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Abstract.  This study investigates the identification of added mass and its location in the glass fiber 

reinforced polymer (GFRP) beam structures. The main emphasis of this paper is to ascertain the importance 

of inclusion of rotational degrees of freedom (dofs) in the introduction of added mass or damage 

identification. Two identification indices that include the rotational dofs have been introduced in this paper: 

the modal force index (MFI) and the modal rotational curvature index (MRCI). The MFI amplifies damage 

signature using undamaged numerical stiffness matrix which is related to changes in the altered mode shapes 

from the original mode shapes. The MRCI is obtained by using a higher derivative of rotational mode 

shapes. Experimental and numerical results are compared with the existing methods leading to a conclusion 

that the contributions of the rotational modes play a key role in the identification of added mass. The authors 

believe that the similar results are likely in the case of damage identification also. 
 

Keywords:  modal force index (MFI); modal rotational curvature index (MRCI); rotational mode shape; 

added mass; glass fiber reinforced polymer (GFRP) 

 
 
1. Introduction 
 

In the last few decades, demand for health monitoring of composite structures has been steady 

growing among the aerospace, mechanical and windmill engineering communities. During the 

service conditions, the structure may experience high fatigue loads, which could lead to a 

catastrophic failure.  To prevent these sudden failures, it is important to identify the damage at 

early stages. Therefore, structural health monitoring (SHM) plays a vital role in the condition 

assessment of structures and thus reduces the inspection and repair costs.   

Damage identification is an integral part of the SHM process. It can be classified as local and 

global methods. Global methods are preferred because the vicinity of damage is not required. Also, 

it is used in real time applications. Several damage (added mass) identification methods and 

indices based on vibration data have been proposed in literature.  

One of the identification methods used for the damage detection is the frequency response 

function (FRF) method. Kessler et al. (2002) investigated the damage detection in graphite/epoxy 
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structures with different types of damage using the change in FRF. Fanning and Carden (2004) 

presented a methodology for detecting added mass by measuring the FRF of the structure. Liu et 

al. (2009) proposed a structural damage localization method for a cantilever beam using the 

imaginary parts of FRF shapes. Esfandiari et al. (2010) a finite element (FE) model based updating 

FRF to identify the change of stiffness and mass location and the severity of damage in a truss 

structure. Liu et al. (2012) measured strain FRF (SFRF) using fiber bragg grating (FBG) sensors to 

detect damage location and its extent. These methods have had limited success because of the 

difficulty in extracting the damage information contaminated by noise in the signal.   
Modal based methods, on the other hand, use parameters unique to the structure independent of 

the excitation.  Therefore, it is possible to use these methods more effectively in extracting the 

feeble signatures that arise from the damage.  Essentially, these methods could be classified into 

two categories: one that uses the shape changes in the mode and the other that uses changes in the 

force extracted from the mode. 

Pandey et al. (1991) introduced an index based on absolute changes in the mode shape 

curvature to detect the damage in cantilever and simply supported beam models. Doebling et al. 

(1998) summarized damage indices such as change in natural frequencies, mode shapes, modal 

curvature and modal flexibility. Lestari et al. (2007) examined the effectiveness of the modal 

curvature method for different damage types in carbon/epoxy composite beams. Qiao et al. (2007) 

introduced damage indices utilizing three consecutive modal curvatures (modes 3-5) to identify the 

delamination in a composite plate. But, changes observed in the modal curvature are generally 

weak making it difficult to identify the damage signatures. Higher derivatives would be necessary 

to sharpen the damage signatures.   

Whalen et al. (2008) observed their study that higher derivatives of mode shapes (e.g., modal 

curvature, third derivative, and fourth derivative) were better than the mode shapes in indicating 

the presence and location of damage. Abdo (2012) introduced an index based on the fourth 

derivative of lower and higher order mode shapes for damage detection in simply supported and 

cantilever steel plates. It was found in his study that the method is quite sensitive to measurement 

noise. Higher the derivative, higher is the sensitivity to measurement noise.  Therefore, a higher 

order derivative would need enough sampling points to enhance the scaling of damage features. 

Moreno-Garcia et al. (2014) proposed an optimal spatial sampling while computing the higher 

order derivatives which would minimize the total error.  This could solve the problem to a certain 

extent. Since the measurement noise is also enhanced while taking the derivatives, one has to 

ensure that the signature enhancement due to computation of derivatives is higher than the 

measurement noise. 

Kosmatka and Ricles (1999) demonstrated a damage identification method using residual force 

vector (RFV) extracted from experimentally measured modal test data. A reduced order model 

(ROM) of a three dimensional 10-bay space truss was used to demonstrate the effectiveness of the 

method. Gupta et al. (2008) proposed a damage force index (DFI) which is a modified form of the 

residual force index to detect the damage on beam and plate structures using a FE based ROM. 

However, ROM based force index which uses mainly the transverse dofs may camouflage the 

damage effect and therefore, may suffer from the required sensitivity necessary to identify the 

damage and its location.   Since bending is the primary action in beams, the rotational dofs play a 

vital role compared to the direct transverse dofs. Abdo and Hori (2002) investigated a numerical 

study of structural damage detection of bar, beam and plate elements using the change in slope of 

mode shapes. Homaei et al. (2014) utilized rotational dofs to compute multiple damage 

localization index based on mode shapes (MDLIBMS) to locate the multiple damages in beam like 
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structures. Therefore, force based index, computed by including the rotational dofs also along with 

the transverse dofs, would enhance the damage signature. 

Conventional method of conducting an experimental study for identifying the damage is to use 

different specimens from the same batch of material. There are two problems that are generally 

associated with this technique (i) variations in material/geometric properties can occur from 

specimen to specimen (ii) location of the crack type damage in the specimen cannot be shifted 

within the same specimen for different crack location studies. To avoid these difficulties, Dinh et 

al. (2011) proposed an algorithm to extract the stiffness of beam models by the use of added mass. 

Toyosaki et al. (2012) examined damage identification using added masses and the effect due to 

change in masses before and after the damage. The use of added mass offers flexibility in moving 

the damage (added mass) to different locations without changing the original characteristics of the 

structure. 
Summarizing the observations from the above literature survey, (1) use of only transverse 

degrees of freedom dofs may camouflage the damage effect (2) rotational dofs are sensitive to 

damage localization (3) one has to ensure that the signature enhancement due to computation of 

derivatives is higher than the measurement noise (4) force based index would require addition of 

rotational dofs in its computation in addition to the translational dofs to enhance the damage 

signature (5) adding a movable mass offers versatility of moving the damage to different locations 

without changing the original characteristics of the structure. 

The objective of this study is to identify the added mass and its location in a GFRP beam using 

two proposed damage indices, the MFI and the MRCI. The importance of this paper is to ascertain 

the significance of inclusion of rotational degrees of freedom (dofs) and the introduction of added 

mass in the damage identification methodology. 

This paper is organized as follows: Section 1 introduces the various damage identification 

methods. Section 2 defines the two proposed damage indices, the modal force index (MFI) and the 

modal rotational curvature index (MRCI) and explains the procedure for computing them. Section 

3 describes the experiments that have been conducted, the setup and the specimen details. The 

modal analysis procedure used in this work is also elaborated. The experimental results and the 

numerical results are presented and discussed in Section 4 ending with concluding remarks in 

section 5.  

 

 

2. Theoretical background 
 

The eigen value equation for a multi-degree of freedom (MDOF) undamped dynamic system 

can be written as 

 K M 0                                                                          (1) 

where K and M are global stiffness and mass matrices of the beam structure respectively.   and 
 are the natural frequencies and the mode shapes respectively. The added mass is fixed to the 

beam at a particular location. At that location, the mass as well as the stiffness of the beam 

increases locally. This change leads to changes in the natural frequencies and the mode shapes of 

the system. The corresponding eigen value equation of a dynamic system with damage (or added 

mass) can be represented by Cawley and Adams (1979)  

 K M 0  d d d d                                                                  (2)  
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where Kd and Md are global stiffness and mass matrices of the beam structure with added mass 

respectively. λd and Фd are altered natural frequencies and mode shapes respectively. d subscript is 

used to indicate damage which is akin to the added mass in this study. Changes in natural 

frequencies could help get a preliminary idea about the existence of damage and its location in the 

beam. However, it is far from a reliable identification. In order to understand damage localization 

better, it requires additional spatial information like the mode shapes. Two indices are introduced 

here for the identification of damage (added mass) location in a beam structure that relies on the 

addition of rotational modes in their calculation.  

 

     2.1 Modal force index (MFI) 
 

     The modal force index (MFI) for localization of damage (added mass) to the beam element can 

be expressed by 

, ,F Ke e e

u j u j     and   , ,F Ke e e

d j d j                                           (3, 4) 

where F, is the elemental force vector and 
, , 1, 1,

T
e

j i j i j i j i jw w       are the mode shapes 

corresponding to a complete set of dofs that include both transverse and rotational dofs for each 

element. i, j and e denote the node, mode and element respectively. u and d represent the 

undamaged and damaged state respectively. K
e
 is the stiffness matrix of the beam element as 

shown in Eq. (5). 
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where E, Ie and le  represents the modulus of elasticity, area moment of inertia of the beam section 

and the elemental length respectively. The rotational mode shape for i
th
 node is a derivative of 

transverse mode shapes of nodes between i-1
th
 and i+1

th
 given by

 
first derivative central difference 

scheme as in Eq. (6). Since the error in this method is of second order O(h
2
), the accuracy 

increases when computing  rotational mode shapes. The boundary conditions are: the displacement 

and slope are zero at the fixed end and the curvature is zero at the free end for the cantilever 

configurations.  

1, 1,

,
2

i j i j

i j

w w

h


 
                                                           (6)  

where w and θ are transverse and rotational dofs of each nodal point. h is the distance between i
th

 
and i+1

th
 node. Since the modal force index scales the damage signature using the undamaged 

numerical stiffness matrix, which is related to the change in altered mode shape from the original 

mode shape. 

    In the force vector, moments are normalized with respect to the elemental length in order to 

maintain unit constancy. Then, the L2-norm is applied to calculate the equivalent force for each 

element. The difference between the damaged and undamaged forces is then computed that defines 

the normalized MFI for each beam element. Taking the mean of normalized MFI of all the modes 

excluding first mode enhances the damage signature. The damage identification algorithm based  
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Performance of rotational mode based indices in identification of added mass in beams 

 

Fig. 1 Damage identification algorithm based on modal force index 

 

 

on MFI can be seen in Fig. 1. Results of the proposed MFI have been compared with the residual 

force vector (RFV) proposed by Kosmatka and Ricles (1999) model and are presented in Section 

4.1. 

 
2.2 Modal rotational curvature index (MRCI) 

 
The major assumption that is generally accepted (unless shear deformations dominate) in this 

computation is that the beam follows Euler-Bernoulli beam theory. The modal rotational curvature 

from 2
nd 

node to n-1
th
 node is obtained by using the second derivative central difference scheme 

for rotational mode shape is given by 

1, , 1,

, 2

2i j i j i j

i j
h

  


  
                                                        (7) 
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The rotational curvature at the first node is calculated by using second derivative forward 

difference scheme 

3, 2, 1,

1, 2

2j j j

j
h

  


 
                                                           (8) 

Thus, MRCI is obtained at all the nodes. The difference between the undamaged and damaged 

modal rotational curvature is calculated at each node and normalized with respect to maximum 

value of L2-norm of modal rotational curvature difference. Although computational error 

accumulates in the subsequent numerical operations, the signature enhancement is higher than the 

computation error. Thus, the normalized MRCI is computed as 

Normalized MRCI, 
d,ij u,ij

i, j

d, j u, j 2

φ - φ
φ =

max φ - φ
                                           (9) 

The overall MRCI is now calculated as the mean of normalized MRCI of all the modes 

excluding the first mode as given below. 

Mean of normalized MRCI, 
,

2

1

1

m

i i j

j

φ = MRCI
m 

    where 1j > .                       (10) 

MRCI is used for identifying the location of added mass at different positions on the cantilever 

beam that is chosen as an example for this study. Numerical and experimental results are 

compared with an existing model proposed by Pandey et al. (1991). The results are presented in 

Sections 4.2 and 4.3. 

 

 

3. Experimental modal analysis     
      

3.1 Material properties of the GFRP beam  
   

A GFRP specimen is used to conduct the test with undamaged and damaged (added mass 

included case) as shown in Fig. 2. The beam is made up of bidirectional glass fiber woven mat 

[0
◦
/90

◦
]8 stacked up in a layer by layer process and bonded together using an epoxy matrix. 

Specimens of desired shape are cut from the same batch of laminate. The GFRP beam is set up in a 

cantilever configuration. The free span, width and thickness are 450 mm, 26 mm and 2.93 mm 

respectively. In the analysis, the beam is considered to be transversely isotropic and to follow the 

Euler-Bernouli beam assumption. The material properties of the GFRP beam are estimated by 

using a finite element (FE) model updating method. The elastic moduli thus computed are 

E1=E2=14.53 GPa and density, ρ=1835 kg/m
3 
respectively. 

 

     3.2 Added mass 
  
     The added mass is prepared in the form of two aluminium strips that could be tightened to the 

beam using screws at the desired locations of the beam as shown in Fig. 3(b). This provides the 

versatility of moving the damage (added mass) for different damage location studies in the beam 

structure without altering the original structural characteristics. The weight of the added mass is  
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Performance of rotational mode based indices in identification of added mass in beams 

 

Fig. 2 GFRP beam with (a) undamaged specimen (b) added mass at 5
th

 element (c) added mass at 

10
th

element and their cross sections 

 

 

Fig. 3 (a) Experimental modal analysis test setup (b) Added mass is attached with GFRP beam 

 

 

about 12% of the beam weight. The undamaged condition of the beam is preserved while altering 

the beam structure using the added mass to simulate damaged condition. The beam is divided into 

15 zones (or elements) of equal length for assessing the performance of the proposed damage 

identification indices with the added mass (akin to damage) located at different positions in the 

beam. The following cases are considered in this study as shown in Fig. 2. 
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1. undamaged case with no added mass in it 

2. added mass at the 5th element (closer to the fixed end)  

3. added mass at the 10th element (closer to the free end) 

 

3.3 Experimental setup 
 
An integrated experimental modal analysis setup is developed to perform the modal analysis 

using MATLAB
®
 as shown in Fig. 3(a). A data acquisition (DAQ) board (Data Translation 

DT9837) is used to acquire the signals from accelerometer and impact hammer and it could 

interface with MATLAB
®
 to perform the modal analysis. A uniaxial accelerometer (Kistler model 

8640A50) weighing 3 gms with a sensitivity of 98.2 mV/g is used to measure the acceleration 

signals. It is attached at the free end of beam using wax glue as shown in Fig. 3(b). An impact 

hammer (Kistler model 9722A500), with a sensitivity of 10 mV/N force, is used to excite the beam 

structure.  

 

 3.3.1 Experimental procedure 
The GFRP beam is setup in a cantilever configuration and a rowing-hammer method is 

adopted. In this method, the hammer is moved to each node along the length of the beam while the 

accelerometer is fixed at one location. In this case, the accelerometer is fixed at the free end.  The 

impulse hammer excites the beam at different locations and the accelerometer measures the 

corresponding acceleration signals. The excitation and the accelerometer signals are obtained from 

both the impulse hammer and accelerometer respectively using the DAQ board interface. The total 

sampled time is 0.964 sec with the sampling frequency of 10375 Hz. An exponential window and 

a rectangular window are applied to the acceleration and the force signals in time domain to 

remove the leakage errors when truncating the time signals. The processed time signals are 

transformed into frequency domain using fast Fourier transform (FFT). The frequency response 

function (FRF) is calculated as the ratio of the acceleration response to the impulse force in the 

frequency domain.  It is also commonly referred to as accelerance or inertance. Rational fraction 

polynomial (RFP) curve fitting technique is employed to extract the modal parameters such as 

natural frequencies (see Table 1) and the corresponding transverse mode shapes are obtained from 

the measured FRF data using the method proposed by Ewins (2000) as shown in Fig. 4(a).  Since it 

is difficult to measure rotational mode shapes directly, they are computed by taking the first 

derivative of the transverse mode shapes. The computed rotational mode shapes are shown in Fig. 

4(b).  

 

 
Table 1 First five measured and numerical natural frequencies 

 Measured frequency (Hz) Numerical frequency (Hz) 

Mode Undamaged D1* D2** Undamaged D1* D2** 

1 6.47 6.48 6.1 6.57 6.85 6.12 

2 42.47 39.70 39.46 41.21 38.86 41.24 

3 121.64 109.13 115.18 115.41 109.92 115.4 

4 239.32 231.81 238.63 226.2 224.23 225.38 

5 394.17 392.42 367.1 374.05 373.12 378.09 

D1*: added mass at 5
th

 element;     D2**: added mass at 10
th

 element 
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(a) Measured transverse mode shapes (b) Computed rotational mode shapes 

Fig. 4 Measured transverse mode shapes and computed rotational mode shapes for the undamaged case 

 
 
4. Results and discussions 
 

Experimental modal analysis is performed and the first five transverse mode shapes are 

extracted. They are normalized with respect to maximum absolute value of each mode. This is 

shown in Fig. 4(a). The modal parameters of the undamaged beam are compared with different 

damage cases (added mass attached at different locations). A slight increase in measured first 

natural frequency from 6.47 Hz to 6.48 Hz is observed when the added mass is moving towards 

the fixed end. This indicates that the increase in stiffness of the structure due to the addition of 

added mass is relatively higher than the increase in the equivalent mass of the structure. On the 

other hand, when the added mass is moving towards the free end, the natural frequency is reduced 

to 6.1 Hz. This shows that the increase in equivalent mass is higher than the increase in stiffness of 

the structure. The feeble changes in natural frequencies could help to get an initial idea about 

damage presence and approximate damage location in the beam. But it is not sufficient to identify 

the exact added mass or damage extent and its location. Therefore, the proposed indices employ 

rotational mode shapes and their higher derivatives to localize the added mass or damage in the 

beam.      
 
4.1 Modal force index (MFI) 
 
The proposed MFI is calculated using the algorithm shown in Fig. 1 in the cases of added mass 

located at the 5th element and at the 10th element respectively. In order to emphasize the 

contribution of the rotational modes, the proposed MFI thus calculated is compared with an 

existing index introduced by Kosmatka and Ricles (1999) using ROM. This index, called the 

residue force vector (RFV), does not consider the rotational dofs.    

Though all mode shapes could carry some signature of the damage, the intensity varies with 

modes. First mode is least influenced by the presence of the damage since the bending action in 

the first mode is less sharp than in the other modes. Hence, in the present study, the average of all 

the modes excluding the first mode is employed to identify the damage locations. The resulting 

average which does not consider the first mode shows a sharper signature. The proposed MFI  
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(a) added mass at 5
th

 element (b) added mass at 10
th

 element 

Fig. 5 Results of mean of normalized MFI and the RFV proposed by Kosmatka and Rickles for the 

cases of the added mass at 5
th

 and at 10
th

 element individually 

 

  

(a) added mass at 5
th

 element (b) added mass at 10
th

 element 

Fig. 6 The numerical results of mean of normalized MRCI and MCI proposed by Pandey et al. for the 

cases of the added mass at 5
th

 and at 10
th

 element individually 

 

 

scores over the RFV results in indicating the distinct features of the damage location 

unambiguously for both the cases in which the added mass is attached at 5
th
 and 10

th
 element 

individually.  A comparison of the proposed MFI and the RFV results are shown in Figs. 5(a)-(b) 

to substantiate this claim. This vindicates the importance of inclusion of rotational modes in the 

calculation of MFI.  

 

4.2 Modal rotational curvature index (MRCI) - numerical analysis 
 
A numerical finite element (FE) simulation is carried out for the cantilever beam discretized 

into 15 beam elements as shown in Fig. 2. Both the transverse and the rotational mode shapes are 

extracted. The modal rotational curvature index (MRCI) is calculated using the rotational mode  
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(a) added mass at 5
th

 element (b) added mass at 10
th

 element 

Fig. 7 The experimental results of mean of normalized MRCI and MCI proposed by Pandey et al. for 

the cases of the added mass at 5
th

 and at 10
th

 element individually. 

 

 

shapes and normalized as in Eq. (9). The normalized MRCI is now suitable for comparison with an 

existing method such as the modal curvature index (MCI) proposed by Pandey et al. (1991). In the 

first case of added mass located at 5
th
 element, the mean of normalized MRCI of all the modes 

excluding the first is computed and presented in Fig. 6(a). Sharp changes in the MRCI magnitude 

can be distinctly seen.  This is expected since MRCI utilizes a higher derivative, which is sensitive 

to the damage location. 

Similarly in the other case of added mass at 10
th
 element, substantial changes can be seen in       

Fig. 6(b). In both the cases, the MRCI wins over the MCI method indicating the power of using 

only rotational modes in the calculation of the indices. It should also be emphasized that it required 

only coarse grid measurements to identify the damage location effectively. It is important now to 

test the effectiveness of this index under experimental conditions that is usually contaminated with 

measurement noise in the measured signals. 

 

4.3 Modal rotational curvature index (MRCI) – experimental analysis 
 
Experiments are conducted to validate the MRCI for added mass type damage in the beam. In 

this experimental study, the first five modes extracted for each case of added mass (1) attached to 

the 5th element and (2) attached to the 10th element. The modes thus extracted are considered for 

the analysis. Since rotational mode shapes are closely associated with bending action in beams, it 

is expected that rotational mode shapes should carry the bulk of the damage signature. This results 

in signature enhancement. This enhancement also helps in partially removing the measurement 

noise related masking. Moreover, in order to reduce the error in derivative computation, the central 

difference scheme is employed so that the order of error is h
2
.  The experimental results of MRCI 

shown in Figs. 7(a)-(b) show this enhancement compared to MCI proposed by Pandey et al. 

(1991). Thus, we see an increased effectiveness and reliability in damage identification.   
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5. Conclusions 

 
This work primarily focuses on the identification of added mass and its location in a GFRP 

beam structure. The effectiveness of using rotational modes separately is tested and substantiated. 

To understand the role of rotational dofs, two indices are introduced viz. modal force index 

(MFI) and the modal rotational curvature index (MRCI). The underlying principles behind these 

two proposed indices are simple yet robust. The results of this study have clearly shown through 

an example of a cantilever beam both by means of experimental investigations as well as by 

numerical simulations that rotational modes play a vital role in enhancing the signature of damage 

(added mass). The results of MFI that includes both the transverse and the rotational dofs indicates 

substantial changes in the added mass locations compared to the RFV index which utilizes only 

transverse dofs. The results also reveal that the use of higher derivatives of rotational mode shapes, 

as in the computation of MRCI, further enhances performance when compared to the MCI which 

considers the lower derivatives.  

The study also shows that it is important to extract sufficient number of modes from the 

experimental data to confirm and identify the location of structural change. Ongoing study is to 

introduce a measure of local change in the characteristics of a structure and to identify the extent 

and location of multiple local changes in the structure. The authors feel that the proposed indices 

perform better since the gradients and curvatures are used in the damage identification that directly 

correlate with the force and stress resultants in the structure.  Both the damage indices rely on the 

comparisons with experimental data of the healthy structures, which limit the application of the 

proposed methods.  
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