Structural Engineering and Mechanics, Vol. 54, No. 5 (2015) 955-971
DOI: http://dx.doi.org/10.12989/sem.2015.54.5.955 955

Influence of polled direction on the stress distribution in
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Abstract. In this paper, the influence of the polled direction of piezoelectric materials on the stress
distribution is studied under time-harmonic dynamical load (time-harmonic Lamb’s problem). The system
considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the
harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by
utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain
state is considered. It is assumed that the perfect contact conditions between the covering layer and half-
plane are satisfied. The boundary value problems under consideration are solved by employing Fourier
exponential transformation techniques with respect to coordinates directed along the interface line.
Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A,
PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the
interface plane are presented and discussed. As a result of the analyses, it is established that the polled
directions of the piezoelectric materials play an important role on the values of the studied stresses and
electric potential.

Keywords: piezoelectric layered material; polled direction; time-harmonic dynamical loading; stress
distribution; resonance behavior

1. Introduction

Piezoelectric materials are widely used in electromechanical and electronic devices systems
such as transducers, sensors and actuators. Because of their suitable properties, piezoelectric
structural materials can have a function as deployed sensors and actuators for observing and
controlling the response of a structure. In these devices, both electrical and mechanical loads
applied on the piezoelectric system can cause to quite high stresses. To understand their dynamical
behaviors, many research have been performed so far.

The problems with the half-plane boundary, Sosa and Castro (1994) investigated a piezoelectric
half-plane indented by a concentrated line force and a concentrated line electric charge by using
the state space approach. Fan et al. (1996) investigated the two-dimensional contact on a
piezoelectric half-plane. In this study, the stress and electric field distributions in the system under
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contact loads at the surface was investigated by using Stroh’s formalism. Gao and Fan (1998)
studied the two-dimensional Green's functions for a transversely isotropic piezoelectric half-plane.
The principle of analytical continuation of complex potentials was used. Chen (2000) studied the
transversely isotropic piezoelectric half-space subjected to a rigid smooth punch with an arbitrarily
shaped profile by using the complex potential function method.

A crack embedded in a half-plane piezoelectric solid with traction-induction free and electric-
open boundary conditions was analyzed in Yang et al. (2007). The plane problem considered
multilayered piezoelectric laminates were investigated by Ruan et al. (2000) and by Tarn and
Huang (2002), Borrelli et al. (2006). Ma et al. (2014) have investigated the two-dimensional
sliding frictional contact of a piezoelectric half-plane. Plane strain state cases are discussed under
the action of a rigid flat or a triangular punch. Fourier integral transform and the superposition
theorem were used. The unknown contact pressure and surface electric charge distribution were
determined.

The study of Lamb’s problem for the system consisting of the elastic layer and elastic half-
space were made in recent papers by Akbarov (2006a, 2006b, 2006¢, 2006d, 2013), Akbarov and
Guler (2007), Akbarov and Ilhan (2008, 2009, 2010), Ilhan (2012), Akbarov and Salmanova
(2009), Akbarov et al. (2013), Akbarov et al. (2005), Emiroglu et al. (2009). In a paper by
Akbarov and Ilhan (2013) the first attempt was made to study the time-harmonic Lamb’s problem
for a system consisting of a covering piezoelectric layer and piezoelectric half-plane. However, in
the paper by Akbarov and Ilhan (2013) it was assumed that the polled direction of the materials of
the constituents of the system directed along the direction which is perpendicular to the interphase
plane. But in many real cases the polled direction of the materials cannot coincide and how this
statement can effect on the dynamic stress field caused by linearly-located time harmonic forces
acting on the covering layer is the novelty of the present paper.

2. Formulation of the problem

As in the paper by Akbarov and Ilhan (2013), consider a system consisting of a half-plane and
covering layer and assume that a linearly-located time harmonic force acts on the upper free face
plane of the covering layer (see Fig. 1(a)). It is required to determine the dynamical response of the
considered system under the plane-strain state in the Oxz plane. Note that the covering layer and
half-plane occupy the regions {—co<x<towo, —h<z<0} and {—oo<x<too, —c0<z<—h }, respectively.
The materials of the constituents are taken piezoelectric ones.

To distinguish between the values related to the covering layer and half-plane, we will use the
upper indices (1) and (2), respectively.

It is presume that the materials of the constituents are transversally isotropic. We write the
equations of motion based on the linear theory of electro-elasticity (Eringen and Maugin 1990,
Yang 2005).

oo oc® oY o0l o0 o'wY
+ =P PR + =p =5
Ox Oz ot Oox Oz ot
(k) (k)
Ox Oz

Consider the formulation of the electro-mechanical relations for the piezoelectric materials of
the constituents. If the polled direction of the k-th piezoelectric material is directed along the Oz



Influence of polled direction on the stress distribution in piezoelectric materials 957

'y 52
{ =8,t1s,
e e S]
C A g
> -€
Fig. 1(a) Geometry of the considered system Fig. 1(b) Sommerfeld contour

axis (Fig. 1(a)), the electro-mechanical relations are written in the following form

(k) _ (k) (k) (k) (k) (k) _ (k) (k) (k) (k)
O-xx _cll j/xx+cl3 }/zz_el%lE , O _cl3 yxx+c33 7/22_633Ez K
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xz x
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Dz _631 (7xx)+e33 (yzz)+g33 Ez . (2)

But in the case where the polled direction of the k-th piezoelectric material is directed along the
Ox axis (Fig. 1(a)) the electro-mechanical relations for this material are written as follows

(k) _ (k) (k) (k) (k) (k) _ (k) (k) (k) (k)
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Xz z
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z

We also write the strain-displacement and electric field vector-electric potential relations as

follows

Q) (k) (k) (k) (k) (k)
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In Egs. (1), (2), (3) and (4) cl(f), cl(f) , cg) and ciﬁ) are elastic constants well known from
classical linear theory of elasticity; D"’ and D" are components of the electric displacement

X
vector; Ei,k) and Ez(k) are components of the electric field vector; (p(k) is an electric potential; e

31 >
el and et are piezoelectric constants; & and &4 are dielectric constants; u* and w'* are

components of the displacement vector in the direction of the Ox and Oz axes respectively, 7',

7% and "’ are components of the strain tensor, and ", ¢ and o'’ are components of the

stress tensor.
Assume that the following perfect contact conditions are satisfied on the interface plane
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between the covering layer and half plane
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On the free upper face plane of the covering layer the mechanical load conditions are given
below
oM

p 74 zz

=0, oV
0 9

i o= —Pe'” 5(x) (7)
where d(x) is a Dirac delta function.

In a further discussion the following cases will be considered:

Case 1. The face plane of the covering layer is electroded and grounded, i.e.

0]
4

S0 0 ®)

z

Case 2. The face plane of the covering layer is unelectroded, i.e.

M
DZ

=0. )

z=0
In addition, there are the following boundedness conditions

‘um w?

; ; go(z)‘ <M =const as z —> —00. (10)

This completes the formulation of problem. It should be noted that the formulated problem in
the case where the electro-mechanical relation (Eq. (2)) occurs for both covering layer and half-
plane materials simultaneously, has been considered in the paper by Akbarov and Ilhan (2013).
The case where the electro-mechanical relations of the both materials of the covering layer and
half-plane are given through the Eq. (3), as well as the case where the electro-mechanical relations
of the covering layer material (half-plane material) are given through the Eq. (2) (through the Eq.
(3)). However, the electro-mechanical relations for the half-plane material (covering layer
material) are given through the Eq. (3) (through the Eq. (2)) will be investigated in the present

paper.

3. Method of solution

According to the boundary condition in Eq. (7) we will describe the sought values as:

(

u® =70 (26, W =0 (6,2, ot =5 (x,2)e (an

and consider the finding the amplitudes %" (x,z), W (x,z) and " (x,z)in the case where the

electro-mechanical relation (Eq. (4)) occur. Note the solution procedure related to the case where
the electro-mechanical relation (Eq. (2)) occurs was considered in the paper by Akbarov and Ilhan
(2013).

Thus, according to Eq. (11), (4) and (3), we obtain the following equations for the amplitudes
u(x,z), w*(x,z)and " (x,z) from Eq. (1) as
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where ¢! =/c{ / p" . In Eq. (12) and the subsequent equations, the over-bars on the sought

values are omitted for the sake of brevity. The contact conditions (5) and (6), the boundary
conditions (8) and (9), and the first boundary condition in (7) also hold for the amplitudes of the
corresponding values. In this case, the second boundary condition in (7) is transformed into the
following one

M

2z |,-0

(e}

= —P5(x). (13)

To proceed further, we define the dimensionless coordinates and dimensionless frequency as
follows

L X,z wh
X Zz, z Zz, Q= cél) (14)

The prime on the x' and z' will be omitted below. Now we consider the solutions to Eq. (12).
For this purpose, as in the paper Akbarov and Ilhan (2013) we employ the exponential Fourier
transformation with respect to the x coordinate defined as

fe(s,2)= [ f(x,z)e ™ dx. (15)

in Eq. (12) and given the corresponding boundary and contact conditions. From (12), (13) and (15)
we obtain the following relations

(k) ) (k) (k) ) (k)
du® b g2t (b d ¢
5 _ e (k)
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40w (N (el dgl V)
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44 Cyy %)

(k) k (k

1(éf) d2u(k) k) d2 (k) +e(/) ] dWF (k) g(k)

0) —i7 + o) (is) (k) (_ up ==y (=s )(Dp =0 (16)
Ci Cd7 Cia dz Cia dz Cus

@ —
O'FZZ o -P. (17)

The contact conditions, the boundary conditions, and the first boundary condition in Eq. (7)
also hold for the Fourier transformation Eq. (15) of the amplitudes of the corresponding values.
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For the particular solution of Eq. (16), we select the components of the displacement vector and
electric potential as follows

(k) (k) (k)
k) — A(k) eﬂ z, W;;k) :B(k) eﬂ. z , ¢1(71{) — C(x) el z . (18)

Substituting Eq. (18) into Eq. (16) and doing the corresponding mathematical manipulations
yield the following equations

2

e )
C C 6 6
(A9 + i;) (—s*)+ Q—(k) AP 4| 2241 |(i)AYBY + 15 -5 (A1) + ii)( s?) |C =0
&) (o C44
C(k) (k) 46) ) (h)\2 2 c’ ’ (k) ey e(k) k) (k) _
11 2 15
(k)+1 (ZS)Z A W(ﬂ ) + (—S )+ Q—— (k) B + W‘i‘w (lS)l C =0
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k k
¢’ Gs_(aty L& ( s2) | 4% + 61(5)+e() (is)A® B + _511 (AP - 533 2y e =0(19)
" <k) ® L0 ® c®
44 44 44 44 44

We obtain the characteristic equation from Eq. (19) so as to determine the values of 1"

(AD) +(AD) o + ADa +a =0, (20)

where

(k) (k) (k)
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From Eq. (19) it can be stated that

P(k) () k) NG
AP = ‘ (k)‘ ,/ cos l//3 —a“T, w® = arctan 2% ,
W p—
(k) *) ) (k)
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3 27 3 4 27
We will consider the cases where
AP =AY =AY, (23)

According to the condition in Eq. (23), it can be written that

(k) _ (k) (k) _ (k) (k) _ (k) (k) _ (k) (k) _ (k) (k) _ (k)
AW = JAD 20 = A 30 = NG 200 = JAB 00— A 20— A (24)

From the foregoing results we can present the general solution of the Eq. (16) for the covering

layer as follows
U(Fl) ZA(I) ZA“’,B“) Mz ZA<I>5<1> Dz
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o
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ZzF—cBZA (is) + (l)ﬂ AL i SLiss™ et F

13 13
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Taking into account the condition Eq. (10), the general solution of the Eq. (16) for the half-
plane is

@ _ ) A 2 _ (2) p2) AP (2) (2) §(2) A7z
ud = AP WP = Y APBY M ol = Y AP e
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From the Eq. (19) we determine the constants 8% and 8"’ which enter the expressions Eq.
(25) and Eq. (26) as follows
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If the Eq. (20) has repeated roots, the foregoing procedures are done with the use of the well-
known solution rules of ordinary differential equations.

Consider satisfaction of boundary conditions Egs. (7)-(8) (or (9)) and contact conditions Eq. (5)
and Eq. (6) from which we obtain the following algebraic equations for determination of the
unknown constants A,(,” (n=1,2,3,4,5,6) and A,(f) (k=1,3,5).

6
0] _ .0 _ m ) (1> _
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P
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-0 n 3n
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0 2) _ (0 2 ,,2) _
xzF|,__p “Oxr ek _O:> ZA a4n z A a4k —0,
n=1 k=1;3;5
6
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O_.r " zF | ,__y, =0= ZAn aSn - Z Ak aSk _0’
n=1 k=1;3;5
6
M ) _ M, 2 ,,2) _
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Expressions for a) (m=12,...,9, n=1,2,...,6) and a (=4.5.,...,9, k=1,3,5) can be determined
from the Egs. (25)-(26). Thus, after determination of the unknowns 4" (n=1,2,3,4,5,6) and A4*
(/~=1,3,5) from the Eqgs. (28)-(29)-(31) for Case 1 or from the Egs. (28)-(30)-(31) for Case 2 we
determine completely the Fourier transformations of the sought values. According to the inverse
Fourier transformation, the originals of the stresses and displacements can be presented formally
as follows

+00

1 .
B G GE) ) k) (k) oM. o®) b uh wh p®et
{axx 0, 0, U W 2/{] x> Oxeprs Ooep sl s Wy s }e “ds . (32)

Using the symmetry properties of the stresses and displacements with respect to x=0 we can
simplify the equation Eq. (32) in the following manner

1+oo
{00,000} = L[ 66 618 i, feos(sx)ds
Vi

zz ?
0

{odu}= = [{ol)u}sin(sx)ds. (33)
0
According to the paper by Akbarov and Ilhan (2013), we will evaluate the wave-number
integrals (Eq. (33)) along the Sommerfeld contour (Fig. 1(b)), by using Cauchy’s theorem, the
contour [—oo,+ o] of integration is deformed into the contour C (Fig. 1(b)) in the complex plane
s=s,+is,. The advantage of the Sommerfeld contour method for calculation of the mentioned
integrals is discussed in the paper by Akbarov and Ilhan (2013).
Thus, the sought values are determined from the relation

1

k (k k) k) (k)| _ (k (k k k) k

{0'( o6 u Wb g )}—ERe J.{G”},GM),O';F),L{; W ()} e ds (34)
C

According to Fig. 1(b), we can write the following relation
J‘f(s)ei” ds= jl (s, —ig)e™ " ds, +i j f(s,)e ™ ds, + ]'if(s1 +ig)e@ M ds, . (35)
C o -¢ 0
Using the transformations
jl (s, —ig)e™ " ds, = —_jiof(s1 —ig)e N ds, = Tf(—s1 —ig)e T ds, =
—o 0 0

]E f(=s, —1&)(cos((—s, —1&)x) +isin((—s, —1&)x))ds, ,

[ £ +ig)e 9% ds, = [ f(s, +i£)cos((s, +ig)x) +isin((s, +iz)x)ds,,
0 0
the integral (Eq. (35)) can be rewritten as follows

[r(s)e™ ds = T[ f(=s,—i&)+ f(s, +1&)]cos((s, +i&)x)ds,
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+iT[f(sl +ig)— f(=s, —ig)]sin((s1 +ig)x)ds, +T f(is,)e ™"ds, . 36)

Taking the fact that the values of the integral j f(s)e'ds are independent on the values of the
parameter £>0 into account, as usual (see, for exaniple Jensen et al. 2011, Tsang 1978), to simplify
the calculation procedure of the integral _[f (s)e'™ds , Where the parameter ¢ is assumed as a small
parameter. According to this assumption Cénd according to the theorem given in Akbarov and Ilhan
T f(is,)e ™" ds,

(2013) and to the relation =0(¢), we use the following approximate expressions

for calculation of the integral I f(s)eds:
C

For the even functions
J.f(s)ei‘“ds ~ 2Tf(s1 +ig)cos((s, +1g)x)ds, , (37
c 0

For the odd functions
If(s)e““ds ~ 2in(s1 +ig)sin((s, +1&)x)ds, . (38)
c 0

The accuracy of the expressions Eq. (37) and Eq. (38) with respect to values of the parameter &
has been discussed in the paper by Akbarov and Ilhan (2013) and therefore we here do not

consider this question. Under the calculation procedure the improved integral I (e)ds, in (37) and
0
+Sf

in Eq. (38) is replaced by the corresponding definite integral I(')dsl' The values of S are
0

determined from the convergence requirement of the corresponding improved integrals. Note that
under calculation of the latter integral, the interval [07+S ) } is further divided into a certain number
of shorter intervals, which are used in the Gauss integration algorithm. In this integration
procedure the values of the integrated expressions, i.e., the values of the unknowns
AV (5), AV (8),..., AV (5), AP (s), 47 (5),47(s) in Gauss’s integration points are determined
through Eqgs. (28) — (31). In the aforementioned integration procedure it is assumed that in each of
the shorter intervals the sampling interval of the numerical integration As; must satisfy the relation
|Asi|[<<min{e,1|x|} .

All these procedures are carried out automatically in the PC by using the programs constructed
by the author. At the same time, we note that all numerical results which will be discussed below
are obtained in the case where S, =30 and £=0.01 for some pairs of piezoelectric materials which
are given in Yang (2005).



966 Nihat Ilhan and Nagihan Kog

-0.4
-0.5
-0.6?‘ i
-0.7}
N -0.8}
-0.9¢
-1.0

-1.1F

0.0 0.5 1.0 1.5 2.0 25
Q2

(a) Covering layer material is PZT-5A and
half-plane PZT-5H
-0.4

(c) Covering layer material is PZT-5A and

half-plane PZT-7A
-0.4

PZT-4 { Z } PR
ey z Xﬁ;\: \\\\\\
. X
PRt

0.0 05 1.0 1.5 20 25
Q

(e) Covering layer material is PZT-4 and
half-plane PZT-5A

-1.2¢
0.0 0.5 1.0 1.5 2.0 2.5

(b) Covering layer material is PZT-5A
and half-plane PZT-4

WL
Fo

00 05 10 15 20 25
£
(d) Covering layer material is PZT-5H
and half-plane PZT-5A
-0.4

-1.2f

0.0 0.5 1.0 1.5 2.0 2.5

(f) Covering layer material is PZT-7A
and half-plane PZT-5A

Fig. 2 Graphs of the dependence between normal stress o, (x=0, z=—h) and dimensionless frequency Q

4. Numerical results

In this section, some numerical results are presented to examine the influence of the polled
direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the
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normal stresses, shear stresses and electric potential acting on the interface plane. Although it is
possible to calculate the problem unknowns in anywhere on the O,, plane, we will focus interface
plane i.e., z=—/ to consider the normal and shear stresses and electric potential.

We obtain the numerical results with respect to the dependence between the stresses, electric
potential and dimensionless frequency 2 determined by expression (14), where
()

(x=0;z=—h) % *

_ ~(2
=0
(x=0.7;z=—h) Xz

o =g —c®

z Z |(x=0;z=—h) z (x=0.7;z=—h)

(1) (2)

p=¢ (x=0;z=—h) =9 (x=0;z=—h) 39)

The graphs of these response are given in Figs. 2-4 and in these figures the symbol a/b
indicates that the polled direction of the covering layer (half-plane) material with the a (with the b)
direction. For instance, the symbol x/z means that the polled direction of the covering layer
material (half-plane) material coincides with the direction of the Ox (of the Oz) axis. Moreover, in
these figures the graphs drawn with thin lines relate to Case 1, i.e., the case where the condition
Eq. (8) takes place, but the graphs drawn with thick lines relate to Case 2, i.e., the case where the
condition Eq. (9) takes place.

Figs. 2(a), 2(b) and 2(c) (Figs. 3(a), 3(b) and 3(c)) show the frequency response of the normal
stress o, (of the shear stress o,.) in the cases where the half-plane material is PZT-5H, PZT-4 and
PZT-7A respectively, but the covering layer material is PZT-5A. The graphs of the frequency
response of the normal stress o, (of the shear stress o,.) obtained in the cases where the covering
layer material is PZT-5H, PZT-4 and PZT-7A, but the half-plane material is PZT-5A, are given in
Figs. 2(d), 2(e) and 2(f) (in Figs. 3(d), 3(e) and 3(f)), respectively. The numerical results related to

the frequency response of the dimensionless electric potential ®(= ¢ (x =0,z)e'} / (C)h)) are

given in Figs. 4(a), 4(b) and 4(c) in the cases where the half-plane material is PZT-5H, PZT-4 and
PZT-7A respectively, but the covering layer material is PZT-5A, and in the Figs. 4(d), 4(e) and
4(f) in the cases where the covering layer material is PZT-5H, PZT-4 and PZT-7A respectively,
but the half-plane material is PZT-5A. Note that in these figures the graphs indicated by the
symbol z/z are the results obtained in the paper by Akbarov and Ilhan (2013).

To simplify the formulation of the conclusions which follow from the foregoing results, we

introduce the notations 0|, , 9|, and (Da/;, which indicate the stresses o, o, and

dimensionless electric potential @ in the case where the polled direction of the covering layer
(half-plane) material is the a (the b) direction. For instance, the notation O..|,,, indicates the values

NE
of the normal stress o, in the case where the polled direction of the covering layer (half-plane)
material coincides with the Ox (the Oz) axis direction. Thus, taking the foregoing assumption and
notation we attempt to formulate the related results.

The polled direction of the covering layer and half-plane materials can influence significantly
on the values of the studied interphase stresses and dimensionless electric potential. The character
of this influence can be determined according to the following conclusions which are made
according to the foregoing numerical results:

Figs. 2 and 3 show that in the all considered cases dependencies among the stresses o.., 0., and
Q have non-monotonic character, i.e., there exists such value of the dimensionless frequency Q2
(denote it by Q,.,) under which the absolute values of the stresses o, and o,, have its absolute
maximum. The values of the Q,., depend significantly not only on the selected pairs of materials
but also on the polled directions of these materials.
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Fig. 3 Graphs of the dependence between shear stress o, (x=0, z=—0.7#) and dimensionless frequency Q

It can be seen from Figs. 2-4 that for the all selected pair of materials both Case 1 and Case 2

the following relations are satisfied

>

<

O-ZZ GXZ

5 O,

zz

x/x z/z x/x z/z

ol ol..

B
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And for the all selected pairs of materials in Case 2 there exists such value of dimension
frequency Q (denote it by Q*), according to which the following relations take place:
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In addition to Casel for the all selected pairs of materials the following relations are satisfied:

o, >|o., o, <|o. and ‘QDLC/X‘ <‘(D|x/z‘ for Q<Q'y, CDLC/x‘ >‘¢)|x/z‘ for Q>Q,

b

x/z‘
the values of the Q'¢, depend on the selected pairs of the materials and its polled directions;

Also, in Casel and Case 2 for the all selected pairs of materials the following relations are
satisfied:
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5. Conclusions

The influence of the polled direction of piezoelectric materials on the stress distribution is
studied. Numerical results on the influence of the polled direction of the piezoelectric materials
such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric
potential acting on the interface plane are presented and discussed in detail. The final analysis
show that the polled direction of the covering layer and half-plane materials can influence
significantly on the values of the studied interphase stresses and dimensionless electric potential.

Absolute maximum values of normal stresses, shear stresses and electric potential depend not
only on the selected pair of materials but also polled directions of these materials. When the
covering layer and half-plane material is polled with the direction of the Ox, absolute maximum
values of the normal stresses, shear stresses and electric potential are greater than those of other
cases.
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