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Abstract.  In this study, the authors present an analytical approach to find the axisymmetric buckling load 

of two joined isotropic conical shells under axial compression. The problem of two joined conical shells may 

be considered as the generalized form of joined cylindrical and conical shells with constant or stepped 

thicknesses. Thickness of each cone is constant; however it may be different from the thickness of the other 

cone. The boundary conditions are assumed to be simply supported with rigid rings. The governing equations 

for the conical shells are obtained and solved with an analytical approach. A simple closed-form expression is 

obtained for the buckling load of two joined truncated conical shells. Results are compared and validated with 

the numerical results of finite element method. The variation of buckling load with changes in the thickness 

and semi-vertex angles of the two cones is studied. Finally, application of the results in practical design and 

range of engineering validity are investigated. 
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1. Introduction 
 

The joined shells of revolution (such as cone-cone, cone-cylinder, sphere-cylinder, …) have 

many applications in tanks and pressure vessels, jet nozzles and many other cases in civil, 

mechanical, aeronautical, marine and power engineering. They may consist of thin-walled 

structures composed of two or more simple components having one axis of revolution and slope 

discontinuity in the shell meridian.  

Buckling and instability of conical shells –as an important failure mode- has attracted the 

attention of many investigators. One of the earliest works on buckling of conical shells was 

published by Seide (1956). He developed a simple closed form solution for axisymmetric buckling 

of conical shells under axial compression. This expression is used as the classical buckling load for 

axially compressed conical shells till now. The applicability of Seide‟s formula was verified with 

the experiments performed by Lackman and Penzien (1960). The elastic stability of truncated 

conical shells under axial compression for simply-supported and clamped boundary conditions is 
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investigated by (Tani and Yamaki 1970). In recent years, there are many investigations on the 
buckling of truncated conical shells made up of composites (Sofiyev 2003, Shadmehri et al. 2012) 
and Functionally Graded Materials (FGMs) (Sofiyev 2011) and a wide range of loading types such 
as axial load (Gupta et al. 2006, Sofiyev 2007, Sofiyev 2011), hydrostatic pressure (Ross et al. 
1999, Ross et al. 2005, Hafeez et al. 2010) and combined loads (Sofiyev 2010). A comprehensive 
review on the problem of buckling of moderately thick, laminated, composite shells subjected to 
uniform axial compression, uniform lateral pressure and torsion applied individually or in 
combination was done by (Simitses 1996). Effects of shear loads on vibration and buckling of anti-
symmetric cross-ply cylindrical panels was studied by (Hui 1988) and the discrete singular 
Convolution (DSC) technique was employed to study the buckling and vibration behavior of 
cylindrical and conical shells (Civalek and Gürses 2009, Civalek 2013). 

The buckling of joined shells has been studied by many researchers. Teng and his colleagues 
(Teng 1996, Teng and Barbagallo 1997, Teng and Ma 1999, Zhao and Teng 2003) studied the 
elastic buckling and post-buckling of joined conical-cylindrical shells subjected to internal 
pressure. Flores and Godoy (1991) used finite element method to study the elastic buckling and 
post-buckling of cone-cylinder and sphere-cylinder joined shells subjected to external pressure. 
The results show that the bifurcation loads of the complex shells are lower than those of the 
individual components. The plastic buckling analysis of thick isotropic cone-cylinder and spherical 
cap-cylinder shells is studied by (Bushnell and Galletly 1974). Kamat et al. (2001) used finite 
element method and first ordered shear deformation theory to analyze the dynamic instability of a 
joined conical-cylindrical shell subjected to periodic in-plane load.  

Patel and his colleagues (Patel et al. 2005; Patel et al. 2006; Patel et al. 2008) studied the 
nonlinear thermo-elastic buckling and post-buckling characteristics of laminated conical-
cylindrical and conical-cylindrical-conical joined shells subjected to uniform temperature rise. The 
problem of liquid filled joined conical shells is studied by Zingoni (2002, 2004) and discontinuity 
of stresses in shell intersection is investigated. Also, Anwen (1998) showed that the insertion of a 
toroidal segment in joint area of the cone and cylinder results in slightly higher external buckling 
pressures than that of cone–cylinder shell without transition. The buckling of joined shells with 
different geometries are investigated by many researchers as mentioned above, however, there are 
just a few studies available on the characteristics of two joined conical shells. 

The problem of two joined conical shells may be considered as the generalized form for the 
problem of one conical shell with stepped thickness, joined conical-cylindrical shells and joined 
cylindrical shells and flat end plates (Kouchakzadeh and Shakouri 2014). Therefore the buckling 
load of these special cases will be available as the result of this study.  

In this study, the authors present an analytical approach to find the axisymmetric buckling load 
of two joined isotropic conical shells under axial compression. The governing equations for the 
conical shells are obtained and solved as described by Seide (1956). The boundary condition is 
assumed to be simply supported with rigid ring. A simple closed-form expression is obtained for 
the buckling load of two joined truncated cones with constant thicknesses and the results are 
compared and validated with the numerical results of finite element method. This expression is a 
good handy relation to be used in preliminary design procedure. For this application, the range of 
validity of this expression is obtained using finite element method.  

As mentioned above, a closed form solution is obtained using analytical procedure. This 
analytical approach has the following advantages: 

• The analytical methods generally enable us to have parametric studies more easily. Using 
these methods, effects of any parameter on the objective value (here the buckling load) may be  
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where ε and κ are the middle surface strain and the change in curvature due to buckling and given 
as 
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where u and w are middle surface displacements of cone in the direction and normal to cone 
generator due to buckling. Also, D and C are bending and extensional stiffness parameters and 
defined as 

2

3

2

1

12(1 )

E h
C

E h
D









                                 

(4) 

where E is the elastic modulus, υ is Poisson’s ratio and h is the shell thickness. Substitution of Eqs. 
(2) to (4) into Eq. (1) and some mathematical operations yields the closed-form equations for 
displacement u and w 

1 1 1 1
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  
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(6) 

where Jn(x) and Yn(x) are Bessel functions of the first and second kinds, respectively and 
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2.1 Boundary and continuity conditions 
 

Boundary conditions for the case of simply support and rigid rings at the edges are (Seide 
1956) 

2

2
11 22

0
at ,
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d w dw
s s ss dsds

u w
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
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(8) 

To maintain the continuity at the junction of the two cones we have (Ventsel and Krauthammer 
2001) 
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Where βs is the rotation of cone in s direction and described as 

( )s
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s

ds
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(10) 

 
 
3. Solution 
 

Substitution of Eqs. (5) and (6) into the boundary (8) and continuity (9) conditions, after some 
manipulation, yields the following criterion for instability of cones 
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The primes indicate differentiation with respect to s. The stability determinant given by Eqs. 
(11) to (15) is very complicated but gives a simplified result when Poisson’s ratio is set equal to 
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zero. It can be argued that solving the determinant of coefficients are usually not sensitive to 
Poisson’s ratio (Seide 1956). However, it is not concluded that the obtained critical load leaves out 
the effect of Poisson’s ratio because the parameters b1,2 include the effect of Poisson’s ratio in the 
buckling load (Lackman and Penzien 1960). With this argument, Eqs. (13)-(15) are simplified and 
we have 
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Where Gijs are the coefficients of differentiated Bessel functions described as 
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By solving the determinant of coefficients Eq. (11) we have 
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where 

34 53 61 33 54 61 34 51 63 33 51 64
71 31

54 63 53 64

34 53 62 33 54 62 34 52 63 33 52 64
72 32

54 63 53 64

44 53 61 43 54 61 44 51 63 43 51 64
73 41

54 63 53 64

44 5
74 42

( )

( )

( )

(

G G G G G G G G G G G G
G G

G G G G

G G G G G G G G G G G G
G G

G G G G

G G G G G G G G G G G G
G G

G G G G

G G
G G

  
 



  
 


  

 


  3 62 43 54 62 44 52 63 43 52 64

54 63 53 64

)
G G G G G G G G G G

G G G G

  


               (22) 

Finally, for obtaining the buckling load of two joined shells we must have 
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Eqs. (23) and (24) are cross products of Bessel functions which arise in solving the Bessel 
equations subject to Neumann boundary conditions. The solution of Eqs. (23) and (24) can be 
expressed as 
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where Xn1 and Xn2 are the roots of Bessel Eqs. (23) and (24). The Eq. (25) expands to 
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The values of Xn1 and Xn2 are to be selected so that it yields the lowest value of P. As the right 

side of equalities in Eq. (26) is in 
1

( )a
a

  form, the minimization of two similar expressions in 

(26) leads to 

2 2
1 1 1

1 2
1

2 2
2 2 2

2 2
2

2 cos

3(1 )

2 cos

3(1 )

cr

cr

E h
P

E h
P

 



 








                               

(27) 

which is similar to solution reported by Seide (1956). Finally, it can be argued that the buckling 
load of two joined conical shells is obtained from the expressions of Eq. (27). It presents that the 
buckling load of a structure consisting of two joined conical shells is equal to the minimum 
buckling load of each cone, individually. The dimension of buckling load is ‘Newton (N)’ in SI 
unit. 
 
 
4. Results 
 

To examine the accuracy of the present analysis, some comparisons are made against the results 
obtained by finite element (FE) approach. 

The FE analysis is carried out with ANSYS software by using 2-node axisymmetric shell 
element. Using this element, we make a one dimensional model subjected to axial compression. 
The model has 300 elements and the convergence of the results is checked. Boundary conditions 
are simply-supported in both ends exactly the same as what is done in analytical approach, i.e., Eq. 
(8), and linear buckling load of joined shells with various semi-vertex angles is investigated. The 
Block-Lanczos method, which is a variation of the classical Lanczos algorithm, is used to solve 
eigenvalue extraction. In this algorithm, the Lanczos recursions are performed using a block of 
vectors whereas in classical Lanczos method a single vector is used (Lawrence 2012). Details 
about Lanczos method and its application to the finite element method can be found in (Grimes et 
al. 1994, Cullum and Willoughby 2002). 

In Table 1, the values of the critical axial load for two joined isotropic truncated conical shells 
obtained from FE analysis are compared with present results. The properties for conical shells are 
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h h
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                             (27) 

It can be seen that the present results are in good agreement with results of FE analysis for long 
cones (i.e., higher values of L/R) and the errors arise when the second cone semi-vertex is close to 
90°. Fig. 2 shows the variation of buckling load of joined cones with respect to α2. The material 
properties are as mentioned above, L/R=1 and α1=30°. The results show that Eq. (27) can 
successfully predict the buckling load of joined shells. 
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Table 1 Axial buckling load (N) of two joined conical shells compared with FE results 

  L/R=0.5 L/R=1 L/R=2 
α1 α2 FE Present Error (%) FE Present Error (%) FE Present Error (%)

0 

-75 854.50 821.59 3.85 808.69 821.59 1.60    
-60 3146.23 3066.16 2.54 3054.15 3066.16 0.39    
-45 6262.65 6131.87 2.09 6130.54 6131.87 0.02    
-30 9354.61 9198.03 1.67 9210.04 9198.03 0.13    
0 12250.40 12263.75 0.11 12245.95 12263.75 0.15 12236.61 12263.75 0.22 

30 9431.12 9198.03 2.47 9272.76 9198.03 0.81 9217.16 9198.03 0.21 
45 6357.84 6131.87 3.55 6207.94 6131.87 1.23 6155.45 6131.87 0.38 
60 3229.85 3066.16 5.07 3126.12 3066.16 1.92 3085.73 3066.16 0.63 
75 918.11 821.59 10.51 848.28 821.59 3.15 833.15 821.59 1.39 

30 

-75 881.19 821.59 6.76 833.15 821.59 1.39 812.69 821.59 1.09 
-60 3185.82 3066.16 3.76 3090.62 3066.16 0.79 3060.38 3066.16 0.19 
-45 6297.79 6131.87 2.63 6170.57 6131.87 0.63 6131.87 6131.87 0.00 
-30 9251.86 9198.03 0.58 9234.95 9198.03 0.40 9194.92 9198.03 0.03 
0 9254.53 9198.03 0.61 9254.53 9198.03 0.61 9205.15 9198.03 0.08 

30 9190.92 9198.03 0.08 9201.59 9198.03 0.04 9186.02 9198.03 0.13 
45 6387.20 6131.87 4.00 6227.07 6131.87 1.53 6168.79 6131.87 0.60 
60 3244.09 3066.16 5.48 3140.44 3066.16 2.37 3097.30 3066.16 1.01 
75 920.34 821.59 10.73 863.84 821.59 4.89 838.49 821.59 2.02 

60 

-75 888.75 821.59 7.56 838.49 821.59 2.02 825.59 821.59 0.48 
-60 3128.88 3066.16 2.00 3100.86 3066.16 1.12 3071.94 3066.16 0.19 
-45 3193.82 3066.16 4.00 3106.64 3066.16 1.30 3075.95 3066.16 0.32 
-30 3196.05 3066.16 4.06 3107.53 3066.16 1.33 3075.95 3066.16 0.32 
0 3196.94 3066.16 4.09 3108.42 3066.16 1.36 3075.95 3066.16 0.32 

30 3196.94 3066.16 4.09 3108.42 3066.16 1.36 3075.95 3066.16 0.32 
45 3192.49 3066.16 3.96 3106.64 3066.16 1.30 3075.95 3066.16 0.32 
60 3064.82 3066.16 0.04 3068.38 3066.16 0.07 3063.94 3066.16 0.07 
75 921.67 821.59 10.86 866.07 821.59 5.14 839.82 821.59 2.17 

 
 

The axisymmetric mode shapes of joined shells obtained from present study and FE analysis 
for L/R=1 and α1=45°and α2=30° are shown in the left and right sides of Fig. 3. As can be seen, the 
mode shapes of joined shells have the same behavior and it can be concluded from Table 1 and 
Figs. 2 and 3 that the results of present study are in proper accordance with FE analysis in both 
buckling value and mode shapes. In addition, it is seen that although the buckling load of joined 
shells is equal to the minimum buckling load of the separated shells (not affected by joining them), 
the mode shape of joined shells is affected by joining them due to Eq. (9) and we have no 
deformation discontinuity in mode shapes at the intersection of shells. 

The variation of axial buckling load versus semi-vertex cone angles is shown in Fig. 4. It can 
be observed that the maximum buckling load of joined shell occurs when both semi-vertex angles 
are zero (i.e., cylindrical shells) and the buckling load approaches zero when one of the semi-
vertex angles reaches 90° (i.e., annular plate). The variation of buckling load is similar to Fig. 2 in 
any specific value of α1. 
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Fig. 2 Variation of axial buckling load of two joined conical shells versus α2: FE and present 
results (α1=30°, L/R=1) 

 

 

Fig. 3 Mode shape of two joined conical shells obtained from FE and present analysis (α1=45°, 
α2=30°, L/R=1) 
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Fig. 4 Variation of axial buckling load of two joined conical shells versus semi-vertex cone angles α1 and α2

 
 
5. Application of the results 
 

The obtained simple expression can be used in designing procedure to give a primary 
estimation about stability of joined shells against axial compression. In this section, the application 
of this expression will be discussed more. 
 

5.1 Optimized weight of joined shells 
 

As one of applications of this study, results may be used to find the best geometry of joined 
shells to have minimum weight when the joined shells are subjected to axial compression. As an 
explanation, assume two joined conical shells subjected to axial load. Minimum weight of the 
structure can be achieved when the two joined shells have the same buckling loads. It means that 
both conical shells buckle at the same load and the material is used in the most efficient condition. 
This implies that 
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For a numerical example, consider the case of two joined conical shells with the minimum  
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Fig. 5 Variation of axial buckling load of joined steel and aluminum conical shells versus aluminum 
cone thickness (α1=30°, L/R=1 and h1=0.254 mm) 
 
 

weight to bear axial load. The first cone is made up of steel with semi-vertex angle of 30° and 
second is from aluminum with semi-vertex angle of 45°. The numerical values are 
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 (28) 

Using Eq. (27) the minimum thickness of aluminum cone becomes 0.533 mm. The variation of 
buckling load versus h2 for this case is shown in Fig. 5. As can be seen, the minimum second shell 
thickness is the intersection of parabolic and horizontal sections for each semi-vertex angles. 
 

5.2 Range of validity 
 

Although the Eq. (27) is derived using axisymmetric assumption for buckling of joined shells 
and the circumferential modes are neglected, it is applicable in a wide range of engineering 
geometries of joined shells. To use this expression in shell design against axial load, it is necessary 
to show the range of geometries that Eq. (27) is utilizable. To this end, an extensive area of 
geometries of joined shells was analyzed using finite element calculation. The 2-D 8-node shell 
element with 6 degrees of freedom is used to analyze the joined shells. This element is suitable for 
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analyzing thin to moderately-thick shell structures by using first order shear deformation theory. It 
is to be noted that here, a general analysis (i.e., the analysis is not with axisymmetric assumptions) 
is done with finite element analysis. The method of solution is exactly the same as the way 
described in Sec. 4. At the end, the linear (bifurcation) buckling load of the specified joined shells 
(PFE) are extracted and the discrepancy between those values and the values obtained from Eq. 
(27) (PAN) is  

 100AN FE

FE

P P
e

P


 

                             
(31) 

where e is the discrepancy of the results. 
For the sake of simplicity, it is assumed that the joined shells have the same thicknesses 

(h1=h2=h) and manufactured from the same material. The L1/R and L2/R are changed from 0.1 to 
1.5, R/h is studied in the range of 20 to 200 and α1 and α2 are between 0° to 60°. The maximum 
value selected for semi-vertex angles is the limit value that is commonly adopted in the buckling 
analysis and design of conical shells in linear (bifurcation) instability (e.g., see ECCS (Rotter and 
Schmidt 2008)). Beyond such a value, aspects related to nonlinear instabilities (like snap-through 
phenomena, large deformation and rotation, etc.) might be more relevant than those related to 
bifurcation instability. 

It is observed that the values of the e is less than 5% for the region that the values of geometric 
parameters are as follows 
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 (32) 

As can be seen, there is a wide range of joined cone geometries that the Eq. (27) is applicable. 
This is a very good expression for preliminary design of joined shells under axial compression to 
show that if it is stable or not. In this region, the buckling load of a structure with two joined 
conical shells can be obtained using Eq. (27) and ensure that the discrepancy between this value 
and the actual buckling load is less than 5%. It is necessary to be noted that for the geometries 
outside this region, the Eq. (32) doesn’t mean that the difference between predicted and FE 
buckling loads are more than 5%, but, it might be more or less than this value. 
 
 
6. Conclusions 
 

The axisymmetric buckling load of two joined isotropic conical shells under axial compression 
is studied. The governing equations for the conical shells are obtained and solved with an 
analytical approach. A closed form solution for buckling load of joined conical shells is obtained. 
The results have good agreement with FE numerical results in both buckling load and mode 
shapes. The analytical result supports the following conclusions: 

The axisymmetric buckling load of a structure consisting of two joined truncated cones under 
axial compression is equal to the minimum buckling load for each of the truncated cones alone. 
This means that in this case, each single cone is involved separately in the buckling under the axial 
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load. 
Results of this study may be used to design and optimize a structure consisting of two conical 

shells. To do this, one must obtain the geometrical and material characteristics of each cone so that 
the buckling load is the same in two conical shells. This approach results in minimum weight of 
joined conical shells under axial load. In addition, it is shown that the result of the present study is 
applicable in a wide range of joined shell geometries. 
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