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Abstract.  In this paper, seismic energy response of inelastic steel structures under earthquake excitations 

is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed 

by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the 

inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and 

bending moment is also defined considering stability functions, while the geometric nonlinearity caused by 

axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into 

account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's 

constant acceleration method in the time history domain. Energy response analysis of space frames is 

performed by using this proposed numerical method. Finally, for the first time, the distribution of the 

different energy types versus time at the duration of the earthquake ground motion is obtained where in 

addition error analysis for the numerical solutions is carried out and plotted depending on the relative error 

calculated as a function of energy balance versus time. 
 

Keywords:  seismic energy response; inelastic steel structure; earthquake ground motion; Ramberg-

Osgood equation; independent hardening model; stability functions 

 
 
1. Introduction 
 

Seismic response of structures subjected to earthquake ground motion may be characterized in 

terms of distribution of seismic input energy imparted to the structure and its various energy 

components versus time. The seismic input energy of a system consists of kinetic energy, viscous 

damping energy, irrecoverable hysteretic energy and recoverable elastic strain energy (Zahrah and 

Hall 1984, Uang and Bertero 1990). Seismic energy evaluation in structures has been studied by 

many researchers (Leger and Dussault 1992, Salazar and Haldar 2001, Wong and Yang 2002, 

Segal and Val 2006, Wong and Zhao 2007, Kalkan and Kunnath 2008, Wang and Wong 2009). 

Energy-based approach for seismic resistant design and seismic damage assessment of structures 

has also been carried out by a number of researchers (Manfredi 2001, Wong and Wang 2001, 

Moustafa 2011, Gong et al. 2012). Actual quantification of seismic energy for a structure 

subjected to seismic loading depends on the accuracy of its inelastic behaviour, thus in many 

previous studies, the nonlinear behavior of steel structures has been experimentally and 
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analytically investigated. 

Conventional analysis for steel frame structures are based on the assumption that the beam-to-

column connections are either fully rigid or ideally pinned. However, in reality all types of 

connections are flexible or semi-rigid where the behaviour lies between fully restrained and 

partially restrained. Therefore, numerical models developed with flexible connections can better 

represent the real structural behaviour in the analysis of frames. Nonlinear analysis for steel frames 

with rigid and semi-rigid connections has been performed and numerical models based on the 

nonlinear behaviour have been proposed and published by many researchers (Liew et al. 2000, 

Shugyo 2003, Chiorean and Barsan 2005, Ngo-Huu et al. 2007, Chiorean 2009, Thai and Kim 

2011, Ngo-Huu et al. 2012, Nguyen and Kim 2013). In these studies, nonlinear material behavior 

of structures has been considered using plastic hinge concept based on the lumped plasticity 

assumption or fiber plastic hinge concept where the cross-section is partitioned into fibers, so that 

the plastification at each fiber can be tracked with uniaxial stress-strain relationship. Geometrical 

nonlinear effects have been generally considered using stability stiffness functions for each 

member of steel frame. Nonlinear behaviour of connections has been described by using various 

nonlinear mathematical models representing moment-rotation relationship where flexible 

connections have been simulated by rotational springs at the ends of the beam members. 

The purpose of this study is to examine energy responses of inelastic steel structures subjected 

to various seismic loadings. Nonlinear behavior of these structures is described by using an 

algorithm based on material, geometry and connection nonlinearities. Material nonlinearity is 

considered by using plastic hinge approach based on the zero length plastic hinge placed at the 

member ends where the nonlinear force-deformation relation is defined by using the inverse of 

Ramberg-Osgood function. Geometric nonlinearity including P- and P- effects is considered by 

geometric stiffness matrix and stability functions, respectively. To describe the nonlinear behavior 

of connections under earthquake excitation, independent hardening model is used. The results 

obtained from the proposed analysis are compared with the corresponding values calculated using 

a commercial finite element analysis software SAP2000 (2011) in terms of accuracy and 

computational time. Then, energy response analysis based on seismic energy formulations is 

carried out. Time-history response for each energy type such as input energy, damping energy, 

dissipated energy, strain energy and kinetic energy is obtained. Finally, error analysis of the 

proposed numerical method is achieved by using energy equilibrium concept. 

 

 

2. Formulation of beam-column element 

 

2.1 Elasto-plastic tangent stiffness matrix 

 

Nonlinear moment-rotation (M-) and axial force-deformation (P-L) behaviors formed at the 

ends of the space members are modeled by the inverse of Ramberg-Osgood function, as given in 

Eqs. (1) and (2) (Jonatowski and Birnstiel 1970, Uzgider 1980). Positive direction of end forces 

and displacements for a space frame member is shown in Fig. 1. Moreover, hysteresis loops 

consisting of skeleton and branch curves are also defined, as space frames considered are 

dynamically loaded. Since the tangent stiffness of the nonlinear 3D frames is determined by using 

a step-by step solution procedure, the member force-deformation relationships are expressed in an 

incremental form. 
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where Ki and Kp are the elastic member bending and axial stiffness, respectively; M and  are the 

moment and rotation; N and L are the axial force and axial deformation; Mp is the plastic moment 

capacity while Py is the plastic axial force capacity (squash load), and n is a constant defining the 

shape of the stress-strain relationship. 

The incremental force-displacement equation may be written for a 3D elasto-plastic beam-

column element as 
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where M and  are the bending moment and corresponding rotation; P and L are the axial force 

and axial deformation; T and T are the torsional moment and torsional rotation; A, Ix, Iy and L are 

the cross-section area, the moment of inertia with respect to x and y axis of the section and the 

length of the beam-column element; E, G and J are the elastic modulus, shear modulus and 

torsional constant of the material used, respectively; g, d, h, r and s are the elasto-plastic correction 

factors (Jonatowski and Birnstiel 1970, Uzgider 1980); S1, S2, S3, S4, S5 and S6 are stability 

functions (Ekhande et al. 1989). 

Material nonlinearity is modeled by using the concentrated plastic hinge approach. It is 

assumed that plastic hinge occurrences between the member ends are not allowed, and a plastic 

hinge having a zero-length form occurs whenever internal forces satisfy the plasticity criterion 

expressed by a force-space interaction function. This plastic interaction function is described by 

Orbison plastic interaction surface (Orbison et al. 1982) as follows 
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in which, p=P/Py is the ratio of the axial force to the squash load; mx=Mx/Mxp and my=My/Myp are  
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Fig. 1 End forces and displacements of a space frame member 

 

 

the ratio of the bending moment to the corresponding plastic moment for the strong and weak 

axises, respectively. 

Normalized parameters corresponding to a force vector acting on a given cross-section define a 

point in the force space or equivalently, a vector from the origin of the space to this point. If the 

normalized force vector does not reach the yield surface, the cross-section is assumed to remain 

fully elastic with having no stiffness reduction and no occurence of a plastic flow. Whenever the 

vector reaches the surface, every fiber in the cross-section is assumed to be stressed to the yield 

point so that an unrestricted plastic flow will occur. Then, the element stiffness is reduced to 

consider the effect of plastification at the member ends. If this force vector exceeds the yield 

surface i.e. yield condition, then the member internal forces need to be corrected where this vector 

is forced to return to the yield surface without changing its direction. 

 

2.2 Geometric nonlinearity 
 

Geometric nonlinearity (P-) caused by axial force in a frame is described by using the 

geometric stiffness matrix. The nonlinearity (P-) caused by the interaction between the axial 

force and bending moment in a member is also defined by stability functions (Chen and Chan 

1995, Chan and Zhou 1995, Kim et al. 2001, White et al. 2006). 

 

2.2.1 Stability functions accounting for second order effects 
Stability functions are used to consider the second-order effects since they can account for the 

stiffness degradation caused by the interaction between the axial force and bending moments. The 

stability functions presented in Eq. (3) are defined as follows 
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where α
2
=P/EIx, β

2
=P/EIy and P is positive for tension. 

 

2.2.2 Geometric stiffness matrix 
The element geometric stiffness matrix is composed of changes in nodal forces due to second 

order effects (P-) of axial nodal forces in case of rigid body rotation of a frame member. If a 

member is permitted to sway, additional shear forces will occur in the member (Kim et al. 2001). 

These additional forces caused by the member end displacements can be expressed as, 

     xSf gg                                 (9) 

where {fg}, {x} and [Sg]12×12 are additional end force vector, end displacement vector, and element 

geometric stiffness matrix, respectively. 
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2.3 Semi-rigid connection modelling 
 

Generally, forces transmitted by the beam-column connections consist of axial force, shear 

force, bending moment and torsion. However, as axial, shear or torsional deformations are rather 

small compared with the rotational deformation of connections, their effects are negligible. So the 

deformation behavior of a connection can be described by a moment-rotation relationship. The 

behaviour of connections has been experimentally and analytically investigated by many 

researchers (Kishi and Chen 1990, Barsan and Chiorean 1999, Kukreti and Abolmaali 1999, 

Ivanyi 2000, Chan and Chui 2000, Garlock et al. 2003, Ozakgul 2006, Liu 2010, Aksoylar et al. 

2012, Hadianfard 2012). From these numerous experimental results, it has been understood that 

the moment-rotation relationship is nonlinear over the entire range of loading for almost all types 

of connections. 

In this study, the independent hardening model (Chen et al. 1996, Chan and Chui 2000) is used 

to simulate the nonlinear connection behaviour under dynamic loading. This model is simple and 

can be easily applicable to all types of connection models designed for steel frames. In this model, 

the moment-rotation curve under the first cycle of the loading, unloading and reverse loading 

remains unchanged under the further repetition of loading cycles. The skeleton curve of this model 

is derived from the three-parameter power model (Kishi and Chen 1990). The three-parameter 

power model can be formulated as follows 
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where Rki is the initial connection stiffness, 0 is the reference plastic rotation corresponding to 

Mu/Rki value, Mu is ultimate moment capacity of the connection, and n is the shape parameter. 

When a connection is loaded, then the tangent stiffness Rkt of the connection at an arbitrary 

rotation r is derived by simply differentiating of Eq. (14) as follows 
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Three-parameter power model contains three parameters: initial connection stiffness Rki, 

ultimate connection moment capacity Mu and shape parameter n. To determine these parameters 

for a given connection type, practical procedures proposed by Kishi and Chen (1990) are used. 

In this study, connections are simulated by rotational springs at the beam ends. Spring element 

used for a connection is assumed to be massless and dimensionless in size. The Rxi, Ryi, Rxj and Ryj 

are tangent stiffness values of the connections at the i and j ends of the beam-column element in 

the x and y directions, respectively. Their values are calculated by using the independent hardening 

model. Herein, as a semi-rigid connection type, top and seat angles with double web-angle 

connection (TSDWA) is considered. 

The element tangent stiffness matrix given by Eq. (3) is then modified to consider the effect of 

semi-rigid connections for a beam-column element as follows 
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3. Numerical procedures 
 

The equation of motion for frames subjected to dynamic actions can be given by 

PxKxCxM                                (30) 

in which K is the stiffness matrix (the tangent stiffness matrix + the geometric stiffness matrix) for 

the system of structural elements; M is the mass matrix; C=M+Ki is the viscous damping 

matrix, where  and  are damping factors proportional to mass and stiffness, respectively, and Ki 

is the initial stiffness matrix; Δẍ, Δẋ, Δx and ΔP are incremental acceleration, velocity, 

displacement and externally applied force vectors for the time step size t, respectively. 

For any time step choosen, the equation of motion is integrated by using a step-by-step 

integration method based on assumption of constant acceleration (Chopra 2012). In this method, 

the velocity and displacement vectors are calculated as follows 

tt1t1ttt xtxt)1(xx                                (31) 

tt
2

2t
2

2tttt xtxt
2

1
xtxx    








                       (32) 

where xt, ẋt and ẍt are the total displacement, velocity and acceleration vectors for the time t; 1 and 

2 parameters are 1/2 and 1/4, respectively. 

Eqs. (31) and (32) can be rewritten for the incremental displacements in the following form 

t
2

1
t

2

1

2

1 xt
2

1xtx
t

x  













 








                      (33) 

t
2

t
2

2
2

x
2

1
x

t

1
x

t

1
x 





                          (34) 

By substituting Eqs. (33) and (34) into the Eq. (30), the dynamic equilibrium of the space frame 

system in terms of the unknown incremental nodal displacement x can be expressed as follows 

t
2

1

2
t

2

1

22

1
2

2

xC)1
2

(t+ M
2

1
 xC M

t

1
PxC

t
M

t

1
K  



















































      (35) 

When the incremental displacement x for the next time step t+t in Eq. (35) is solved, then 

the acceleration, velocity, displacement and force vectors can be updated by using the following 

equations 

xxx ttt                                  (36) 

xxx ttt                                   (37) 

xxx ttt                                   (38) 

PPP ttt                                  (39) 

For the next time steps, this solution is repeated from Eq. (33) until a structural failure i.e. a 

numerical instability occurrence or the end of the time duration. 
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4. Evaluation of energy response 
 

The energy response i.e., the variation of the energy within the time is performed by using the 

energy formulations obtained from the integration of the equation of motion in the time domain. 

The seismic input energy imparted to the structure that is subjected to earthquake ground motion is 

equal to the sum of recoverable elastic strain energy, dissipated energy due to the nonlinear 

behavior at each plactic hinge and connection, damping and kinetic energies so that the 

equilibrium equation for the total energy can be written as (Zahrah and Hall 1984, Uang and 

Bertero 1990, Leger and Dassault 1992, Salazar and Haldar 2001, Wong and Yang 2002, Sekulovic 

and Nefovska-Danilovic 2008, Wang and Wong 2009) 

)t(E)t(E)t(E)t(E)t(E kdisdei                      (40) 

where Ei(t) is the seismic input energy, Ee(t) is the elastic strain energy, Ed(t) is the damping 

energy, Edis(t) is the dissipated energy, and Ek(t) is the kinetic energy. 

Each energy component can be evaluated as (Wong and Yang 2002, Sekulovic and Nefovska-

Danilovic 2008, Wang and Wong 2009) 


t

0
g

T
i dtxIIMx)t(E                            (41) 

ee
T
ee xKx

2

1
)t(E                              (42) 


t

0

T
d dtxCx)t(E                              (43) 

)t(EdtxKx)t(E e

t

0

T
dis                            (44) 

xMx
2

1
)t(E T

k                              (45) 

where Ke and xe are the elastic stiffness matrix and elastic displacement vector, respectively, ẍg is 

the ground acceleration, x and ẋ are the total displacement and velocity vectors at time t, 

respectively, where II is the matrix that matches the earthquake acceleration components to the 

corresponding nodal degrees of freedom. 

Finally, for the proposed analysis procedure, the error analysis is also carried out by calculating 

the relative error from the energy balance at the arbitrary time t (Austin and Lin 2004). Thus, the 

accuracy and suitability of the numerical evaluation performed herein are checked as follows 

100
)t(E

)t(E)t(E)t(E)t(E)t(E
(%)errorlativeRe

i

kdisdei 


          (46) 

Additionally, the error time history, i.e., the variation of error versus time during any 

earthquake excitation is easily obtained as well as graphically shown. 
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Fig. 2 Two-storey one-bay space frame (Kim et al. 2006) 

 

 

Fig. 3 Elastic displacement responses (xA) of a two-storey space frame 

 
 
5. Numerical studies 
 

For the numerical examples, three-dimensional steel frames presented by Kim et al. (2006) are 

used. As the ground motion input data, El Centro 1940 (station: Imperial Valley), San Fernando 

1971 (station: Pacoima Dam), Loma Prieta 1989 (station: Emeryville) and Northridge 1994 

(station: 0637 Sepulveda VA) earthquake records with three components are used (USGS, 2014). 

Damping factors proportional to mass and stiffness are chosen as corresponding to 5% viscous 

damping ratio. As the semi-rigid beam-to-column connection type, a top and seat angle with 

double web angle (TSDWA) type of connection is used. The tangent stiffness, ultimate moment 

capacity and shape parameter for the connections are calculated by using the procedure proposed  

818



 

 

 

 

 

 

Evaluation of energy response of space steel frames subjected to seismic loads 

 

Fig. 4 Elastic displacement responses (yA) of a two-storey space frame 

 

 

Fig. 5 Nonlinear displacement responses (xA) of a two-storey space frame 

 

 

by Kishi and Chen (1990). Each member of considered space frames is modeled by one element 

only. 

 

5.1 Two-storey one-bay space frame 
 

The geometric properties and other pertinent information of the space frame with lumped 

masses at the nodes are given in Fig. 2. All sections are composed of H125×125×6.5×9. 

Then the results obtained from the linear and nonlinear time-history analysis are compared with 

the values calculated by the commercial finite element analysis software SAP2000 (2011) in order  
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Fig. 6 Nonlinear displacement responses (yA) of a two-storey space frame 

 

 

Fig. 7 Energy response of a two-storey space frame subjected to El Centro earthquake 

 

 

to check the accuracy and capability of the proposed analysis method. It can be seen that the 

results obtained from the proposed analysis method as well as by using SAP2000 (2011) are 

exactly equivalent to the elastic analysis, and approximately identical to the inelastic time-history 

analysis. 

The displacement responses along x-axis and y-axis for the node A of the space frame with rigid 

connections according to the linear analysis are shown in Figs. 3 and 4, respectively. 

The nonlinear responses along x-axis and y-axis for the node A of the rigid and semi-rigid space 

frames are shown in Figs. 5 and 6, respectively. 

In case of a comparison based on the computational efficiency, it is found out that the proposed 

analysis method has much higher efficiency than the analysis carried out by SAP2000 (2011). For 

example, in the nonlinear time-history analysis for the San Fernando earthquake, the solution time 
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of the proposed analysis is recorded about 20 seconds, while quite a lot time, i.e. approximately 10 

minutes are needed for the SAP2000 (2011) analysis. 

According to the results obtained from the nonlinear analysis of the Northridge and San 

Fernando earthquakes (see Figs. 5 and 6), it can be seen that plastic hinges i.e. permanent 

deformations occur on this space frame. 

After the proposed analysis results are accurately compared with SAP2000 (2011) results, the 

energy response analysis of rigid and semi-rigid frames are carried out and the time-history curves 

obtained for each energy form are plotted in Figs. 7-10. Using these curves, it can be seen that how 

the energy varies with time during the earthquake excitations. 

 

 

 
Fig. 8 Energy response of a two-storey space frame subjected to Loma Prieta earthquake 

 

 
Fig. 9 Energy response of a two-storey space frame subjected to Northridge earthquake 

 

 

Fig. 10 Energy response of a two-storey space frame subjected to San Fernando earthquake 
 

821



 

 

 

 

 

 

Kadir Ozakgul 

 

Fig. 11 Error time-history curves of a two-storey space frame 

 

 

Fig. 12 Four-storey two-bay space frame (Kim et al. 2006) 

 

 

To quantify the accuracy of the proposed nonlinear solution procedure, the error analysis based 

on Eq. (46) is performed so that the relative error as well as its variations versus time is obtained 

for each excitation or ground motion as plotted in Fig. 11. 

As can be seen in Fig. 11, the maximum percentage of the relative error is about 1.6%. It can be 

seen that this value shows high accuracy for the nonlinear analysis procedure proposed herein. 

 

5.2 Four-storey two-bay space frame 
 

The geometric properties and other pertinent information of the steel frame with lumped 

masses at the nodes are given in Fig. 12. 
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Fig. 13 Energy response of a four-storey space frame subjected to El Centro earthquake 

 

 

Fig. 14 Energy response of a four-storey space frame subjected to Loma Prieta earthquake 

 

 

Fig. 15 Energy response of a four-storey space frame subjected to Northridge earthquake 

 

 

Fig. 16 Energy response of a four-storey space frame subjected to San Fernando earthquake 
 

823



 

 

 

 

 

 

Kadir Ozakgul 

 

Fig. 17 Error time-history curves of a four-storey space frame 

 

 

As abovementioned, the linear and nonlinear time-history analysis for this steel space frame are 

carried out. Hence the energy responses obtained for various ground motions are shown in Figs. 

13-16.  

For each nonlinear analysis, the needed relative error versus time is obtained from the error 

analysis, and the variation of error in time domain is plotted in Fig. 17. Based on these analysis 

results, it can be seen that the maximum percentage of the relative error is approximately 2.8%. 

 

 

6. Conclusions 
 

In this study, a very accurate and efficient evaluation for inelastic space frames subjected to 

significant earthquake ground motions is aimed. For this purpose, the nonlinear behavior of steel 

frames is firstly defined by using an algorithm considering the nonlinearities for material, 

geometry and different types of connections. Then, the energy response analysis based on this 

method and seismic energy formulations is performed under various significant earthquake 

excitations experienced. The seismic input energy imparted to the space frame structure and its 

components having various energy forms such as damping energy, dissipated energy, strain energy 

and kinetic energy versus time are calculated. The accuracy of the obtained results is controlled by 

calculating the relative error based on the energy balance concept. So it can be seen that the 

relative error obtained and plotted for a given time history of any earthquake varies within the time 

duration. For example from the error time history of San Fernando earthquake max. relative error 

value is calculated as approximately 2.8% in this study. Thus, unlike previous studies, for the first 

time, the error time-history response is obtained from the nonlinear analysis of space frames, and 

the corresponding error curves are also plotted. 

Based on the energy time-history responses, it can be seen that each energy form such as input 

energy, elastic strain energy, damping energy, dissipated energy and kinetic energy is 

approximately zero at the beginning of any earthquake ground excitation. However, with time the 

input energy in the structure is increasing. At the moments where the earthquake excitation reaches 

its maximum values, bounces for the input energy appear, and high increase can be especially 
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observed for the kinetic energy. Towards the end of the excitation, while the input energy 

generally approximates to a stable constant value, which mainly equals to the sum of the damping 

and dissipated energy, the kinetic energy as well as the elastic strain energy which are temporarily 

stored in the structure during the ground motions are approximately equal to zero. In the case of 

the El Centro and Loma Prieta earthquakes, the results demonstrate that the nonlinear responses of 

the structures remain in elastic range and, thereby no full plastic hinges form, and no irrecoverable 

hysteretic energy due to plastic deformations occurs, in consequence the input energy is nearly 

equal to the sum of the damping and kinetic energies. According to the results obtained from the 

proposed analysis, it can be seen that the energy, linear and nonlinear displacement responses 

versus time of rigid and semi-rigid frames are meaningfully different. Even though the elasto-

plastic rotations in the rigid frames are larger than the hysteretic rotations of the connections in the 

semi-rigid frames having a nonlinear behavior, it is seen that the energy dissipated by hysteretic 

behaviour of the connections can be greater than the value of the corresponding energy form 

occurred in the rigid frames. Additionally, it can be seen that the damping energy is the major 

response parameter for both rigid and semi-rigid frames. 
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