
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 54, No. 4 (2015) 665-691 

DOI: http://dx.doi.org/10.12989/sem.2015.54.4.665                                                                                       665 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

The comparative analysis of optimal designed web expanded 
beams via improved harmony search method 

 

Ferhat Erdal

 

 
Department of Civil Engineering, Akdeniz University, 07058, Antalya, Turkey 

 
(Received October 3, 2014, Revised January 19, 2015, Accepted February 13, 2015) 

 
Abstract.  This study aims at comparing the optimum design of two common types open web expanded 

beams: with hexagonal openings, also called castellated beams and beams with circular openings referred to 

as cellular beams. The minimum weights of both beams are taken as the objective functions while the design 

constraints are respectively implemented from The Steel Construction Institute Publication Numbers 5 and 

100. The design methods adopted in these publications are consistent with BS5950 parts. The formulation of 

the design problem considering the limitations of the above mentioned turns out to be a discrete 

programming problem. Improved harmony search algorithm is suggested to compare the optimum design of 

mentioned web-expanded beams to analysis the performance of both beams. The design algorithms based 

on the technique select the optimum Universal Beam sections, dimensional properties of hexagonal and 

circular holes and total number of openings along the beam as design variables. 
 

Keywords:  structural optimization; web-expanded beams; castellated beams; cellular beams; harmony 

search algorithm 

 
 
1. Introduction 
 

Web-expanded beams provide economical solution and pleasing appearance for large clear-

span structures. Decrease in story height reduces interior volume and exterior surface of building 

and these results in cost saving. Furthermore, in comparison with solid web and web opening 

beams (Redwood and Cho 1993), web-expanded beams can easily increase the shear capacities, 

vertical bending stiffness and capacities of structure. Open web-expanded beams can be fabricated 

where architectural or structural solutions dictate standard steel sections inappropriate. This is 

achieved by cutting the web of a hot rolled beam in a certain pattern and then welding two halves 

together to form a deeper section. As a result of these cutting and welding back processes, beams 

will have a deeper section and greater resistance to deflection than a comparable original solid 

section. Open web expanded beams are of two general types: castellated and cellular beams. 

Castellated beams are initially split along their length by a profiled single flame cut as shown in 

Fig. 1(a). Two halves of the beam are then separated and welded back together (Dougherty 1993). 
The fabrication process of cellular beams is slightly different from castellated beams (Lawson 

1988). These beams are manufactured by twice cutting an original rolled beam web in a half  
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(a) Basic process of castellated beam            (b) Basic process of cellular beam 

Fig. 1 Basic fabrication processes of web-expanded beams 
 
 

circular pattern along its centerline, then separating two tee parts and re-welding these two halves 
as shown in Fig. 1(b). Increasing the stiffness of original beam with no weight increase in the steel 
beam has been the purpose of the selection of these beams from designers. This study is concerned 
with the application of harmony search algorithm for the mentioned web-expanded beams. 
Harmony search method originated by Geem and Kim (2001) is based on the musical performance 
process that takes place when a musician searches for a better state of harmony. Jazz improvisation 
seeks musically pleasing harmony similar to the optimum design process which seeks to find the 
optimum solution. The pitch of each musical instrument determines the aesthetic quality, just as 
the objective function value is determined by the set of values assigned to each decision variable. 
The minimum weight design of castellated and cellular beams requires the selection of beams from 
standard steel UB section list such that both beams satisfy the strength and serviceability 
constraints. 

 
 
2. The design of cellular beams 
 

The design of a cellular beam has need for the selection of a rolled beam from which the 
cellular beam is to be produced, the selection of circular hole diameter and the selection of spacing 
between the centers of these circular holes or total number of holes in the beam as shown in Fig. 2.  

In consequence the number of the rolled beam sections in the standard steel sections tables, the 
circular opening diameter and the total number of holes are taken as design variables in the 
optimum design problem considered. For that purpose a design pool is prepared which consists of 
list of standard rolled beam sections, a list of various diameter sizes and a list of integer number 
starting from 2 to 40 for the total number of holes in a cellular beam. The optimum design problem 
formulated considering the design constraints explained in The Steel Construction Institute 
Publication titled “Design of Composite and Non-composite Cellular Beams” (Ward 1990) which 
are consistent with BS5950 (2000); Part 1 and 3 yields the following mathematical model. Find a 
integer design vector {I}={I1, I2, I3}

T where I1 is the sequence number for rolled beam section in 
the standard steel sections list, I2 is the sequence number for the hole diameter in the discrete set 
which contains various diameter values and I3 is the total number of holes for the cellular beam. 
Once I1 is selected, then the rolled steel beam designation becomes known and all cross sectional 
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Fig. 2 Design variables for a cellular beam 
 
 

properties of the beam becomes available for design. The corresponding values to I2 and I3 in the 
design sets makes the hole diameter and the total number of holes available for the cellular beam. 
Hence the design problem turns out to be 

Minimize the weight of the cellular beam 
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0360/max12  Lyg                                                      (13) 

where Wcel is the weight of the cellular beam, D0 is hole diameter, ρs is density of steel, A is total 
area of profile, NH is number of holes, HS is overall depth of cellular beam, L is span of cellular 
beam and S is distance between centers of holes. MU is maximum moment under loading, MP is 
plastic moment capacity Vmax sup is maximum shear at support VO max is maximum shear at opening, 
VH max is maximum horizontal shear, MA-A max is maximum moment at A-A section shown in Fig. 3, 
Mw max is maximum allowable web post moment, VTee is vertical shear on tee, P0, M are forces on 
the section and ymax is maximum deflection at the beam. Although the diameter of holes and 
spacing between their centers are left to designer to select, the geometric limitations given in 
constraints (2)-(4) are required to be observed. Eq. (6) represents overall beam flexural capacity 
limitation. Under applied load combinations the cellular beam should have sufficient flexural 
capacity to be able to resist the external loading.  

Eqs. (7)-(9) represents shear capacity checks. There are three shear checks in the design of 
cellular beams. The first one is shear check at the support. Eq. (7) makes sure that shear at the 
support does not exceed the shear capacity of the section. It is also necessary to check two more 
shear failure modes additionally. The first shear failure mode check Eq. (8) is the vertical shear 
capacity check of the beam. The sum of the shear capacities of the upper and lower tees gives the 
vertical shear capacity of the beam. The factored shear force in the beam should not exceed 
allowable vertical shear. The other Eq. (9) is the horizontal shear check. The horizontal shear is 
developed in the web post due the change in axial forces in the tee as shown in Fig. 3. The 
horizontal shear force in the web post of beam should not exceed allowable horizontal shear. The 
details of the computations of shear force and bending moment at a section of cellular beam is 
given in Erdal (2011). 

The flexural capacity of the upper and lower tees under bending is also critical in steel cellular 
beams. The transfer of shear forces across a single opening causes secondary bending stresses. 
Eqs. (10-12) are required for the flexural and buckling strength of web post. The details of the 
computation of the maximum moment at section A-A shown in Fig. 3. MA-A max and the maximum 
allowable web-post moment Mw max are also given in Erdal (2011). The last Eq. (13) is the 
serviceability requirement that the cellular beam has to satisfy. The design steps of cellular beams 
are summarized very briefly in the paper due to space limitations, yet the detailed implementation 
specifics of them can be found in Erdal et al. (2011). 
 
 
3. Design of castellated beams 
 

Since the 1950’s the high strength to weight ratio of castellated beams has been a desirable item 
to structural engineers in their efforts to design even lighter and more cost efficient steel structures. 
The design process of castellated beams is different from cellular beams as they do not have same 
geometrical properties. The strength of a castellated beam shall be determined based on the 
interaction of flexure and shear at the hexagonal opening. Design constraints include the 
displacement limitations, overall beam flexural capacity, beam shear capacity, overall beam 
buckling strength, web post flexure and buckling, vierendeel bending of upper and lower tees, 
local buckling of compression flange and practical restrictions between hexagonal hole dimensions 
and the spacing between openings. The design procedure given here is taken from “The Steel 
Construction Institute Publication No: 005 titled “Design of Castellated Beams”. The design 
methods are consistent with BS5950 part 1 and 3, and BS449. 
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Fig. 3 Horizontal shears in web post of a cellular beam 
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Fig. 4 Geometry and notation for castellated beam 

 
 

The standart profile geometry and notations used for castellated beams are shown in Fig. 4. The 
dimensions of the beam are described as following Eqs. (14)-(17). 

)cot2(5.0  cSa                                               (14) 

 cot cb                                                             (15) 

                                                         )(2 baS                                                          (16) 

                                                          chH fS                                                              (17) 

Where, S is spacing between centers of the holes, hf is the depth of original section, HS is the final 
depth of the castellated beam, a, b and c are the dimensions of the hexagonal holes. Design 
properties and dimensions of the castellated beam are considered as design constraints. 
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3.1 Optimum design problem of castellated beam 
 

The optimum design of a castellated beam requires the selection of the design variables called 
the sequence number of a universal beam sections in the standard steel sections tables, the 
hexagonal hole depth, angle between the edges and the total number of hexagonal holes. For this 
purpose a design pool is prepared which consists of list of standard UB beam sections starting 
from 254×102×28 to 914×419×388, a list of various hexagonal depth sizes, a list of angle values 
and a list of integer numbers starting from 2 to 40 for the total number of holes in a cellular beam. 
Find an integer design vector {I}={I1, I2, I3, I4}

T where I1 is the sequence number for UB beam 
section in the standard steel sections list, I2 is the sequence number for the hexagonal depth size in 
the discrete set which contains various depth values, I3 is the angle between the edges and I4 is the 
total number of holes for the castellated beam. Hence the design problem turns out to be 
minimizing the weight of the cellular beam 

                                      bacNLAW Hsscas                                               (18) 

Where Wcas denotes the weight of the castellated beam, ρs is the density of steel. A represents 
the total cross-sectional area of the universal beam section selected for the castellated beam, L is 
the span of the castellated beam, c is the depth of hexagonal holes and NH is the total number of 
holes in the castellated beam. The castellated beam is also subjected to number of behavioral 
restrictions as given in Eqs. (19)-(22). Depending on the values of hole diameters, spacing 
between the hole centers and the final depth of the beam determined; following geometrical 
constraints must be satisfied;  
 

3.2 Maximum stress capacity 
 

In the elastic design method the maximum stress in the beam can be expressed as following 
equations. Under applied load combinations maximum stress (σmax) in a castellated beam should 
not exceed an allowable stress capacity (σallow). 

)/(11 ttee hAK                           (19) 

                                                  )4/(2 teeZaK                           (20) 

)( 21max VKMK                   (21) 

   allow max                                                              (22) 

Where, Atee is area of tee, ht is distance between centroids of top and bottom tees, Ztee is section 
modulus of tee, K1 and K2 are behavioral coefficients about of beam. Stresses owing to bending 
and shear are shown in Fig. 5.   
 

3.3 Beam shear capacity 
 

It is necessary to check three shear failure modes in castellated beams. The first one is the web-
post shear capacity check of the beam. The factored shear force in the web-post should not exceed 
Pvy 
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)9.0(6.0 postwebofAreaMinimumpP yvy                (23) 

The other is the horizontal shear check. The horizontal shear is developed in the web post due 
the change in axial forces in the tee as also shown in Fig. 3. The horizontal shear capacity in the 
web post of beam should not exceed Pvh (Eq. (24)) 

)9.0(6.0 teeslowerandupperwebsofAreapP yvh             (24) 

Considering the vertical equilibrium and the rate of the variation of bending moment, the 
following equations can be written. 

                                                    ii VV 1                                                           (25) 
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S

xH
TT

S

MM

dx

dM
V S

ii
ii

i

)2(
)( 0

1
1

1





 


                               (27) 

For horizontal equilibrium 
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11 2 xH

S
VTTV
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iiih 

                                              (28) 

Where V is shear force, T is axial force and M is bending moment at the cross section of the 
cellular beam, S is distance between hexagonal hole centers and x0 is the distance between the 
axial force to flange. These are all shown in Fig. 3. 

 
3.4 Web buckling capacity of beam 

 
In this study the compression flange of the castellated beam is assumed to be sufficiently 

restrained through the floor system it is attached to. Hence the overall buckling strength of the 
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castellated beam is omitted. Experimental tests on castellated beams have shown that the web post 
flexural and buckling capacity is checked using the following equations according to BS5950 
method (Eqs. (29)-(31)). 

                                         
w

fs
r t

tH 3)2( 
                                                     (29) 

                                              cwsw PtHP                                               (30) 

                                                   wPV max                                                               (31) 

In these Eqs. (29)-(31); λr is slenderness ratio of web and Hs is overall depth of castellated 
beam. Pc value is obtained from Table 27(c) in BS 5950 according to λr and Py values.  
 

3.5 Vierendeel bending of upper and lower tees 
 

The flexural capacity of the upper and lower tees under Vierendeel bending is critical. The 
transfer of shear forces across a single opening causes secondary bending stresses. The Vierendeel 
bending stresses around the opening may be calculated using interaction curves. For a symmetrical 
section, the shear force is resisted by the upper and lower web sections in proportion to their depth 
squared. Therefore, the shear force is divided equally between upper and lower web sections. The 
interaction between Vierendeel bending moment and axial force for the critical section in the tee 
should be checked as following Eqs. (32)-(34). 
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P allow
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                                                                  (32) 
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                                                                 (33) 
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o

M

M

P

P                                                            (34) 

Where Po and M are the force and moment on the section due to external loading respectively. 
Pu is the maximum allowable shear force and Mp is the maximum allowable bending moment in 
the castellated steel beam. 
 

3.6 Deflection of castellated beam 
 

The limiting values for deflection of a beam under applied load combinations are given in 
BS5950, Part 1. According to these limitations the maximum deflection of a castellated beam 
should not exceed span/360. The deflection of castellated beam is computed using the virtual work 
method which is explained in detail in Knowles (1980). Fig. 5 shows points of inflection at 
sections i and i+1.  

Shear force under applied load combination is distributed equally tees, the axial and horizontal 
forces in the upper and lower tee are given by 
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Where; h is distance between the centre of upper and lower tees and S is distance between 
centrals of holes. The deflection at each point is found by applying a unit load at that point. 
Internal forces under a unit load are given by 2/iV , iN , iT . 

Deflection due to bending moment in tee 
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Deflection due to bending moment in web post of beam 
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Deflection due to axial force in tee 
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Deflection due to shear in tee 
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Deflection due to shear in web post 
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Where E is elasticity modulus of steel, IT is total moment of inertia of beam, G is shear 
modulus and X is the web post form factor. The total deflection of a single opening under applied 
load (Eq. (41)) is obtained by summing the deflections computed in Eqs. (36)-(40). On the other 
hand, the deflection of the castellated beam is calculated by multiplying the deflection of each 
opening by the total number of openings in the beam as given from Toprac and Cooke (1980).  

wtatwpmtT yyyyyy                                                (41) 

 
 
4. Metaheuristic search techniques in optimization  
 

The solution methods available among the mathematical programming techniques to obtain 
optimum results to discrete programming problems are not very efficient for practical use. 
Fortunately, the emergence of innovative stochastic search techniques that are based upon the 
mimicking of paradigms found in nature has changed this situation altogether. The basic idea 
behind search techniques is to simulate the natural phenomena, such as survival of the fittest in 
genetic algorithms (Goldberg 1989), flock migration in swarm intelligence (Kennedy et al. 2001), 
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shortest path to food source in ant colony optimization (Dorigo and Stützle 2004 ), the cooling 
process of molten metals through annealing into a numerical algorithm (Kirkpatrick et al. 1983), 
looking for a prey in hunting search algorithm (Oftadeh et al. 2010), accelerations of charge 
particles in charged system search (Kaveh and Talatahari 2010) and best harmony of instruments 
in harmony search technique (Geem and Lee 2004, 2005) that is automated by nature to achieve 
the task of optimization of its own. The design algorithms developed using these techniques are 
very effective for global search owing to their capability of the finding optimum solutions in the 
search space at an affordable time. An improved version of harmony search algorithm (IHS) is 
proposed in this paper as an efficient algorithm for solving web-expanded beams optimization 
problems. The robustness of the algorithm lies in its capability to implement the aforementioned 
HS parameters dynamically and update them during the search for the most efficient optimization 
process. 

 
4.1 Improved harmony search method 

 
Harmony search (HS) algorithm is one of the recent editions to such stochastic search 

techniques founded on musically pleasing simulation to solve combinatorial optimization 
problems. This approach utilizes the experience of a musician for searching pleasing harmony 
similar to the optimum design process which seeks to find optimum solution. The pitch of each 
instrument determines the aesthetic quality; in just the same way as the objective function value is 
determined by the set of values assigned to each decision variable. Although HS method has been 
successfully applied to different practical optimization problems since its origination, the 
applications of the method in structural optimization are still immature and require a substantial 
amount of further research. Up until this time only a limited number of publications in the 
literature are carried out where the application of the technique in different problem areas 
encountered in the field. Amongst these restricted studies that look at the effectiveness of the HS 
method, Lee and Geem (2004) used the technique for minimum weight design of planar and space 
truss structures. In 2009, Saka et al. (2009) and Değertekin (2009) focused to examine the 
optimum design of steel frames formulated according to BS5950 and LRFD-AISC design codes 
with HS, respectively. Later, the success of the method in optimum W-sections for the transverse 
and longitudinal beams of grillage systems was investigated in Erdal et al. (2009, 2010, 2013). 
Mainly small scale applications that consist of a small number of design variables were used in 
these aforementioned studies and all of them were concluded that HS algorithm was a very rapid 
and effective method for optimum design of such systems. Conversely, Hasançebi et al. (2009, 
2010) evinced a comprehensive performance evaluation of the technique in the optimum design of 
real size trusses and frames where the design problem was formulated according to ASD-AISC 
(1989) in evinced a completely opposite outlook. In comparison to those of other metaheuristic 
techniques, the performance of HS algorithm was qualified substandard with its slow convergence 
rate and unreliable search efficiency. An improvement of the technique was recommended for its 
application to new structural optimization problems, which in fact led to the motivation of the 
present study.  

In the classical HS method the parameters harmony memory considering rate (η) and pitch 
adjusting rate (ρ) are selected prior to the application of the method and they are kept constant 
until the end of the iterations. The numerical applications have shown that the selection of values 
for η and ρ is problem dependent and the initial values selected affect the performance of the 
algorithm. Consequently, in order to determine the appropriate values of the harmony search 

674



 
 
 
 
 
 

The comparative analysis of optimal designed web expanded beams... 

parameters it is necessary to solve the optimization problem several times with different values 
and select the solution with minimum weight. It is apparent that such application devaluates the 
efficiency of the algorithm. In order to overcome this discrepancy, numbers of improvements are 
suggested in the literature. First, Mahdavi et al. (2007) have proposed an improved harmony 
search algorithm that uses variable ρ and bw  in improvisation step where bw is an arbitrary 
distance bandwidth. Then, Omran and Mahdavi (2008) have used the concepts from swarm 
intelligence to enhance the performance of HS method. Later, Taherinejad (2009) has proposed a 
new function which could help the algorithm to explore vast search space while focusing well on 
local and global optimums.  And then, Hasançebi et al. (2011) suggested adaptive harmony search 
method where η and ρ are adjusted by the algorithm itself automatically using probabilistic 
sampling of control parameters. Hence the algorithm tunes these parameters to advantageous 
values online during search. Eventually, Carbas and Saka (2012, 2013) have used the improved 
version of algorithm for latticed steel domes and some engineering problems, respectively. In the 
present study, different strategies are proposed for η and ρ to compare the minimum weight design 
of steel castellated beams and cellular beams. ρ is updated using the concept suggested by Coelho 
and Bernert (2009). Before initiating the design process, a set of steel beam sections selected from 
an available UB profile list are collected in a design pool. Each steel section is assigned a sequence 
number that varies between 1 to total number of sections (Nsec) in the list. During optimization 
process selection of sections for design variables is carried out using these numbers. The basic 
components of the improved harmony search algorithm can now be outlined as follows.  
 

4.1.1 Initialization of a parameter set 
First a harmony search related optimization parameter set is specified. This parameter set 

consists of four entities known as a harmony memory size (μ), a harmony memory considering rate 
(η), a pitch adjusting rate (ρ) and a maximum search number (NS). Out of these four parameters, η 
and ρ are dynamic parameters that vary from one solution vector to another, and are set to initial 
values of η(0) and ρ(0) for all the solution vectors in the initial harmony memory matrix. It is 
worthwhile to mention that in the standard harmony search algorithm these parameters are treated 
as static quantities, and hence they are assigned to suitable values chosen within their 
recommended ranges of η∈[0.70, 0.95] and ρ∈[0.20, 0.50]. 

 
4.1.2 Initialization of harmony memory matrix  
Harmony memory matrix H is generated randomly initialized next. This matrix represents a 

design population for the solution of a problem under consideration, and incorporates a specified 
number of solutions referred to as harmony size (μ). Each solution vector (Ii) consists of Nd design 
variables integer number between 1 to Ns (number of values) selected randomly each of which 
corresponds sequence number of design variables in the design pool, and is represented in a 
separate row of the matrix; consequently the size of H is (μ×Nd). j

iI  is the sequence number of the 

ith design variable in the jth randomly selected feasible solution.  
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4.1.3 Evaluation of harmony memory matrix  
(μ) solutions shown in Eq. (42) are then analyzed, and their objective function values are 

calculated. The solutions evaluated are sorted in the matrix in the increasing order of objective 
function values, that is ϕ(I1)≤ϕ(I2)≤…≤ ϕ(Iμ). 
 

4.1.4 Improvising a new harmony  
Upon sampling of a new set of values for parameters, the new solution vector 

 nvIII  ,..,, 21
'I is generated. In the harmony memory consideration, each design variable is 

selected at random from either harmony memory matrix or the entire discrete set. The probability 
that a design variable is selected from the harmony memory is controlled by a parameter called 
harmony memory considering rate (η). To execute this probability, a random number ri is 
generated between 0 and 1 for each variable Ii. If ri is smaller than or equal to η, the variable is 
chosen from harmony memory in which case it is assigned any value from the i-th column of the 
H, representing the value set of variable in μ solutions of the matrix (Eq. (43)). If ri>η, a random 
value is assigned to the variable from the entire discrete set. 
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If a design variable attains its value from harmony memory, it is checked whether this value 
should be pitch-adjusted or not. Pith adjustment simply means sampling the variable’s one of the 
neighboring values, obtained by adding or subtracting one from its current value. Similar to η 
parameter, it is operated with a probability known as pitch adjustment rate (ρ), Eq. (43).  If not 
activated by ρ, the value of the variable does not change.     
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4.1.4.1 Updating parameters  

 
                                        )( I  )(MIN  + ( )(MAX − )(MIN ) )( IDeg                                     (45) 

where, ρ(I) is the pitch adjusting rate for generation I, ρ(MIN) is the minimum adjusting rate, ρ(MAX) is 
the maximum adjusting rate, and i is the generation number. The Deg(I) is updated according to the 
following expression 

                                      )( IDeg  = 
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


                                       (46) 

where, HCOSTMAX(I) and HCOSTMIN(I) are the maximum and minimum function objective values in 
generation I, respectively; HCOSTMEAN is the mean of objective function value of the harmony 
memory matrix. The improvisation of η is carried out using the following expression 

)( I )(MAX  −( )(MAX  − )(MIN ) )( IDeg                                     (47) 

where, η(I) is the harmony memory considering rate for generation I, η(MAX) is the maximum 
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considering rate, η(MIN) is the minimum considering rate, and I is the generation number. 
 

4.1.5 Adaptive constraint handling  
Once the new harmony vector is obtained using the above-mentioned rules, it is then checked 

whether it violates problem constraints. If the new harmony vector is severely infeasible, it is 
discarded. If it is slightly infeasible, it is included in the harmony memory matrix. In this way the 
violated harmony vector which may be infeasible slightly in one or more constraints is used as a 
base in the pitch adjustment operation to provide a new harmony vector that may be feasible. This 
is carried out by using larger error values initially for the acceptability of the new design vectors 
and then this value is adjusted during the design cycles according to the expression given below 

                                i
N

ErEr
EriEr

S

MINMAX
MAX 




)(
)(                                         (48) 

where, Er(i) is the error value in iteration i, ErMAX and ErMIN are the maximum and the minimum 
errors defined in the algorithm respectively, Ns is the maximum iteration number until which 
tolerance minimization procedure continues. Eq. (48) provides larger error values in the beginning 
of the design cycles and quite small error values towards the final design cycles. Hence when the 
maximum design cycles are reached the acceptable design vectors remain in the harmony memory 
matrix and the ones which do not satisfy one or more design constraints smaller than the error 
tolerance would be pushed out during the design iterations. 
 

4.1.6 Update of Harmony matrix  
After generating the new harmony vector, its objective function value is calculated. If this value 

is better than that of the worst harmony vector in the harmony memory, it is then included in the 
matrix while the worst one is discarded out of the matrix. The updated harmony memory matrix is 
then sorted in ascending order of the objective function value.  

 
4.1.7 Termination   
Steps 3 and 4 are repeated until a pre-assigned maximum number of cycles Ncyc is reached. The 

number is selected large enough such that within this number no further improvement is observed 
in the objective function. 
 
 
5. Design examples 
 

In the first part of numerical examples, a benchmark problem (welded beam design) chosen 
from the literature is studied to verify the effectiveness of the proposed solution algorithms 
employed for the HS techniques, as well as to check the implementation with those of others in the 
literature. The optimum solutions located by the algorithms and the number of structural analyses 
required to obtain these solutions are reported in Table 1.  

In the second part, two structural design examples selected to minimize and compare the 
weights of optimally designed steel castellated and cellular beams. Design examples are also used 
to compare the performance of improved harmony search (IHS) optimization software over the 
standard one (HS) as well as to demonstrate its improvisation ability under different sets of initial 
values chosen for the control parameters. The solution algorithms of IHS ve HS algorithms for  
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Fig. 6 Welded beam design 

 
 

these web expanded beams are computerized in four optimization software that are both compiled 
in FORTRAN source code. It is common practice to use universal beam (UB) sections. Among the 
steel section list of these UB sections starting from 254×102×28 to 914×419×388 are chosen to 
constitute the discrete set consisting of 64 steel sections from which the design algorithm selects 
the sectional designations for the beam members. In both design examples, the following material 
properties of the steel are used: modulus of elasticity (E)=205 kN/mm2 and Grade 50 steel is 
adopted for the steel which has the design strength (Py)=355 MPa. 
 

5.1 Benchmark problem 
 
A rectangular beam shown in Fig. 6 has been frequently used in the literature for testing and 

comparing various optimization techniques. The optimization problem involves four design 
variables: the thickness of the weld h=x1, the length of the welded joint l=x2, the width of the 
beam t=x3 and the thickness of the beam b=x4. The values of x1 and x2 are coded with integer 
multiplies of 0065.0 .�Although the formulation of the objective function (Eq. (49)) is the same, 
this benchmark problem comes with two different forms in the literature according to the 
behavioral constraints, side constraints and the ranges of mentioned design variables.�In the 
present study, this rectangular beam is designed as a cantilever beam to carry a certain load with 
minimum overall cost of fabrication. There are eleven constrains (second form), which involve 
shear stress (τ), bending stress in the beam (σ), buckling load on the bar (Pc), deflection of the 
beam (δ) and side constraints (Mahdavi et al. 2007). The welded beam problem is stated as 
following Eq. (49). 

Minimize 

           )0.14(04811.010471.1)( 2432
2

1 xxxxxxf                                 (49) 

In the first form, f(x) is subjected to the following behavioral and side constraints.  
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Shear stress        →      0)()( max1   xxg                                   (50) 

Bending stress   →      0)()( max2   xxg                                  (51) 

End deflection   →       0)()( max3   xxg                                  (52) 

Buckling load    →       0)()(4  xPPxg c                                    (53) 

Side constraints →       0)( 415  xxxg                                      (54) 

Side constraints →      0125.0)( 16  xxg                                     (55) 

Side constraints →     05)0.14(04811.010471.0)( 243
2

17  xxxxxg              (56) 

In the second form, f(x) is subjected to the following behavioral and side constraints. 

Shear stress        →      0)()( max
'
1  xxg                                      (57) 

Bending stress   →      0)()( max
'
2  xxg                                     (58) 

End deflection   →       0)(25.0)('
3  xxg                                     (59) 

Buckling load    →       0)()('
4  PxPxg c                                      (60) 

Side constraint  →       0)( 14
'
5  xxxg                                        (61) 
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Table 1 Optimum solutions of welded beam design 

Design Variables IHS SQP FA GAs EA PSO 
x1(h) 0.203907 0.20572 0.2015 0.20880 0.1829 N.A. 
x2(l) 3.499898 3.47060 3.5620 3.42050 4.0483 N.A. 
x3(t)  9.063898 9.03682 9.0414 8.99750 9.3666 N.A. 
x4(b) 0.205594 0.20572 0.2057 0.21000 0.2059 N.A. 
f(x) 1.729661 1.7248 1.73121 1.74830 1.82455 1.92199 

 
 

In the first form, the ranges for the design variables are given as follows 

                                 
0.21.0,101.0

101.0,0.21.0

43
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                                              (68) 

In the second form, the ranges for the design variables are given as follows 

                                 
0.51.0,10

1.0,0.5125.0
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xx
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                                                (69) 

To apply IHS algorithm to the both form of the welded beam, the four design variables x1, x2, x3 
and x4 were assumed to be discrete variables, and their possible values for each form have shown 
above. The IHS algorithm does not require the initialization of search parameters. The values of 
control parameters for harmony memory considering rate (η) and pitch-adjusting rate (ρ) are 
dynamically adjusted by the proposed algorithm during optimization cycles by the use of Eqs. 
(43)-(45). The values of ηMAX and ρMAX are taken as 0.99 and the 0.01 is assigned to ηMIN and ρMIN. 
The maximum number of searches is taken as 30000 in the design case.  

In the literature, a plenty of different solutions of the welded beam benchmark design problem 
ranging between 1.73121 and 1.92199 are reported with different numerical techniques according 
to the different design constraints and design variables. Some of them are as follows: 1.92199 by 
Parsopoulos and Vrahatis with a unified particle swarm optimization (PSO), 1.82455 by Coello 
with evolutionary multi objective optimization technique (EA), 1.74830 by Coello with self-
adaptive penalty approach for genetic algorithms (GAs), 1.73121 by Gandomi et al. with firefly 
algorithm (FA) and Fesanghary et al. with hybridizing harmony search algorithm with sequential 
quadratic programming (SQP). All the mentioned results are compared against those obtained 
from IHS algorithm. The optimum solutions and comparison of results for the welded beam design 
problem are also tabulated with more detail in Table 1. This table also demonstrates that the 
proposed algorithm is performed very well locating an optimum value for the objective function 
with 1.729661. Consequently, the IHS technique is recommended for its application to 
optimization of the two different web expanded beam problems.  
 

5.2 5-m span intermediate steel beam 
 
A simply supported beam shown in Fig. 7 is selected as first structural design example in order 

to compare the minimum weight of optimally designed steel castellated and cellular beams. The 
beam has a span of 5 m and is subjected to 5 kN/m dead load including its own weight. Two 
concentrated live loads with 40 kN weight also act at the beam as shown in the same figure. The  
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Fig. 7 Loading of 5-m simply supported beam 

 
 

maximum displacement of the beam under these loads is restricted to 14 mm while other design 
constraints are implemented from BS5950 as explained in Section 1 and 3.  

Considering the stochastic nature of HS technique, castellated and cellular beams with 5m span 
are separately designed with both improved and standard algorithms. The parameterization of the 
technique is conducted in line with the recommendations of the former studies (Lee and Geem, 
Saka, Değertekin, Erdal et al.), and thus the following parameter value set is used in solving the 
problem: a harmony memory size of μ=50, a maximum search number of Ns=5000 are kept the 
same for both improved and standard HS algorithms. A harmony memory considering rate of 
η=0.90, and a pitch adjusting rate of ρ=0.30. It is important to note that these values of control 
parameters for η and ρ remain unchanged in the standard HS algorithm. Contrary to standard HS 
method, the values of ηMAX and ρMAX parameters in the IHS algorithm are taken as 0.99 and the 
0.01 is assigned to ηMIN and ρMIN. These values are dynamically updated by the proposed algorithm 
during the optimization process. 

The optimum results obtained by improved and standard versions of technique as well as the 
sectional designations and geometric dimensions for both beams are given in Table 2. It is 
apparent from the same table that improved HS has produced the lightest beam for steel cellular 
beams that has the minimum weight of 133.71 kg. The controlling interaction ratios of cellular 
beam are 0.99 for vierendeel bending, 0.78 for web-post buckling and 0.62 for horizontal shear. 
The next lightest design is obtained by classical version of HS for again steel cellular beams which 
is 144.86 kg; 8.34% heavier than the one found by IHS. The third lightest design is attained by 
IHS algorithm for castellated beam which is 151.59 kg; 13.38% heavier than the overall lightest 
cellular beam. The controlling interaction ratios of castellated beam are 0.99 for vierendeel 
bending, 0.49 for web-post buckling and 0.46 for horizontal shear. Finally, classical HS algorithm 
has accomplished the heaviest design with castellated beam which is 159.82 kg; 19.53% heavier 
for same 5 m span. 

These results demonstrate that steel cellular beam produces less weight than castellated beam in 
all circumstances and notwithstanding the performances of search techniques for 5-m span. It is 

 
 

Table 2 Optimum solutions of 5-m simply supported beam 

 CASTELLATED BEAM CELLULAR BEAM 

 
Section 
Design 
(UB) 

Depth 
of 

Hole 

Number 
of 

Holes 

Max. 
Strength

Ratio

Min. 
Weight

(kg)

Section 
Design 
(UB) 

Diameter
of 

Hole 

Number 
of 

Holes 

Max. 
Strength 

Ratio 

Min. 
Weight

(kg) 
IHS 254×146×31 218 14 0.99 151.59 254×102×28 239 15 0.99 133.71

HS 305×102×33 202 15 0.97 159.82 254×146×31 296 13 0.93 144.86
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Fig. 8 Design history graph of 5-m simply supported beam 
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Fig. 9 Optimum profile section of the 5-m cellular beam 

 
 
also shown that the proposed algorithm improves the performance of HS technique and it renders 
unnecessary the initial selection of the harmony search parameters. Consequently, the improved 
version of HS technique is recommended for its application to optimization of 12-m span 
intermediate steel beam problem presented in the next design example. The design history curves 
for improved and standard versions of the technique for castellated and cellular beams are shown 
in Fig. 8. This figure reveals the fact that IHS method has the faster convergence rate than classical 
HS algorithm for both beams.  

Within 5,000 analyses the proposed technique approaches a design in the vicinity of the 
optimum results. The maximum values of vierendeel bending moment ratio are 0.99 and 0.93 for 
cellular beams and 0.99 and 0.97 for castellated beams which are almost upper bound for both 
beams. This clearly reveals the fact that, in both beams, vierendeel bending moment constraints are 
dominant in the design problem. The IHS design algorithm presented selects 254×102×28 UB  
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Fig. 10 Optimum profile section of the 5-m castellated beam 
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Fig. 11 Loading of 12-m intermediate steel beam 

 
Table 3 Optimum solutions of 12-m span intermediate steel beam 

Improved Harmony Search Algorithm 

 
Section 

Design (UB) 
Diameter/Depth

of  Hole 
Number of

Holes 
Value of 

Angle 
Max.Strength 

Ratio 
Minimum 

Weight (kg)
Cellular Beam 356×127×39 366 25 - 0.99 436.7 

Castellated Beam 
(Varying Angle) 

356×127×39 359 24 57 0.98 457.2 

Castellated Beam 
(Fixed Angle) 

356×171×45 341 26 60 0.94 528.4 

 
 

section for the cellular root beam and 254×146×31 UB section for the castellated root beam shown 
in Table 2. The optimum cellular beam should be produced such that it should have 15 circular 
holes each having 239 mm diameter. The optimum shape of the cellular beam obtained from HS 
method is demonstrated in Fig. 9. On the other hand, the optimum castellated beam should be 
produced such that it should have 14 hexagonal holes each having 218 mm depth. The optimum 
shape of the castellated beam obtained from HS method is demonstrated in Fig. 10. 
 

5.3 12-m span intermediate steel beam 
 
A typical 12-m span intermediate steel beam shown in Fig. 11 is considered as a second 

structural design example in order to compare the minimum weight of optimally designed steel  
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Fig. 12 Design history graph of 12-m intermediate steel beam 
 
 

castellated and cellular beams. The beam is subjected to the uniform dead load of 2.5 kN/m2 
including concrete slab, steel deck, reinforcement and steel beam and a live load of 1.5 kN/m2 in 
addition its own dead weight. The upper flange of the beam is laterally supported by the floor 
system that it supports. Beam spacing is 3 m. The maximum displacement of the beam under the 
live-load is restricted to be less than L/360, where L is the length of the beam.  

This design example is separately solved as castellated and cellular beams using improved 
harmony search algorithm. The size of the maximum number of generations is kept the same for 
both beams. The values of ηMAX and ρMAX parameters in the IHS algorithm are taken as 0.99 and 
the 0.01 is assigned to ηMIN and ρMIN. These values are dynamically updated by the proposed 
algorithm during the optimization process as a feature of the proposed technique. It is apparent 
from the Table 3 that IHS algorithm produces a least weight for a cellular beam which is equal to 
436.7 kg. IHS design algorithm presented selects 356×127×39 UB section for cellular beam. The 
optimum cellular beam shown in Fig. 12 should be produced such that it should have 25 circular 
holes each having 366 mm diameter. The controlling interaction ratios of steel cellular beam are 
0.99 for bending moment, 0.78 for web-post buckling and 0.62 for horizontal shear.  

Changing the angle of hexagonal hole in the optimum design of castellated beams has a 
considerable effect on the minimum weight and it is more appropriate to consider parameters as an 
additional design variable if a better design is looked for. Besides the sequence number of a 
universal beam sections, the depth of hexagonal hole and the total number of hexagonal holes, 
angle between the edges which are varied from 50° to 70° is added as fourth design variable to 
demonstrate this effect and design of castellated beam. The optimum castellated beam shown in 
Fig. 13 is obtained by considering four design variables. It is apparent from Table 3 that the 
optimum design has the minimum weight of 457.2 kg which selects 356×127×39 UB section for 
the root beam, total of 24 holes in the beam each having 359 mm depth and 57° angle of each  
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Fig. 14 One-third of optimum cellular beam with 12-m span 
 
 

hexagonal hole. The controlling interaction ratios of steel cellular beam are 0.98 for bending 
moment, 0.81 for web-post buckling and 0.65 for horizontal shear. When the optimum design 
problem is carried out considering only fixed angle (θ=60°), the minimum weight of the castellated 
beam turns out to be 528.4 kg; 15.57% heavier than the castellated beam with varying angle. IHS 
algorithm selects 356×127×39 UB section and the optimum castellated beam should be produced 
such that it should have 26 hexagonal holes each having 341 mm depth. The controlling 
interaction ratios of steel cellular beam are 0.94 for bending moment, 0.80 for web-post buckling 
and 0.53 for horizontal shear. These results clearly reveal the fact that, in both beams, bending 
moment constraints are dominant in this particular problem. The design history curve for cellular 
beam, castellated beam with fixed angle and castellated beam with varying angle is shown in Fig. 
12. It is apparent from the same figure that IHS method performs the nearly same convergence rate 
and produces same steel sections for steel cellular beam and castellated beam with varying angle. 
Inasmuch as cellular beams are fabricated by cutting the beam using a double half circular pass 
and wasting amount of material in this double cutting process, IHS method finds again the better 
solution for steel cellular beam in this design problem. The optimum shapes of the cellular beam 
and castellated beam with varying angle obtained from IHS method is demonstrated in Fig. 13 and 
Fig. 14, respectively. 
 
 
6. Effect of random number sequences in IHS algorithm 
 

Since stochastic methods are based on eventual random decisions in operators, it is required to 
carry out a series of independent runs for castellated and cellular beam design examples. Random 
number sequences always produce same number for different runs of the programs provided that 
the same seed value is used in each run. If the subroutine SEED is not called before the first call to 
subroutine RANDOM in FORTRAN, RANDOM always begins a seed value of one. However the 
use of different seed values in each run generates different random numbers.  Since the IHS 
method also employs random number sequences in making decisions, the final result attained 
naturally is dependent upon the random numbers generated within each search.  

To investigate the effect of random number sequences generated during the design procedure to 
the final result obtained by IHS technique, two design examples for castellated and cellular beam  
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Fig. 15 Effect of Seed Values for 5-m span beam with 500 iterations 

 

 
Fig. 16 Effect of Seed Values for 5-m span beam with 5000 iterations 

 
 

are re-designed several times by using different seed value in  each run. Firstly, 5-meter 
intermediate steel beam is optimized 50 times by running the program with different seed values. 
In the first run seed value of 1 is given in the beginning of the FORTRAN program, in the second 
run the seed value of 2 is assumed and in the 50th run the seed value of 50 is adopted. These runs 
are collected in two groups in order to investigate the effect of the initially selected maximum 
number of iterations in the IHS technique and variation of the seed value within that group of runs. 
In the first group of runs the maximum number of iterations is taken as 500 and seed values are 
changed from 1 to 50 in the each separate runs. In the second group of runs this number is taken as 
5000. The minimum weights obtained in each run for the 5-meter intermediate steel beam are 
shown in Fig. 15 and Fig. 16 depending on the maximum number of iterations adopted in both 
group of run. It is apparent from the comparison of these two figures that the use of different seed  
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Fig. 17 Effect of Seed Values for 12-m span beam with 1000 iterations 

 

 
Fig. 18 Effect of Seed Values for 12-m span beam with 10000 iterations 

 
 
values affects the minimum weight obtained in each run though some of the runs produce the same 
minimum weight. However this effect becomes less if the maximum number of iterations in each 
run is selected as a large number.  

The same procedure is applied to the last design example of 12-meter span intermediate steel 
beam system. Firstly, this beam is considered and 100 runs are carried out each of which having a 
different seed value. In the first group of runs the maximum number of iterations is taken as 1000 
and seed values are changed from 1 to 100 in the each separate runs. In the second group of runs 
this number is taken as 10000. The variation of the minimum weights with the seed values are 
given in Fig. 17 and Fig. 18, respectively. Once more it is apparent that the seed value adopted in 
each run has an effect on the final result obtained. It is clear from these figures that the use of 
different seed values strongly affects the minimum weight obtained. These figures also exhibit step 
variations between the minimum weight values attained in each run and the seed value selected in 
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that particular run though the same final results are obtained with some of the different seed 
values. The situation becomes better when the maximum number of iterations in each run is 
increased to 10000. Consequently it can be concluded that the random number selection affects the 
final result obtained in IHS method. However use of large number of iterations in each harmony 
search run improves the performance of the harmony search method.  
 
 
7. Conclusions 
 

The present research is the first study to cover a comparison of the optimally designed 
castellated and cellular beams, as well as a comparison of the performance of the adaptive and 
classical versions of harmony search algorithm during the optimization process of mentioned web 
expanded beams. An improved version of harmony search algorithm is also developed in this 
paper as a robust method for effectively dealing with a rectangular welded beam problem. Unlike 
the classical algorithm where the update parameters, harmony memory consideration rate and pitch 
adjusting rate, of the technique are assigned to constant values throughout the search, the proposed 
algorithm benefits from updating these control parameters to advantageous values online during 
the iteration process. The summary of the results obtained by the application of seven search 
techniques for the welded beam design problem is tabulated in Table 1. This table also 
demonstrates that the proposed IHS algorithm is performed very well locating an optimum value 
for the objective function with 1.729664. Noticing the fact that the differences between the 
minimum values of objective function attained by IHS and CHS in the optimum designs of welded 
beam is 37.64%. It can be also concluded that IHS approach is the most effective algorithm 
amongst the seven techniques. Consequently, the IHS technique is recommended for its 
application to optimization of the two different web expanded beam problems. Then, the efficiency 
of the improved harmony search algorithm in structural optimization is numerically examined 
using two examples on size optimum design of castellated and cellular beams. The design history 
graph generated for the 5-meter simply supported beam problem using improved and classic 
harmony search algorithms clearly evince a significant performance improvement achieved with 
the former. Moreover, a comparison of optimally designed steel cellular and castellated beams 
attained with these techniques in Table 2 confirms that cellular beam produces less weight than 
castellated beam. Fig. 8 reveals the fact that IHS method has the faster convergence rate than 
classical HS algorithm for both beam types. In the last design example, Table 3 tabulated for the 
12-meter intermediate steel beam demonstrates that castellated beam with varying angle produces 
15.57% lighter weight than the castellated beam with fixed angle. More exactly, changing the 
angle of hexagonal hole in the optimum design of steel castellated beams has a considerable effect 
on the optimum design and it is more appropriate to consider this parameter as an additional 
design variable if a better design is looked for. It is apparent from the same table that IHS method 
finds same sections for steel cellular beam and castellated beam with varying angle but the 
proposed method finds the less weight for steel cellular beam due to the two cutting process and 
waste parts between the half circles. The results obtained by the application of improved harmony 
search algorithms demonstrate that steel cellular beams produce a more cost-effective solution 
than castellated beams as a result of their flexible geometry and they have several different 
diameters of circular hole are possible without change in the fabrication process and therefore at 
no extra cost for the same beam section. Similarly, the effect of random number generation to the 
final result in the case of IHS algorithm is also investigated by running the optimum design 
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program with different seed values. The minimum weights obtained in each run with different seed 
value for the both beams.  
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Appendix: Classification of web-expanded beams 
 

The computation of the nominal moment strength Mp of a laterally supported beam necessitates 
first the classification of the open web-expanded beam. The beam can be plastic, compact, non-
compact or slender. In compact sections, local buckling of the compression flange and the web 
does not occur before the plastic hinge develops in the cross section. On the other hand in compact 
sections, the local buckling of compression flange or web may occur after the first yield is reacted 
at the outer fiber of the flanges. Classification I-shaped sections are carried out according to Table 
4 that is given in BS5950.  
 
 
Table 4 Limiting width to thickness ratios 

Type of Element Plastic Compact Semi-compact 

Outstand Element of 
Compression Flange 
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The moment capacity is calculated as Mp=Py×S for plastic or compact sections and as Mp=Py×Z 
for semi-compact sections where ε=(275/Py)

1/2 is constant, λf=bf /(2tf) for I-shaped member flanges 
and the thickness in which bf and tf are the width and the thickness of the flange in which S is the 
plastic modulus and Z is the elastic modulus of section about relevant axis. Py is the design 
strength of steel. λw=h/tw for beam web, in which h=Hs−2tf plus allowance for undersize inside 
fillet at compression flange for rolled I-shaped sections. Hs is the overall depth of the section and 
tw is the web thickness. h/tw values are readily available in UB-section properties table.  
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