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Abstract.  Many novel materials exhibit a property of different elastic moduli in tension and compression. 

One such material is graphene, a wonder material, which has the highest strength yet measured. 

Investigations on buckling problems for structures with different moduli are scarce. To address this new 

problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection 

curve is derived based on the phased integration method, and then using the energy method, load-deflection 

relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, 

large deformation finite element formulations are developed and combined with the arc-length method, 

finite element iterative program for rods with different moduli is established to obtain buckling critical loads; 

Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are 

performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also 

conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation 

results of the energy method and finite element method with those of laboratory tests, the analytical model 

and finite element numerical model are demonstrated to be accurate and reliable. The results show that it 

may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods 

composed of a material having different moduli. The proposed models could provide a novel approach for 

further investigation of non-linear mechanical behavior for other structures with different moduli. 
 

Keywords:  different moduli; buckling compression rod; analytical method; numerical method; laboratory 

tests 

 
 
1. Introduction 
 

A new research has indicated that graphene, the strongest material (Geim 2009) yet known, has 

been verified as a material with different moduli. That is, the compressive elastic modulus is larger 

than the tensile elastic modulus (Tsoukleri et al. 2009). For many civil engineering materials, such 

as concrete (Zhou et al. 2005), metal (Gilbert 1961), foam plastic (Rizzi 2000), rubber (Patel 

1976), biomaterial (Barak et al. 2009), and rock (Haimson and Tharp 1974), it has been 
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experimentally demonstrated that the elastic properties in extension differ from those in 

contraction. Particularly, for the composite materials that are made of carbon fibers, the ratio of 

their different modulus can be as high as five (Kratsh et al. 1972). Therefore, the difference 

between materials with different moduli and those with the same modulus, which determines the 

mechanical behavior of structures, can not be neglected. 

Generally, there are two basic models for representing materials with different moduli. The 

elastic parameters of these two models are selected based on two different criterions separately. 

One is proposed by Bert (1977), Jones (1977), namely, “longitudinal fiber direction criterion”, 

which is applicable for the study on structures consisting of stratified composite. The other is 

presented by Ambartsumyan (1986), that is, “principal stress sign criterion”, which is adequate for 

the investigation of structures that are composed of natural materials and polymeric materials. To 

extensively and effectively be applied in engineering,Ambartsumyan’s model is improved by 

Vijayakumar and Ashoka (1990), Ye et al. (2001), who respectively put forward two constitutive 

models that are bilinear biaxial principal stress model and principal strain model. 

Early on, researchers tended to rely on finite element method to investigate structures with 

different moduli. Zhang and Wang (1989) firstly proposed finite element iterative technique to 

solve problems with different moduli. Due to unstable iteration and slow convergency of this 

method, Liu and Zhang (2000), He et al. (2009) respectively adopted the shear modulus method to 

increase the rate of iteration and convergence. Likewise, Yang et al. (1992, 1999, 2006, 2008) 

exploited initial stress and smoothing techniques to simplify the process of finite element iteration, 

thus leading to a higher computing efficiency. Using the finite element method, most studies on 

structures with different moduli have focused mainly on strength analysis. Zhang and Wang (1989) 

analyzed the stress and deformation of rigid frame with different moduli; Gong et al. (1994) 

analyzed the problem of round hole expansion; Patel (2004) investigated the thermo-flexural 

analysis of thick laminated composites; Raffaele and Fabrizio (2001) carried out a damage 

evolution analysis of laminated composites under cyclic loading; and Tseng and Jiang (1998) 

performed a stress analysis of laminates. 

In view of the peculiar nonlinear (bilinear or piecewise linear) characteristics of different 

moduli problems, Yao and Ye (2004a, b) resorted to the flowing coordinate system and phased 

integration method to present analytical solutions for the neutral axis, stress, strain and 

displacement of a beam-column, and of a beam under lateral load. Yao et al. (2006a, b) also 

developed the iterative programme for calculating nonlinear internal forces of statically 

indeterminate structures, and of combined members with different moduli under complex stress 

state. He (2007) obtained the approximate elasticity solution of a bimodular beam and a bimodular 

bending-compression column by employing the equivalent section method. Based on the 

equivalent modulus of elasticity of analytical solution for bending-compression column (Yao and 

Ye, 2004b), Qu (2009) derived the analytical solution for the deflection of geocell with different 

tension and compression modulus. Leal (2009) derived the compressive strength equation of high 

performance fibers with different moduli and analyzed the effects of bimodularity on the 

compressive strength. 

The previous studies on the structures with different moduli mainly focused on the strength 

analysis, among which most analysis only concerned material nonlinearity characteristic and the 

others also involved geometric nonlinearity behavior of the composite plates (Bruno et al. 1994) 

and sandwich beams (Lan et al. 2003) with different moduli. Additionally, the constitutive models 

of these materials with different moduli were both based on Bert’s and Jone’s model (1977a, b). 

Investigations on stability of structures with different moduli are scant and more complex 
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versus strength problems. For Ambartsumyan’s principal stress criterion, because the tension-

compression dividing layer (neutral axis) depends not only on the material property itself but also 

on the principal stress state of each point, the determination of the neutral axis is a nonlinear 

problem relevant to both the elastic modulus and deflection equation. Regarding this problem, 

Rigbi (1973) presented a strain energy criterion to determine the buckling state of columns with 

different moduli. Based on this criterion, Rigbi and Shlomo (1978) obtained approximate buckling 

critical loads by assuming the relation of external load and deflection. However, this method was 

not tested and verified and also too complex to be of practical use. Bert and Ko (1985) used the 

finite difference method to analyze the buckling behavior of cantilever column with different 

moduli. Nonetheless, these investigations were only limited to small deformation assumption. 

The small deformation theory assumes that the curvature of neutral layer approximately equals 

to that of midline for the cross section. In addition, the curvature approximates as second 

derivative of deflection function in order to simplify the derivation process. Actually, only if the 

elastic moduli in tension and compression are numerically equal can this assumption be satisfied. 

Furthermore, under the small deformation theory, in the buckling critical state, the neutral axis 

offset (only the offset in the position of the maximum deflection be reckoned in) assumes a 

constant along the length of rod. However, for the rod with different moduli in the buckling critical 

state, the neutral axis offset actually changes along the length of rod. Therefore, to obtain a more 

accurate solution should be based on large deformation theory. 

In view of this, the buckling problem of rod with different moduli is a complicated double 

nonlinear problem. Graphene is a new material with a different moduli. It is well known for its 

high strength. However, the dominant failure of structures composed of this high strength material 

is often attributed to buckling problems. With the above considerations, buckling analysis of rod 

with different moduli is performed and the rest of the paper isorganized as follows. In Section 2, 

we present basic assumptions and structural model that is to be analyzed. In Section 3, according 

to static for balance condition and Saint Venant principle, the dimensionless relation formula of 

neutral axis offset and deflection curve is deduced. In Section 4, using the energy method, we 

derive the relation formula of externalload and deflection of rod. In Section 5, based on the 

improved constitutive model fordifferent moduli, large deformation finite element formulations are 

developed and combinedwith the arc-length method, finite element iterative program for rods with 

different moduli is established to obtain buckling critical loads. In Section 6, in order to verify the 

analytical model and the numerical model presented in this paper, material mechanical properties 

tests and buckling tests are performed. In Section 7, the effects of different moduli on the stability 

of rod are investigated. In Section 8, we conclude the paper. 

 

 

2. Basic assumption and structural model 
 

Subject to tensile or compressive stress with the same absolute value, a material will produce a 

corresponding tensile or compressive strain with different absolute values. This suggests that 

materials have a different tensile modulus Et and compressive modulus Ec. The constitutive 

bilinear model (Jones 1977), as shown in Fig. 1, in which the slope of the straight line is 

discontinuous in the origin, is used in this paper. 

Assume the investigated object to be continuous, homogeneous, and isotropic solid. Dueto the 

difference in the sign of principal stress, the material demonstrates different elastic properties and 

satisfies the general law of continual medium mechanics (Ambartsumyan 1986). Moreover, the  
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Fig. 1 Constitutive relationship of materials with different moduli (bilinear model) 

 

  
(a) (b) 

Fig. 2 (a) Buckling of pin-ended slender rod, and (b) cross-section A-A 

 

 

material only produces elastic deformation in a random stress state, andtherefore, basic equations 

are identical to that of the same modulus elastic theory and the difference is only reflected in 

thephysical equation. 

Consider a uniform elastic slender rod of length L, geometric size b× h, a rectangular cross-

section, neglecting the body weight, and it is subjected to an axial force F applied in the center at 

one end of the rod (see Fig. 2(a)). Assumes the symbol e (hereinafter referred to as the offset) 

denotes the distance between the neutral axis and the geometrical center line. When the neutral 

axis moves to the tensile zone, the sign of e is positive, and vice versa. The stress and strain 

distribution of any A-A cross section is shown in Fig. 2(b). In the buckling critical state, the neutral 
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axis of the y-o-z plane will vary along the x-axis, that is, the offset e=f(x). Therefore, a flowing 

coordinate system is adopted. After each increment Δx is added along the x-axis, the coordinate 

axis will move and the coordinate axis of each section in the y-o-z plane will pass through the 

neutral axis (Fig. 2(a)). 

 

 

3. Derivation of dimensionless relation between neutral axis offset and deflection 
 

The rod is assumed to bend about a certain principal axis of inertia without axial deformation 

and plane cross section assumption is also made. The normal strain of a random point in x-

direction can be expressed as 

    in which                   (1) 

where v =e+v, e is the neutral axis offset, v and v are deflection of rod in y direction, relative 

displacement between geometric center line before deformation and neutral axis after migration. 

When the axial load begins to increase from zero, prior to buckling there is a compressive state in 

the whole cross section of rod. With the load increasing, bending deformation has taken place in 

the rod, in the cross section of which tensile stress emerges.Then deformation develops rapidly and 

the cross-section has been divided into distinct tensile zone and compressive zone, as shown in 

Fig. 3. 

According to the bilinear constitutive relationship based on the elastic theory of different 

moduli, the normal stress from different regions can be written as follows 
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Take the A-A cross-section and the above from the rod and invokes the internal force 

equilibrium condition gives 
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where ζ=e/h. According to the Saint-Venant principle, the bending moment of any cross-section A-

A is given by 
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Invoking the equilibrium condition, we can get 

Fv M                                 (5) 

Substituting Eq. (3) and Eq. (4) into Eq. (5) gives 

      (6) 

where η= v /h, m=Ec/Et. In Eq. (6), there exists a complicated nonlinear relationship among ζ, m, 

and η. In other words, the offset changes with both the ratio of different moduli and deflection 

function. The definite expression of ζ can be obtained via Mathematic software.Because of 

limitation of length, no calculation results of ζ listed here. The Eq. (6) also can be expressed as 

           (7) 

According to Eq. (7), when m is a given value, ζ will changes with increasing . However, the 

neutral axis will move with some limitation. Therefore, when η→+∞, the coefficient of η in Eq. 

(7) should be zero so as to make ζ be bounded. So it leads to 

                      (8) 

Solving Eq. (8), the ultimate stable value of dimensionless offset can be obtained 

（abandoned）             (9) 

Once the dimensionless relation expression between and is determined, using the energy 

method (hereinafter referred to as EM for short), we can move forward to calculate relation 

formula of external load and deflection of rod and finally obtain the buckling critical load. 

 

 

3 2 3
5(1 ) 3 (1 ) 6( 1) 3 (1 ) ( 1)

4

1
3 (1 ) ( 1) 0

4

m m m m m

m m

    



 
         

 

    

2 3 23
3(1 ) 3( 1) (1 ) 5(1 ) 6( 1)

4

9 1
(1 ) ( 1) 0

4 4

m m m m m

m m

    



 
         

 

    

2 3
3(1 ) 3( 1) (1 ) 0

4
m m m      

1 2

( 1) 2 ( 1) 2
;

2( 1) 2( 1)

m m m m

m m
 

     
 

 

860



 

 

 

 

 

 

Nonlinear large deflection buckling analysis of compression rod with different moduli 

4. The establishment of calculation formula with EM 
 

It should be noted that the offset varies along the length of rod. If the neutral axis of all cross 

section presumes to be located outside the boundary of cross section, the strain energy of rod can 

be written as 

 

    (10) 

where d is axial displacement of rod end. According to v =e+v, ζ=e/h, η=v/h，Eq. (1), Eq. (3) 

and x =x/(L−d), Eq. (10) can be smplified as 

                (11) 

Simplifying Eq. (11) can lead to 

                       (12) 

Similarly, if the neutral axis of all cross sections presumes to be located inside the boundary of 

cross-section, the strain energy of rod can be shown as 

              (13) 

Simplifying Eq. (13) can give 

               (14) 

An external force F produces the work 

                                (15) 

As the external work increases, the strain energy grows equally. Based on energy theory, it is 

found that ΔU−ΔW=0. For both ends simply supported rod with different moduli, within the range 

of an assumed distance a from both ends of rod to specified positions along the length of rod, the 

neutral axis is located outside cross section, and vice versa. Thus, in different regions, the strain 

energy should be established based on Eq. (12) and Eq. (14) respectively. Then we get 
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      (17) 

where the relation between the external load and deflection of rod is reflected. In order to 

deermine the nonlinear mechanical behavior of the buckling rod, some parameters, including 

axial deformation d, a, the form of deflection curve, should be ascertained. In addition, the 

intricate integral operation in Eq. (18) can be solved by employing Romberg Integral Method. 

Take no account of axial strain and we get 

                           (18) 

Expanding Eq. (18) using Taylor series and simplifying it 

                (19) 

From Eq. (19), we learn that the determination of d should rely on a known η. Herein, the 

deflection function of both ends simply supported rod assumed reasonably to be 

                              (20) 

where vm 
is the mximum deflection of rod. Substituting Eq. (20) into Eq. (19) can get d. When the 

neutral axis is located on the geometric boundary of rod, ζ=0.5. Then substitute ζ and Eq. (20) 

into Eq. (7), for different ratio of different moduli, the parameter a can be solved. 

 

 

5. The establishment of finite element method 
 

In this section, the finite element method (FEM) is adopted to solve the nonlinear buckling 

problem of rod with different moduli. Owing to the aforementioned assumption that the rod only 

bends about one principal axis of inertia and no twist and no warpage occur, large deformation 

finite element formulation of rod with different moduli is developed in two-dimension space in the 

following part.  

 

5.1 The modified constitutive model based on elastic theory with different moduli 
 
Based on the principal strain criterion (Ye et al. 2001), the constitutive matrix can be written as: 

   or            (21) 
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where 
2

 



 t c , t  and c  are elastic tensile Poisson ratio and elastic compressive Poisson 

ratio respectively, DI is elastic matrix regarding principal stress and principal strain. To explore the 

influence of variation of different moduli on calculation results, for convenience, the elastic matrix 

is nondimensionalized and modified (Ye et al. 2001), thus the constitutive relationship can be 

written as 

                     (22) 

where D is equivalent modified elastic matrix regarding stress and strain and L is coordinate 

transfer matrix, written as 

                      (23) 

 

5.2 Plane large deformation finite element formulation with different moduli 
 

The large deformation nonlinear strain-displacement relation formula can be expressed as 

             (24) 

where u and v are components of nodal displacement u in direction x and y respectively, εx, εy and 

γxy
 
are components of strain ε. ε, which can be divided into linear strain εL and nonlinear strain εNL, 

can be written as 

               (25) 

where BL and NLB  are linear and nonlinear transfer matrix of strain and displacement, u
e
 is 

element nodal displacement. Variation of Eq. (25) can be shown that 

           (26) 

Substituting Eq. (26) into virtual work equation 
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and due to randomly selectivity of δd
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, we get 
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                             (29) 

where  

                            (30) 

denotes element secant stiffness matrix, in which 

                (31) 

where e

LK is small displacement stiffness matrix with different moduli, e

NLK is large 

displacement stiffness matrix with different moduli, and 

e
K is initial stress stiffness matrix or 

geometric stiffness matrix with different moduli. Eq. (28) is the element total equilibrium 

equation and can be assembled and integrated into systematic equilibrium equation. From the 

element secant stiffness matrix above, it is found that the large deformation problem with 

different moduli is a double nonlinear problem including material nonlinear and geometric 

nonlinear factors. 

With regard to the double nonlinear problem in this paper, for better tracing the loading balance 

path, judging and classifying critical point, the tangent stiffness matrix should be introduced. 

Therefore, in the following part, the tangent stiffness matrix with different moduli is deduced. The 

total derivative of Eq. (28) leads to 

                       (32) 

From Eq. (22), increment constitutive relation can be obtained as 

 d dσ D                              (33) 

Substitute Eq. (33) into the first term of the right side in Eq. (32) and get 

              (34) 

where e

DK is tangent stiffness matrix. Substitute Eq. (25) into Eq. (34) and get 

                              (35) 

where  

 
 
     (36) 

where e

DLK is small displacement stiffness matrix with different moduli, and e

DNLK is large 

displacement stiffness matrix with different moduli. In addition, the second term for the right side 

of Eq. (32) can be expressed as 

                            (37) 
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                             (38) 

where 


e
K is initial matrix or geometric matrix. Substitute Eq. (35) and Eq. (38) into Eq. (32) and 

get 

                             (39) 

where  

                          (40) 

where 

e
K is element tangent stiffness matrix with different moduli. It should be noted that σ̂  is 

symmetric matrix. If D  is also symmetric matrix, then so is 

e
K . The 

e
K can be integrated into  

systematic tangent stiffness matrix Kτ. From the deduced tangent stiffness matrix above, it is also 

found that the large deformation problem with different moduli is a double nonlinear problem 

including material nonlinear and geometric nonlinear factors. 

 

5.3 Finite element calculation using arc-length method 
 

In this paper, arc length method (Crisfield 2000) is used to obtain buckling critical load of rod 

with different moduli. The total iterative formulation of calculation is as follows 

               (41) 

where λ is parameter of proportional loading. Compared with the computation model with the 

same modulus, the constitutive relation of elastic theory with different moduli is relative to stress 

state, that is  D D σ . Therefore, small displacement stiffness matrix KDL, which KDL=KDL(σ)= 

KDL(u), is not a constant anymore. 

For large deformation finite element with different moduli, when compared with general finite 

element calculation process of geometric nonlinearity, principal stress state of each element should 

be judged in every iterative step in order to obtain corresponding elastic matrix. The increment 

equilibrium equation can be written as 

     (42) 

In the calculation process of each increment step, firstly, by solving equilibrium equation 

 ( )    r

n

r-1 r

DL n-1 n nK u u u P , the initial increment displacement of small deformation mode is 

obtained. And then we solve equilibrium equation of large deformation finite element
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n
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DL n-1 n DNL n-1 n σ n-1 n nK u u K u u K u u u P . To make sure that interaction 

effect between material nonlinearity and geometric nonlinearity can be accurately considered, the 

constitutive relation with different moduli should be obtained through repeated iteration process 

during every step of geometric nonlinearity iteration. 


eΩ

Te

σ ΩdˆGσGK

  ee

τ

eR uKu dd 

e

σ

e

DNL

e

DL

e

τ KKKK 

1

( )

r r

n n n

r

nK

  




   


   


  

r -1 r

n-1 n n

r r

n n-1 n

u u u P

u u u

( ) ( ( ) ( ) ( )) r

nK         r -1 r r -1 r -1 r -1 r

n-1 n n DL n-1 n DNL n-1 n σ n-1 n nu u u K u u K u u + K u u u P

865



 

 

 

 

 

 

Wenjuan Yao, Jianwei Ma, Jinling Gao and Yuanzhong Qiu 

 

 

Fig. 4 Flowchart of large deformation finite element calculation with different moduli 

 

 

 
 

 

, ,  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

866



 

 

 

 

 

 

Nonlinear large deflection buckling analysis of compression rod with different moduli 

The calculation process of the n-th loading increment step is portrayed in Fig. 4. In this figure, r 

denotes the iteration steps of equation  ( )    r

n

r-1 r

DL n-1 n nK u u u P , j
 
and k represent material 

nonlinearity iteration steps and geometric nonlinearity iteration steps of equation 

 ( )     r

n

r-1 r

n-1 n nK u u u P  respectively. 

 

 

6. Test and model validation 
 

For a validation of EM and FEM (EM and FEM are abbreviations for energy method and finite 

element method respectively), experiments were designed to perform tests on the mechanical 

properties of graphite (MSL82) specimens using an electronic universal testing machine (WDW-

E100) and an electronic universal testing machine (CMT5306). The tests include the following: (1) 

uniaxial compressive test, (2) uniaxial tensile test and (3) buckling test. 

 

6.1 Material mechanical properties tests 
 

In the uniaxial tensile test, four specimens were made of graphite (MSL82). The size of the 

cylindrical specimens were radius=10 mm and height=50 mm. While in the uniaxial compressive 

test, the size of the four cylindrical specimens were radius=10 mm and height=200 mm. The 

results of these tests include the ultimate tensile strength, ultimate compressive strength, tensile 

elastic modulus, compressive elastic modulus and calculated Ec/ Et. The test results are tabulated in 

Table 1. 

 

6.2 Buckling tests 
 

The buckling tests are conducted in the electronic universal testing machine (WDW-E100) 

which is shown in Fig. 5(a). The configuration and dimensions (500mm×30mm×30mm) of 

graphite(MSL82) specimens are shown in Fig. 5(b) and Fig. 5(c). Test results are tabulated in 

Table 2 and plotted in Fig. 6(a). The results of energy method and finite element method are shown 

in Fig. 6(b). 

 

 
Table 1 Test results on the mechanical properties of Graphite (MSL82) 

Specimen 

number 

Ultimate tensile 

strength (MPa) 

Ultimate compressive  

strength (MPa) 

Tensile elastic 

modulus (GPa) 

Compressive elastic 

modulus (GPa) 
Ec/ Et 

1 8.389 22.858 8.62 11.90 1.38 

2 9.646 21.480 8.59 12.32 1.43 

3 9.038 20.426 8.84 12.58 1.42 

4 8.389 22.291 8.73 12.26 1.40 

Mean 8.866 21.764 8.70 12.27 1.41 

 
Table 2 Buckling tests results, EM solutions, and FEM solutions 

Specimen number 1 2 3 Mean EM solutions FEM solutions 

Buckling critical load (kN) 34.58 25.38 34.78 31.58 32.53 32.09 
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(a) (b) 

 
(c) 

 
(d) 

Fig. 5 (a) Testing device, (b) specimen size, (c) specimen of graphite materials (MSL82) before tests, 

and (d) specimen of graphite materials (MSL82) after tests 

 

 

As depicted in Fig. 6(b), there is a good coincidence between EM solutions and the FEM 

solutions. However, EM solutions are larger probably because the assumed deflection curve 

actually may make stiffness of rod stronger, thus leading to relatively higher buckling critical load. 

The error of the two methods is within 5.5% and increases with growing displacement. 

Furthermore, by comparing EM and FEM solutions with the test results (see Fig. 6), for the 

graphite material (MSL82) with Ec/Et of 1.41, there is a good agreement with a difference within 

6.6%. Thus, EM and FEM developed in this paper are accurate and reliable. 
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(a) (b) 

Fig. 6 (a) Relation of test load and axial displacement, and (b) relation of load and axial displacement for 

EM and FEM 

 

 
(a) 

 
(b) 

Fig. 7 (a) Variation of neutral axis with deflection (m=0.5), and (b) variation of neutral axial in the 

ultimate steady state with length of rod 
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(a) (b) 

 
(c) 

Fig. 8 Relation of load and deflection of rod when the average modulus E=4000MPa with (a) 

Et/Ec=1.0~5.0, and (b) Ec/Et=1.0~5.0; (c) Variation of buckling critical load against Ec/Et 

 
 
7. Example and discussion 
 

7.1 Example 
 

The EM and FEM are verified by tests in this paper. For further analyzing mechanical behavior 

of buckling rod with different moduli under experiencing large deformation, an example is given 

as follows. Consider a simply supported rod, as shown in Fig. 2(a), where the dimensions of this 

model are as follows: L=1 m, b×h=0.01m×0.01m. An axial force F applied in the center at one end 

of the rod. A different elastic modulus is assumed for the following three cases: (1) 

E=(Ec+Et)/2=4000 MPa, Ec/Et and Et/Ec=0.2~5; (2) Et=1000 MPa, Ec/Et=0.2~5; (3) Ec=1000 

MPa, Et/Ec=0.2~5. This example is solved by EM in this paper. 

 
7.2 The difference between different moduli and same modulus problems 
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When a different modulus is introduced, with the increase of Vm, regular variations occur in the 

neutral axis, as shown in Fig. 7(a). As deflection of rod approaches a certain value, the neutral axis 

reaches a stable equilibrium poison and will not move anymore, which is shown in Fig. 7(b). With 

the increase of m, the neutral axis gradually moves from the tensile zone to the compressive zone. 

In other words, the height of tension region tends to increase and vice versa. 

 

7.2.2 Keeping the average modulus E=4000MPa unchanged 
As shown in Fig. 8(a), when Et/Ec is within the range of 1.0~5.0, with the increase of 

deflection, the load begins to rise linearly and rapidly, and then grows nonlinearly until a stable 

value. At this moment, the rod reaches buckling critical state, and with Et/Ec increasing, buckling 

critical load of rod will decrease. 

When Ec/Et is within the range of 1.0~5.0, with deflection starting to increase slightly, the load 

develops linearly to the maximum value. For different Ec/Et, the maximum loads are almost 

coincident. At the moment, the rod buckles and can not bear larger external load. Then with the 

continuous increase of deflection, the load declines nonlinearly and more quickly due to increasing 

of Ec/Et until reaches a steady value (see Fig. 8(b)) 

The critical buckling load is smaller, whether Ec/Et increases or decreases, than that of a rod 

with the same modulus. Moreover, the critical buckling load is more sensitive to the reduction of 

Ec (see Fig. 8(c) with the logarithmic coordinate for the transverse axis). 

 
7.2.3 Keeping Et (or Ec)=1000MPa unchanged 
As shown in Fig. 9(a-b), with Et constant at 1000MPa, for different Ec/Et, the variation of load 

against deflection are not so identical. When Ec/Et≤1.0, with deflection increasing, the load 

initially develops rapidly and then nonlinearly grows till a stable value. The buckling critical load 

enhances with the increase of Ec. By contrast, when Ec/Et >1.0, the load increases to the maximum 

value at the very start and then declines to a stable value. With the increase of Ec, the load 

develops more quickly together with the maximum value going up. 

With one of the moduli remaining unchanged, increasing the other moduli leads to a differently 

regional increase of Fcr, as shown in Fig. 10(a). That is, Fcr shows a notable change from 2.75 kN 

to 8.20 kN (3 times the original value) when Ec increases by a factor of 5, from 200 MPa to 1000 

MPa. It indicates that Fcr develops quickly and obviously. However, when Ec varies from 1000 

MPa to 5000 MPa (increases by a factor of 5 as well), Fcr increases relatively slowly compared 

with the above results (only increases by a factor of 2.8). In addition, increasing Et results in a 

more obvious and differently regional increase of Fcr. Compared with Ec, Et has a less remarkable 

contribution to the enhancement of Fcr. 

 

7.3 The difference between large deformation and small deformation problems 
 
Comparing the results from small deformation problem with large deformation results 

calculated in this paper, as shown in Fig. 10(b), when Ec/Et>1, the large deformation results are 

larger than those of small deformation problem. Moreover, with the increase of Ec/Et, the errors 

enlarge and reaches the maximum 46.9% when Ec/Et=5. 

The maximum error between the calculated large deformation results and tests results, which is 

less than those of small deformation problem, is only 3% (see Table 2). It suggests that the results 

based on the large deformation theory are more close to reflect actual mechanical behavior and 

therefore, the EM model and FEM model proposed in this paper are feasible and accurate. 
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(a) (b) 

Fig. 9 Relation of load and deflection of rod when Et =1000MPa with (a) Ec/Et=0.2~1.0, and 

(b) Ec/Et=1.0~5.0 

 

  
(a) (b) 

Fig. 10 (a) Variation of buckling critical load against ratio of different moduli, and (b) comparison of 

results from large deformation and small deformation with different moduli (Et=1000MPa) 

 

 

8. Conclusions 
 

In this paper, for analyzing the nonlinear buckling behavior of slender rod with different moduli 

under large deformation, the EM model and FEM model are established. The results of the 

proposed models are fairly identical. Meanwhile, the errors between the results of the proposed 

models and laboratory results are within 3﹪. Thus, the methods proposed in this paper are 

accurate and reliable. Based on this, effects of different moduli on nonlinear buckling of rod are 

investigated. Some conclusions are drawn as follows. 

(1) When the average of the different moduli is constant, the buckling critical load decreases 
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with increasing difference between the different moduli because of the uneven distribution 

(discrete distribution) of stiffness within the section, which is caused by the difference of the 

different moduli. This uneven stiffness will induce a weakening effect on the resistance to 

buckling. Therefore, for graphene, the strongest material yet known, when it is applied into 

engineering, we should not only focus on graphene’s ultimate strength, but also be aware of its 

relatively weak buckling resistance ability resulted from its property of different moduli. It is 

desirable to analyze the buckling behavior of structures composed of graphene by different moduli 

theory. 

(2) When only one modulus increases while the other remains unchanged, the increase of the 

critical buckling load is regionally different. When Ec/Et (Et/Ec) ≤1, the buckling critical load 

increases quickly, which indicates that, due to the increase of the modulus, the section stiffness 

increases and gradually becomes homogeneous, which accounts for a notable improvement in the 

ability of the rod to resist buckling. When Ec/Et (Et/Ec)>1, the critical load increases slowly 

because the gap of the modulus widens, which results in an uneven distribution of stiffness within 

the section. And the increase of Ec has a more remarkable effect on the enhancement of Fcr than 

that of Et. 

(3) Based on the large deformation theory, the calculated buckling critical load is larger than 

that based on small deformation theory. And the error between the results is growing with the 

increase of Ec/Et, which indicates that, for this kind of material with different moduli, if the small 

deformation calculation method is still adopted, the deviation is too large. Thus, the calculation 

methods based on the large deformation theory can better authentically describe nonlinear 

mechanical behavior of structures with different moduli. 

The EM model is simple and straightforward, low cost of computation, and effective. By 

contrast, the FEM model is relatively more accurate though time-consuming and slowly 

convergent. The models proposed in this paper could provide a novel and simple approach for 

further investigation of double non-linear mechanical behavior for structures composed of a 

material having different moduli. 
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