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Abstract.  This paper presents a nonlocal shear deformation beam theory for bending, buckling, and 

vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of 

Eringen. The developed theory account for higher-order variation of transverse shear strain through the 

depth of the nanobeam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the 

nanobeam. A shear correction factor, therefore, is not required. In addition, this nonlocal nanobeam model 

incorporates the length scale parameter which can capture the small scale effect and it has strong similarities 

with Euler–Bernoulli beam model in some aspects such as equations of motion, boundary conditions, and 

stress resultant expressions. The material properties of the FG nanobeam are assumed to vary in the 

thickness direction. The equations of motion are derived from Hamilton’s principle. Analytical solutions are 

presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted 

by the nonlocal Timoshenko beam theory. 
 

Keywords:  nanobeam; nonlocal elasticity theory; bending; buckling; vibration; functionally graded 

materials 

 
 
1. Introduction 
 

Nanotechnology is primarily concerned with fabrication of functionally graded materials and 

engineering structures at a nanoscale, which enables a new generation of materials with 

revolutionary properties and devices with enhanced functionality. One of these structures is the 

nanobeam, which has been used widely in systems and devices such as nanowires, nano-probes, 

atomic force microscope (AFM), nanoactuators and nanosensors. The understanding of 
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mechanical behavior of nanobeam is essential in developing of such structures due to their great 

potential engineering applications. Hence, size effects are significant in the mechanical behavior of 

these structures in which dimensions are small and comparable to molecular distances. These 

effects can be captured using size-dependent continuum mechanics such as strain gradient theory 

(Nix and Gao 1980), modified couple stress theory (Ma et al. 2008), and nonlocal elasticity theory 

(Eringen 1972, 1983). Unlike classical theories, the nonlocal theories contain internal material 

length scale parameters that can capture size effects at the nano scale. A review of various 

nonlocal models can be found in Bazant and Jirasek (2002).  

The nonlocal elasticity theory of Eringen (1972, 1983) was developed by several authors as a 

response to the inability of local elasticity to handle elastic problems with sharp geometrical 

singularities (for example, a sharp crack-tip). The Eringen model was applied to Euler–Bernoulli 

micro and nanobeams by Peddieson et al. (2003), Sudak (2003) and Amara et al. (2010) to the 

study of column buckling of carbon nanotubes and by Pisano et al. (2003) for the study of an 

elastic bar in tension. Reddy (2007) reformulated different nonlocal beam theories including 

Euler–Bernoulli, Timoshenko, Reddy (1984), Levinson (1981) to evaluate the static bending, 

vibration, and buckling responses of nanobeams. Adda Bedia et al. (2015) studied the thermal 

buckling characteristics of armchair single-walled carbon nanotube embedded in a one-parameter 

elastic medium by proposing a new nonlocal first-order shear deformation theory.   

A new class of composites that called functionally graded materials (FGMs) has a great 

practical importance because of their vast applications in many industrial and engineering fields 

(Ait Yahia et al. 2015, Attia et al. 2015, Khalfi et al. 2014, Bachir Bouiadjra et al. 2013, Bessaim 

et al. 2013, Fekrar et al. 2014). Recently, the application of FG materials has broadly been spread 

in nano-structures such as nano-electromechanical systems (NEMS), thin films in the form of 

shape memory alloys, and atomic force microscopes (AFMs) to achieve high sensitivity and 

desired performance. With the rapid development of technology, functionally graded (FG) beams 

and plates have been started to use in micro/nanoelectromechanical systems (MEMS/NEMS), such 

as the components in the form of shape memory alloy thin films with a global thickness in micro- 

or nano-scale (Fu et al. 2003, Witvrouw and Mehta 2005, Lü et al. 2009), electrically actuated 

MEMS devices (Hasanyan et al. 2008, Mohammadi-Alasti et al. 2011, Zhang and Fu 2012), and 

atomic force microscopes (AFMs) (Rahaeifard et al. 2009). Since the dimension of these structural 

devices typically falls below micron- or nano-scale in at least one direction, an essential feature 

triggered in these devices is that their mechanical properties such as Young’s modulus, flexural 

rigidity, and so on are size-dependent. So far, only a few works have been reported for FG 

nanobeams based on the nonlocal elasticity theory. Pisano et al. (2009ab) exploited the nonlocal 

finite element method for analyzing homogeneous and nonhomogeneous nonlocal elastic 2D 

problems. Janghorban and Zare (2011) investigated nonlocal free vibration axially FG nanobeams 

by using differential quadrature method. Eltaher et al. (2012) studied free vibration of FG 

nanobeam based on the nonlocal Euler-Bernoulli beam theory. Belkorissat et al. (2015) analysed 

the vibration properties of FG nano-plate using a new nonlocal refined four variable model. 

Recently, Larbi Chaht et al. (2015) studied the static bending and buckling of a FG nanobeam 

using the nonlocal sinusoidal beam theory.  

Therefore, based on the above discussion it can be seen that a very limited literature is available 

for micro/nano-scale FG structures. That gives us a strong encouragement to understand the 

mechanical behavior of FG nanobeams in the design of nanodevices. The aim of this paper is to 

propose a refined nonlocal beam theory for bending, buckling, and vibration of FG nanobeams. 

This theory is based on assumption that the in-plane and transverse displacements consist of  
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Fig. 1 Gradation of material properties through the thickness of the FG beam 

 

 

bending and shear components, in which the bending components do not contribute toward shear 

forces and, likewise, the shear components do not contribute toward bending moments. In 

addition, the small scale effect is taken into account by using the nonlocal constitutive relations of 

Eringen. The most interesting feature of this theory is that it accounts for a quadratic variation of 

the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions 

on the top and bottom surfaces of the beam without using shear correction factors. In addition, it 

has strong similarities with Euler–Bernoulli beam theory in some aspects such as equations of 

motion, boundary conditions, and stress resultant expressions. The material properties of the FG 

nanobeam are assumed to vary in the thickness direction. Based on the nonlocal constitutive 

relations of Eringen, equations of motion of FG nanobeams are derived using Hamilton’s 

principle. To illustrate the accuracy of the present theory, the obtained results are compared with 

those predicted by the Euler–Bernoulli beam theory and Timoshenko beam theory. Finally, the 

influences of nonlocal parameter, power law index, and aspect ratio on the bending, buckling and 

vibration responses of FG nanobeam are discussed. 

 

 

2. Theoretical formulations 
 

The theoretical formulation of a uniform FG nanobeam based on certain kinematical and 

physical assumptions is presented. The variationally correct forms of differential equations and 

boundary conditions, based on the assumed displacement field are obtained using the principle of 

virtual work. As is seen in Fig. 1, the beam under consideration occupies the region 

Lx0 ;   2/2/ byb  ;   2/2/ hzh                                 (1) 

where x, y, z are Cartesian coordinates, L is the length, b is the width, and h is the total depth of 

nanobeam. The nanobeam is subjected to the distributed transverse load q(x) and an axial 

compressive force N0. 

 

2.1 Functionally graded materials 
 

It is assumed that material properties of the FG nanobeam, such as Young’s modulus (E), 

Poisson’s ratio (v), the shear modulus (G), and the mass density (ρ), vary continuously through the 

nanobeam thickness according to power-law form (El Meiche et al. 2011, Eltaher et al. 2012, 

Larbi Chaht et al. 2015, Tounsi et al. 2013a, Bouderba et al. 2013, Houari et al. 2013, Saidi  et al. 

2013, Ould Larbi et al. 2013, Belabed et al. 2014, Bousahla et al. 2014, Hebali et al. 2014, 

(1) 
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Bourada et al. 2015, Hamidi et al. 2015), which can be described by 
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where Pt and Pb are the corresponding material property at the top and bottom surfaces of the 

nanobeam, k is a non-negative number that dictates the material variation profile through the 

thickness of the nanobeam. 

 

2.2 Basic assumptions  
 

The displacement field of the proposed theory is chosen based on the following assumptions 

(i) The displacements are small in comparison with the FG nanobeam thickness and, therefore, 

strains involved are infinitesimal. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinate x only. 

)()(),( xwxwzxw sb                                                        (3) 

(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 

(iv) The displacement u in x-direction consists of extension, bending, and shears components. 

sb uuuu  0                                                              (4) 

The bending component ub is assumed to be similar to the displacement given by the classical 

beam theory. Therefore, the expression for ub can be given as 

x

w
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The shear component us gives rise, in conjunction with ws, to a sinusoidal variations of shear 

strain γxz and hence to shear stress τxz through the thickness of the nanobeam in such a way that 

shear stress τxz is zero at the top and bottom faces of the nanobeam. Consequently, the expression 

for us can be given as (Benachour et al. 2011, Zidi et al. 2014) 
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2.3 Kinematics 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (3)-(6) as 
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The strains associated with the displacements in Eq. (7) are 

s

x

b

xxx kzfkz   )(0    and 
s
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2.4 Constitutive relations 
 

Response of materials at the nanoscale is different from those of their bulk counterparts. 

Nonlocal elasticity is first considered by Eringen (1972, 1983). He assumed that the stress at a 

reference point is a functional of the strain field at every point of the continuum. Eringen (1972, 

1983) proposed a differential form of the nonlocal constitutive relation as   
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where μ=(e0a)
2
 is the nonlocal parameter, e0 is a constant appropriate to each material and a is an 

internal characteristic length. In general, a conservative estimate of the nonlocal parameter is 

e0a<2.0 nm for a single wall carbon nanotube (Wang 2005, Benzair et al. 2008, Heireche et al. 

2008a,b,c, Tounsi et al. 2008, Benzair et al. 2008, Zidour et al. 2012, Tounsi et al. 2013b,c,d, 

Berrabah et al. 2013, Boumia et al. 2014, Zidour et al. 2014, Semmah et al. 2014, Baghdadi et al. 

2014, Benguediab et al. 2014). 

 

2.4 Equations of motion 
 

Using the dynamic version of principle of virtual work (Ait Amar Meziane et al. 2014, Mahi et 

al. 2014, Tounsi et al. 2015), variationally consistent governing differential equations for the FG 

nanobeam under consideration are obtained. The principle of virtual work when applied to the FG 

nanobeam leads to 
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Collecting the coefficients of δ u0, δ wb and δ ws in Eq. (11), equations of motion are obtained 

as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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and (I0, I2) are mass inertias defined as 
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when the shear deformation effect is neglected (ws=0), the equilibrium equations in Eq. (12) 

recover those derived from the Euler-Bernoulli beam theory. 

By substituting Eq. (8) into Eq. (10) and the subsequent results into Eq. (13), the stress 

resultants are obtained as 

2

2

2

2

0

2

2

dx

wd
B

dx

wd
B

dx

du
A

dx

Nd
N s

s

b                                      (15a) 

2

2

2

2

0

2

2

dx

wd
D

dx

wd
D

dx

du
B

dx

Md
M s

s

bb

b                                  (15b) 

2

2

2

2

0

2

2

dx

wd
H

dx

wd
D

dx

du
B

dx

Md
M s

s

bs

s                                  (15c) 

dx

dw
A

dx

Qd
Q s

s
2

2

                                                     (15d) 

where the stiffness components are given as 
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By substituting Eq. (15) into Eq. (12), the nonlocal equations of motion can be expressed in 

terms of displacements (u0, wb, ws) as 
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(17c) 

The equations of motion of local beam theory can be obtained from Eq. (17) by setting the 

nonlocal parameter μ equal to zero. 

 

 

3. Analytical solution of simply supported FG nanobeam 
 

The above equations of motion are analytically solved for bending, buckling and free vibration 

problems. The Navier solution procedure is used to determine the analytical solutions for a simply 

supported FG nanobeam. The solution is assumed to be of the form 




 
































1

0

)sin(

)sin(

)cos(

m ti

sn

ti

bn

ti

n

s

b

exW

exW

exU

w

w

u

   

   

   

  

  

  













                                              (18) 

where Un, Wbn, and Wsn are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with n th eigenmode, and α=nπ/L. The transverse load q is also expanded in the Fourier 

sine series as 
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The Fourier coefficients Qn associated with some typical loads are given 

0qQn  ,  1n    for sinusoidal load,                                        (20a) 

n

q
Qn

04
 ,  .....5,3,1n  for uniform load,                                   (20b) 
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2
sin

2 0 n

L

q
Qn  , ....3,2,1n  for point load 0Q  at the midspan,                (20c) 

Substituting the expansions of u0, wb, ws and q from Eqs. (18) and (19) into Eq. (17), the 

analytical solutions can be obtained from the following equations 
























































































n

n

sn

bn

n

Q

Q

W

W

U

mm

mm

m

PSPSS

PSPSS

SSS





0

0

0

00

3323

2322

11

2

332313

232212

131211

               (21) 

where 

2

11 AS  ,  3

12 BS  ,  3

13 sBS  , 4

22 DS  ,  4

23 sDS  ,  24

33  ss AHS  , 

02311 Imm  ,  2

2022 IIm  ,  22
033

84


I
Im  , 

2

0NP  ,  21                                                          (22) 

 

 

4. Results and discussion 
 

This section is divided into two parts. The first one presents a verification of the proposed 

nonlocal model with those previously published. The second section shows the effects of nonlocal 

parameter, power law index, and aspect ratio on the bending, buckling and vibration responses of 

FG nanobeam. 

In the following analysis, two FG nanobeams are investigated. The first FG nanobeam has the 

following material properties: Et=0.25 TPa, Eb=1 TPa, vt=vb=0.3 (Larbi Chaht et al. 2015). The 

second FG nanobeam is composed of steel and alumina (Al2O3). The bottom surface of the beam is 

pure steel, whereas the top surface of the beam is pure alumina. The material properties are as 

follows: Et=390 GPa, Eb=210 GPa, ρt=3960 kg/m
3
, ρb=7800 kg/m

3
, vt=vb=0.3 (Eltaher et al. 

2012). The shear correction factor is taken as 5/6 for Timoshenko beam theory. For convenience, 

the following nondimensionalizations are used: 

• 
4

0

100
Lq

IE
ww t    for uniform load; 

• 
IE

A
L

t

t 2
    frequency parameter; 

• 
IE

L
NN

t

cr

2

   critical buckling load parameter: 

 

4.1 Comparative studies 
 

In order to demonstrate the accuracy of the present closed-form exact solution, some 

comparisons of the present results with those available in the literature has been carried out.  
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Table 1 Dimensionless transverse deflections ( w ) of the FG nanobeam for uniform load 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present 

10 

0 5.3383 5.3381 5.3383 5.4659 5.4659 5.4659 5.8487 5.8485 5.8487 6.4867 6.4865 6.4867 7.3798 7.3797 7.3799 

0.3 3.2169 3.2178 3.2181 3.2938 3.2946 3.2951 3.5245 3.5254 3.5258 3.9090 3.9102 3.9104 4.4472 4.4482 4.4488 

1 2.4194 2.4193 2.4194 2.4772 2.4772 2.4773 2.6508 2.6508 2.6509 2.9401 2.9401 2.9401 3.3451 3.3449 3.3452 

3 1.9249 1.9234 1.9234 1.9710 1.9693 1.9694 2.1091 2.1074 2.1074 2.3393 2.3373 2.3375 2.6615 2.6596 2.6595 

10 1.5799 1.5790 1.5790 1.6176 1.6169 1.6168 1.7310 1.7301 1.7301 1.9190 1.9190 1.9189 2.1843 2.1831 2.1831 

30 

0 5.2227 5.2228 5.2228 5.2366 5.2366 5.2367 5.2784 5.2786 5.2785 5.3480 5.3480 5.3481 5.4455 5.4456 5.4455 

0.3 3.1486 3.1473 3.1475 3.1570 3.1557 3.1559 3.1822 3.1809 3.1811 3.2241 3.2230 3.2230 3.2829 3.2815 3.2818 

1 2.3732 2.3731 2.3732 2.3795 2.3795 2.3795 2.3985 2.3984 2.3985 2.4301 2.4301 2.4302 2.4744 2.4744 2.4744 

3 1.8894 1.8892 1.8892 1.8944 1.8943 1.8943 1.9095 1.9094 1.9094 1.9347 1.9344 1.9346 1.9700 1.9698 1.9698 

10 1.5489 1.5488 1.5488 1.5530 1.5530 1.5529 1.5654 1.5653 1.5653 1.5860 1.5861 1.5860 1.6149 1.6149 1.6149 

100 

0 5.2096 5.2097 5.2096 5.2108 5.2110 5.2109 5.2146 5.2146 5.2146 5.2208 5.2210 5.2209 5.2296 5.2296 5.2296 

0.3 3.1408 3.1394 3.1395 3.1416 3.1404 3.1403 3.1438 3.1426 3.1425 3.1476 3.1465 3.1463 3.1529 3.1517 3.1515 

1 2.3679 2.3680 2.36794 2.3685 2.3686 2.3685 2.3702 2.3702 2.3702 2.3730 2.3731 2.3731 2.3770 2.3771 2.3770 

3 1.8853 1.8853 1.8854 1.8858 1.8858 1.8858 1.8871 1.8871 1.8872 1.8894 1.8893 1.8894 1.8926 1.8926 1.8926 

10 1.5453 1.5453 1.5454 1.5457 1.5457 1.5458 1.5468 1.5468 1.5469 1.5487 1.5487 1.5487 1.5513 1.5513 1.5513 
(a)

Taken from Larbi Chaht et al. (2015) 

 
Table 2 Dimensionless critical buckling load ( N ) of the FG nanobeam 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present TBT(a) SBT(a) Present 

10 

0 2.4056 2.4052 2.4057 2.3477 2.3473 2.3478 2.1895 2.1892 2.1896 1.9685 1.9682 1.9685 1.7247 1.7244 1.7248 

0.3 3.9921 3.9906 3.9906 3.8959 3.8945 3.8945 3.6335 3.6322 3.6321 3.2667 3.2655 3.2654 2.8621 2.8611 2.8611 

1 5.3084 5.3086 5.3084 5.1805 5.1808 5.1806 4.8315 4.8317 4.8316 4.3437 4.3440 4.3438 3.8059 3.8060 3.8059 

3 6.6720 6.6780 6.6776 6.5113 6.5172 6.5168 6.0727 6.0781 6.0778 5.4596 5.4645 5.4642 4.7835 4.7878 4.7876 

10 8.1289 8.1338 8.1337 7.9332 7.9379 7.9378 7.3987 7.4031 7.4030 6.6518 6.6558 6.6557 5.8281 5.8316 5.8315 

30 

0 2.4603 2.4604 2.4604 2.4536 2.4537 2.4537 2.4336 2.4337 2.4337 2.4011 2.4011 2.4011 2.3570 2.3570 2.3570 

0.3 4.0811 4.0826 4.0826 4.0699 4.0714 4.0714 4.0368 4.0383 4.0383 3.9828 3.9843 3.9843 3.9096 3.9110 3.9110 

1 5.4146 5.4147 5.4147 5.3998 5.3999 5.3999 5.3559 5.3560 5.3560 5.2843 5.2843 5.2843 5.1871 5.1872 5.1872 

3 6.8011 6.8018 6.8018 6.7825 6.7832 6.7832 6.7273 6.7280 6.7280 6.6373 6.6380 6.6380 6.5153 6.5160 6.5160 

10 8.2962 8.2968 8.2968 8.2735 8.2741 8.2741 8.2062 8.2068 8.2068 8.0964 8.0970 8.0970 7.9476 7.9481 7.9481 

100 

0 2.4667 2.4668 2.4668 2.4661 2.4662 2.4662 2.4643 2.4643 2.4643 2.4613 2.4613 2.4613 2.4570 2.4571 2.4571 

0.3 4.0915 4.0933 4.0933 4.0905 4.0923 4.0923 4.0874 4.0893 4.0893 4.0824 4.0842 4.0842 4.0754 4.0772 4.0772 

1 5.4270 5.4271 5.4271 5.4257 5.4257 5.4257 5.4217 5.4217 5.4217 5.4150 5.4150 5.4150 5.4057 5.4057 5.4057 

3 6.8161 6.8162 6.8162 6.8144 6.8145 6.8145 6.8094 6.8095 6.8095 6.8010 6.8011 6.8011 6.7893 6.7894 6.7894 

10 8.3157 8.3158 8.3158 8.3136 8.3137 8.3137 8.3075 8.3076 8.3076 8.2972 8.2973 8.2973 8.2830 8.2831 8.2831 

(a)
Taken from Larbi Chaht et al. (2015) 

 

 

Table 1 shows the nondimensional maximum deflections w  of a simply supported FG 

nanobeam subjected to uniform load. The calculated values are obtained using 100 terms in series 

in Eqs. (18) and (19). It should be noted that e0a=0 corresponds to local beam theory. The obtained  

701



 

 

 

 

 

 

Amine Zemri, Mohammed Sid Ahmed Houari, Abdelmoumen Anis Bousahla and Abdelouahed Tounsi 

 

Table 3 Dimensionless fundamental frequency ( ) of the FG nanobeam 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

EBT TBT Present EBT TBT Present EBT TBT Present EBT TBT Present EBT TBT Present 

10 

0 9.8293 9.7075 9.7075 9.7102 9.5899 9.5899 9.3774 9.2612 9.2612 8.8915 8.7813 8.7813 8.3228 8.2196 8.2197 

0.3 8.2694 8.1700 8.1709 8.1692 8.0711 8.0719 7.8892 7.7944 7.7952 7.4804 7.3905 7.3913 7.0019 6.9178 6.9185 

1 6.9650 6.8814 6.8814 6.8807 6.7981 6.7981 6.6448 6.5651 6.5651 6.3005 6.2249 6.2249 5.8975 5.8267 5.8267 

3 6.1575 6.0784 6.0755 6.0829 6.0048 6.0019 5.8744 5.7990 5.7962 5.5700 5.4985 5.4959 5.2137 5.1468 5.1443 

10 5.6544 5.5794 5.5768 5.5859 5.5118 5.5092 5.3945 5.3229 5.3204 5.1150 5.0470 5.0447 4.7878 4.7242 4.7221 

30 

0 9.8651 9.8511 9.8511 9.8516 9.8376 9.8376 9.8114 9.7975 9.7975 9.7456 9.7318 9.7318 9.6556 9.6419 9.6419 

0.3 8.3015 8.2901 8.2902 8.2902 8.2787 8.2788 8.2564 8.2450 8.2451 8.2010 8.1897 8.1898 8.1252 8.1140 8.1141 

1 6.9929 6.9832 6.9832 6.9833 6.9737 6.9737 6.9548 6.9453 6.9452 6.9082 6.8987 6.8987 6.8444 6.8349 6.8349 

3 6.1806 6.1715 6.1712 6.1722 6.1631 6.1627 6.1470 6.1380 6.1376 6.1058 6.0968 6.0964 6.0494 6.0405 6.0401 

10 5.6744 5.6658 5.6655 5.6667 5.6581 5.6578 5.6436 5.6350 5.6347 5.6057 5.5972 5.5969 5.5540 5.5455 5.5452 

100 

0 9.8692 9.8679 9.8679 9.8680 9.8667 9.8667 9.8643 9.8631 9.8631 9.8583 9.8570 9.8570 9.8498 9.8485 9.8485 

0.3 8.3052 8.3042 8.3042 8.3042 8.3031 8.3032 8.3011 8.3001 8.3001 8.2960 8.2950 8.2950 8.2889 8.2878 8.2878 

1 6.9961 6.9952 6.9952 6.9952 6.9943 6.9943 6.9926 6.9917 6.9917 6.9883 6.9874 6.9874 6.9823 6.9814 6.9814 

3 6.1833 6.1825 6.1824 6.1825 6.1817 6.1817 6.1802 6.1794 6.1794 6.1764 6.1756 6.1756 6.1711 6.1703 6.1703 

10 5.6767 5.6760 5.6759 5.6761 5.6753 5.6752 5.6740 5.6732 5.6731 5.6705 5.6697 5.6697 5.6656 5.6648 5.6648 

 

 

results are compared with those reported by Larbi Chaht et al. (2015) based on both nonlocal 

Timoshenko beam theory (TBT) and sinusoidal beam theory (SBT) for a wide range of nonlocal 

parameter (e0a), power law index (k) and length-to-depth ratio (L/h). It can be seen that the results 

of present theory are in excellent agreement with those predicted by both TBT and SBT (Larbi 

Chaht et al. 2015) for all values of nonlocal parameter, power law index and length-to-depth ratio. 

The deflections w  decrease as the power law index k increases. However, the increase of the 

nonlocal parameter leads to an increase of deflections. 

The nondimensional critical buckling loads are presented in Table 2. Present results are 

compared with results of Larbi Chaht et al. (2015) and good agreement is observed. According to 

this table buckling loads decrease with increasing nonlocal parameter (e0a). However, the increase 

of power law index k leads to an increase of critical buckling loads.  

The fundamental nondimensional frequencies for different nonlocal parameter e0a are 

presented in Table 3. The material properties of the FG nanobeam are according to those used by 

Eltaher et al. (2012). The present results are compared with those computed using both Euler-

Bernoulli beam theory (EBT) and TBT and an excellent agreement is observed with TBT. From 

this table, it can be seen that the fundamental nondimensional frequency is reduced with the 

increase of the nonlocal parameter and the power law index.  

In general, the effect of transverse shear deformations and the nonlocal parameter e0a is to 

increase the deflections and reduce the buckling loads as well as natural frequencies, as can be 

seen from the results presented in Tables 1-3. The increase of power law index leads to a decrease 

of both the dimensionless deflections and fundamental frequencies contrary to the dimensionless 

buckling load. This is due to the fact that an increase in the power law index yields an increase in 

the stiffness of the FG nanobeam. 
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Fig. 2 Effect of the aspect ratio on dimensionless deflection ( w ) for uniform load with k=1 and e0a=1 nm 
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Fig. 3 Effect of the aspect ratio on dimensionless buckling load ( N ) with k=1 and e0a=1 nm 

 

 

4.2 Parametric investigations 
 

The bending and buckling responses of FG nanobeam are studied here by assuming the 

material properties used by Larbi Chaht et al. (2015). However, the dynamic response of FG 

nanobeam is investigated by assuming the material properties used by Eltaher et al. (2012). 

Figs. 2 to 4 show the effect of the aspect ratio on static, buckling and dynamic responses of FG 

nanobeam, respectively. The local and nonlocal results are given for e0a=0 and e0a=1 nm, 

respectively. The power law index is assumed to be constant, k=1. It is observed from these figures 

that deflections predicted by the nonlocal theory are larger than those of the local results whereas  

w  

N  
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Fig. 4 Effect of the aspect ratio on dimensionless fundamental frequency ( ) with k=1 and e0a=1 nm 
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Fig. 5 Effect of nonlocal parameter on dimensionless deflection ( w ) for uniform load with k=1 

 

 

the nonlocal solution of both the buckling load and the fundamental frequency is smaller than the 

local one due to the small scale effects. This result indicates that the effect of nonlocal parameter 

softens the nanobeam. Furthermore, it can be observed that when the aspect ratio is small, the scale 

effects are significant. However, the scale effects on the deflection, buckling load and fundamental 

frequency will diminish with the ratio (i.e., L/h) increasing. It implies that the scale effects on the 

static, buckling and dynamic properties are not obvious for slender FG nanobeam but should be 

taken into account for short FG nanobeam.  

In order to shown the influences of the nonlocal parameter, the dimensionless deflections, 

critical buckling loads and the dimensionless fundamental frequencies computed using the present 

nonlocal shear deformation beam theory with different aspect ratios (L/h) are presented in Figs. 5  
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Fig. 6 Effect of nonlocal parameter on dimensionless buckling load ( N ) with k=1 
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Fig. 7 Effect of nonlocal parameter on dimensionless fundamental frequency ( ) with k=1 

 

 

to 7, respectively. The power law index is assumed to be constant, k=1. These figures show that 

the responses vary nonlinearly with the nonlocal parameter. It can be seen that the effect of 

nonlocal parameter e0a on deflections, critical buckling loads and the dimensionless fundamental 

frequencies of FG nanobeams is significant, especially at relatively higher aspect ratios. Therefore, 

it can be concluded that FG nanobeams responses are aspect ratio dependent based on nonlocal 

elasticity.  

The effect of the power law index on the dimensionless deflection, buckling load and 

fundamental frequency of FG nanobeam is presented in Figs. 8 to 10 for various values of the  

N  
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Fig. 8 Effect of the power law index on dimensionless deflection ( w ) for uniform load with L/h=10 
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Fig. 9 Effect of the power law index on dimensionless buckling load ( N ) with L/h=10 

 

 

nonlocal parameter with L/h=10. It can be observed that both the dimensionless deflections and 

fundamental frequencies decrease whereas the dimensionless buckling load increases as the power 

law index increases. It is noted that this observation is also seen in Tables 1 to3 and this is due to 

the fact that an increase in the power law index yields an increase in the stiffness of the FG 

nanobeam. 
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Fig. 10 Effect of the power law index on dimensionless fundamental frequency ( ) with L/h=10 

 

 

5. Conclusions 
 

A nonlocal shear deformation beam theory is used to study bending, buckling, and free 

vibration of FG nanobeams. The present model is capable of capturing both small scale and shear 

deformation effects of FG nanobeams, and does not require shear correction factors. Numerical 

examples show that the present theory gives solutions which are almost identical with those 

generated by TBT. Effect of nonlocal parameter, aspect ratio and various material compositions 

are investigated in detail. 
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