-5A 
and half-plane PZT-4 

(c) Covering layer material is PZT-5A 
and half-plane PZT-7A 

(d) Covering layer material is PZT-5H 
and half-plane PZT-5A 

(e) Covering layer material is PZT-4 and 
half-plane PZT-5A 

(f) Covering layer material is PZT-7A 
and half-plane PZT-5A 

Fig. 4 Graphs of the dependence between dimensionless electric potential 
(1) (1) (1)

15 44( ( 0, ) )x z h e C h      and dimensionless frequency Ω 

 
 
And for the all selected pairs of materials in Case 2 there exists such value of dimension 

frequency Ω (denote it by Ω*), according to which the following relations take place: 
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zz zzx z x x
   if *

zz   , zz zzx z x x
   if *

zz   , 

x z x x
    if *

    , 
x z x x

    if *
   and  

xz xzx z x x
   for the all considered values of the Ω; 

In addition to Case1 for the all selected pairs of materials the following relations are satisfied: 

zz zzx x x z
  , xz xzx x x z

   and 
x x x z

    for '  , 
x x x z

    for Ω>Ω′Ф, 

the values of the Ω′Ф depend on the selected pairs of the materials and its polled directions; 
Also, in Case1 and Case 2 for the all selected pairs of materials the following relations are 

satisfied: 

zz zzx z z x
   for the all considered values of  , xz xzx z z x

   for ''
xz   , 

xz xzx z z x
   for ''

xz    and 
x z z x

    for the all considered values of  .  

 
 
5. Conclusions 
 

The influence of the polled direction of piezoelectric materials on the stress distribution is 
studied. Numerical results on the influence of the polled direction of the piezoelectric materials 
such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric 
potential acting on the interface plane are presented and discussed in detail. The final analysis 
show that the polled direction of the covering layer and half-plane materials can influence 
significantly on the values of the studied interphase stresses and dimensionless electric potential.  

Absolute maximum values of normal stresses, shear stresses and electric potential depend not 
only on the selected pair of materials but also polled directions of these materials. When the 
covering layer and half-plane material is polled with the direction of the Ox, absolute maximum 
values of the normal stresses, shear stresses and electric potential are greater than those of other 
cases. 
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