
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 54, No. 4 (2015) 793-807 

DOI: http://dx.doi.org/10.12989/sem.2015.54.4.793                                           793 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Direct kinematic method for exactly constructing influence lines 
of forces of statically indeterminate structures 

 

Dixiong Yang
1,2, Guohai Chen1 and Zongliang Du1 

 
1
Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, 

Dalian University of Technology, Dalian 116023, China 
2
State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, 

Xi’an 710048, China 

 
(Received August 31, 2014, Revised January 14, 2015, Accepted April 4, 2015) 

 
Abstract.  Constructing the influence lines of forces of statically indeterminate structures is a traditional 

issue in structural engineering and mechanics. However, the existing kinematic method for establishing 

these force influence lines is an indirect or mixed approach by combining the force method with the theorem 

of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate 

structure. This paper proposes the direct kinematic method in conjunction with the load-displacement 

differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate 

structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of 

reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the 

released structure. Then, a computational approach with a clear concept and unified procedure as well as 

wide applicability based on the load-displacement differential relation of beam is suggested to achieve 

conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three 

representative examples for constructing force influence lines of statically indeterminate beams and frame 

illustrate the superiority of the proposed method. 
 

Keywords:  statically indeterminate structure; influence lines of reaction and internal forces; closed-form 

solution; direct kinematic method; principle of virtual displacement 

 
 
1. Introduction 
 

Influence line of reaction and internal force of structure is an imperative tool for the design 

and state identification of bridge and building engineering subjected to moving load (Strauss et 

al. 2012, Zhu et al. 2014, Zhao et al. 2015). Nowadays, there are two kinds of approach, such as 

the static method and kinematic method, for constructing the influence lines of forces of 

engineering structures (Timoshenko and Young 1965, Buckley 1997, Hibbeler 2002, Buckley 

2003, Li 2010, Long and Bao 2012). The kinematic method is derived from the Muller-Breslau 

principle, usually also called as qualitative method (Kassimali 1999, Hibbeler 2002, Ghali et al. 

2003). For statically determinate structure, the influence line of force constructed by kinematic 
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corresponding constraint of original structure and introducing the relevant unit displacement. 
Nevertheless, for statically indeterminate structure especially with multiple degrees of 
indeterminacy, it seems that the static method based on finite element analysis is tedious (Strauss 
et al. 2011, Strauss et al. 2012). Further, it cannot outline the shape of influence line before 
detailed calculation. As a consequence, the kinematic method is recommended, which can 
quickly determine the shape of influence line of statically indeterminate structure. 

Actually, the kinematic method suggested in some popular references (Kassimali 1999, 
Hibbeler 2002, Bhavikatti 2005, Li 2010, Long and Bao 2012) is firstly to adopt both the force 
method (obviously, which belongs to the static method) and the Maxwell’s theorem of reciprocal 
displacements (i.e., energy method), and then transform the problem of establishing the force 
influence line of statically indeterminate structure under a vertical unit moving load into that of 
constructing deflected curve of released structure under a unit displacement. However, it is an 
indirect or mixed kinematic method, instead of a direct or pure kinematic method as same as that 
for statically determinate structure. This point may make the structural engineers, especially the 
beginners confused. Some researchers had noted this problem and made certain modifications. For 
instance, Liu and Wang (2001) pointed out the above mentioned limitation, and established the 
equation of force influence line of the released structure by using the theorem of reciprocal works. 
Unfortunately, they failed to show the convenient computational process for quantitative influence 
lines of indeterminate structure. Chen (2002) derived the formula of influence line of reaction and 
internal force for indeterminate structure using the theorem of reciprocal displacement and 
reaction, in which the influence line corresponds to the deflected curve of original structure caused 
by unit joint displacement. Nonetheless, it is still not a direct kinematic method. 

On the other hand, the formula of force influence line in the framework of kinematic method by 
using the Betti’s theorem of reciprocal works was deduced in a few works (Timoshenko and 
Young 1965, Thompson and Haywood 1986, Leet and Uang 2002, Ghali et al. 2003) for drawing 
the shape of force influence line of indeterminate structure. Nevertheless, the detailed 
computational procedure for drawing quantitative influence line is approximate and cumbersome, 
either through calculating point by point the displacement of successive points of deflection curve 
with the unit load moving across the released structure at certain distance, or by applying the 
specific or exclusive approach (Buckley 1997, Kassimali 1999, Hibbeler 2002, Leet and Uang 
2002, Ghali et al. 2003, Bhavikatti 2005, Long and Bao 2012). As a result, although drawing 
influence lines of forces of statically indeterminate structure is a traditional and important topic in 
structural engineering (Kurrer 2008), to develop a clear, simple and exact method for this task is 
still a pending issue. 

In this paper, the formula based on direct kinematic method to construct influence lines of 
forces of statically indeterminate structures is derived by using the principle of virtual 
displacement. It is shown that the force influence line of statically indeterminate structure is the 
deflected curve of released structure, in which the corresponding constraint is removed and 
respective unit displacement is imposed. This method and its derivate process for indeterminate 
structure are completely in agreement with those for determinate structure. Essentially, the direct 
kinematic method is an energy method. Moreover, a computational approach with a clear concept 
and unified scheme based on the load-displacement differential relation of beam (i.e., 
EIy(4)(x)=q(x)) is advised to acquire conveniently the closed-form equations of force influence 
lines of statically indeterminate structures, and exactly draw them. Finally, several examples of 
force influence lines for indeterminate beams and frame with multiple degrees of indeterminacy 
demonstrate its general applicability. An additional objective of this work is to help deeply 
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comprehend the qualitative method for constructing force influence line of both statically 
determinate and indeterminate structure. 
 
 
2. Formula derivation of force influence line of indeterminate structure  
 

This section firstly proves one lemma on the internal virtual work, and then derives the 
formulation for constructing force influence lines of statically indeterminate structure by using 
direct kinematic method based on the principle of virtual displacement. For comparison and 
completion, the formula derivation of force influence lines of indeterminate structure based on the 
Betti’s theorem of reciprocal works is also introduced.  
 

2.1 One Lemma on the internal virtual work 
 

For a statically indeterminate or determinate structure under arbitrary loads, there is always a 
released structure by means of removing certain constraint and replacing it with relevant external 
or internal force, which is equivalent to the original structure.  

 
Lemma 1 
If a certain support displacement or generalized displacement occurs at the released structure 

along the corresponding constraint direction of reaction or internal force, then the internal virtual 
work (i.e., virtual strain energy) done by the internal forces (M, FN, FQ) of original structure 
undergoing the virtual strains ( , , 0 ) of released structure is zero, namely 

N Q 0 d 0( )M F F x                              (1) 

 
Proof of Lemma 1 
For a statically determinate structure, the released structure by removing some support 

constraint or internal constraint becomes a mechanism. The imposed support displacement or 
generalized displacement in the constraint direction of mechanism results in the rigid body 
displacement without the strain and internal force. Therefore, the total internal virtual work (i.e., 
virtual strain energy) done by the internal forces of determinate structure undergoing the virtual 

strains of its respective released structure is zero, i.e., 
N Q 0 d 0( )M F F x     . 

For a statically indeterminate structure, there is no any support displacement, e.g. as shown in 
Fig. 1(a). The arbitrary concentrated and distributed loads applying to the original structure 
produce the moment M(x). Then, a reaction or internal force constraint is removed and the released 
structure in Fig. 1(b) is obtained. The moment 

1( )M x  of released structure under unit generalized 

load Z1=1 in the direction of the removed constraint is exhibited in Fig. 1(d). It is easily known 
that, there is no relative displacement of original structure corresponding to the unit generalized 
load Z1=1 under external loads. Thus, according to the unit-load method the relative displacement 

Δ1 with respect to Z1 is expressed as 1
1 d 0

MM
x

EI
   . It also means that the internal work done by 

the internal forces of original structure subjected to external loads undergoing the strains of  
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(a) Original structure (b) (c) (d) 

Fig. 1 Statically indeterminate beam (a) Original structure; (b) Released structure with generalized  
displacement ΔB; (c) Moment diagram ( )M x  

of released structure with generalized displacement 

ΔB (equivalent to imposing external load); (d) Moment diagram 
1( )M x  of released structure under  

unit generalized load 
 
 

released structure under unit load Z1=1 is zero. In addition, when the generalized virtual 
displacement ΔB is imposed at the released structure in the direction of the respective internal 
constraint, the moment ( )M x  (see Fig. 1(c)) and curvature ( )x  are generated. For the sake of 
convenient discussion, only the bending moment and strain of original structure are considered 
when calculating the virtual work. The internal virtual work done by the internal forces of original 

structure undergoing the virtual strains of released structure is written as 
i d d

MM
W M x x

EI
    .  

Fig. 1 (c) displays the moment function ( )M x  of released structure with generalized 
displacement ΔB, which is equivalent to that under external load P. With the assumption of small 
deformation and linear elasticity, the moment ( )M x  of released structure with virtual generalized 
displacement is proportional to the moment 

1( )M x  of released structure under unit generalized 
force with a constant ratio c, i.e., 

1( ) ( )M x cM x . Hence, a desired equation of internal virtual 
work is finally achieved based on the proved expression of relative displacement Δ1=0, namely, 

1
i d d d 0

MM MM
W M x x c x

EI EI
        . The same conclusion on the internal virtual work 

considering the axial and shear forces and strains can be drawn as well. In summary, the internal 
virtual work (i.e., virtual strain energy) done by the internal forces of original structure undergoing 

the virtual strains of released structure is zero, i.e., 
N Q 0 d 0( )M F F x     . The proof of 

Lemma 1 is ended. 
Lastly, it is particularly pointed out that, the physical meaning of Eq. (1) indicates that the 

internal virtual work done by the internal forces of determinate or indeterminate structure under 
external loads undergoing the virtual strains of released structure with a virtual displacement in the 
direction of the corresponding removed constraint is zero. Essentially, it is because that the 
displacement of original structure corresponding to the generalized load is zero. Equation (1) is the 
theoretical premise of kinematic method for constructing influence lines of reaction and internal 
forces of determinate or indeterminate structure. Further, it is a unified formula applicable to both 
the statically determinate and indeterminate structures. 
 

2.2 Formula derivation based on the principle of virtual displacement 
 

The influence line of Z1 standing for the reaction and internal force of statically indeterminate  

796



 
 
 
 
 
 

Direct kinematic method for exactly constructing influence lines of forces... 

 

(a) Original structure 
(b) Released structure under 
moving load and generalized 
load 

(c) Released structure with unit 
generalized displacement 

Fig. 2 Statically indeterminate beam 
 
 

structure is considered to construct. Herein, Z1 denotes the moment at E of indeterminate beam. On 
the one hand, the force state of original structure under vertical unit moving load FP=1 with the 
location coordinate x displayed in Fig. 2(a) is equivalent to that of the released structure by 
relaxing relevant constraint with a pair of external forces Z1 in Fig. 2(b). Its support reaction force 
is FR, and internal forces are M(x), FN(x), FQ(x). The external force or generalized load Z1 of 
released structure in Fig. 2(b) equals to the corresponding internal force of original structure in 
Fig. 2(a). Hence, the reactions and internal forces as well as the displacements of released structure 
in Fig. 2(b) are identical with those of original structure in Fig. 2(a).  

On the other hand, the virtual strain state of released structure is considered. Assume that the  
released structure is exerted by a virtual generalized displacement 1c =1 relevant to the relaxed  
constraint, and there are no other support displacements in Fig. 2(c). Then, the released structure  
yields the virtual displacement P  at the point corresponding to the unit moving load and the 
virtual strains  ,   and 0 . 

Actually, the principle of virtual displacement is a variant form of the principle of virtual work 
(Hibbeler 2002, Walls and Elvin 2010, Yang et al. 2011, Long and Bao 2012), when the 
displacement field is kinematically admissible. Using the principle of virtual displacement, the 
above two states of real forces and virtual displacements are substituted into the virtual 
displacement equation indicating that the external virtual work equals to the internal virtual work 
(i.e., virtual strain energy), which is expressed as  

1 1 P P N Q 0 d( )Z c F M F F x                             (2) 

Substituting the virtual unit displacement 1c =1 and real unit moving load FP=1 into Eq. (2) 
yields

 

1 P N Q 01 1 d( )Z M F F x                              (3) 

where 
Z1= external real load acting on the released structure in the direction of 1c =1 
FP=1= external unit moving load acting on released structure in the direction of P  
M, FN, FQ= internal moment, axial and shear force respectively in released structure caused by 

the real loads (Z1 and FP=1) 

1c =1= external virtual unit displacement corresponding to the force Z1 of which the influence 
line is to be determined 

P = external virtual displacement in released structure caused by the virtual unit displacement 
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1c =1 
 ,  , 0 = internal virtual bending, axial and shear strain respectively in released structure 

caused by the virtual unit displacement 1c =1 
In terms of Lemma 1, the right-hand term of Eq. (3) is zero, i.e., the internal virtual work done 

by the internal forces of statically indeterminate structure under unit moving load and generalized 
load undergoing the virtual strains of released structure with virtual unit displacement in the 
direction of respective constraint is zero. Thus, Eq. (3) becomes 

1 PZ x x ( ) ( )                                 (4) 

Eq. (4) is the formula for constructing influence lines of reaction and internal forces of 
indeterminate structure by direct kinematic method. It implies that the influence coefficient of 
original structure just equals to the deflection value of released structure with unit generalized 
displacement at the acting point of unit moving load, but its sign is opposite. Furthermore, Eq. (4) 
for indeterminate structure is derived only using the principle of virtual displacement as same as 
that for determinate structure. Therefore, the direct kinematic method for drawing the force 
influence lines of statically indeterminate structure derived from the principle of virtual 
displacement is consistent with that of determinate structure. The direct kinematic method can 
replace the mixed kinematic method which combines both the force method and the theorem of 
reciprocal displacements (Kassimali 1999, Hibbeler 2002, Bhavikatti 2005, Li 2010, Long and 
Bao 2012), to acquire the formula of force influence lines of statically indeterminate structure. 
Obviously, it is seen that the formula for constructing influence lines of forces of indeterminate 
structure is a degenerate form of virtual displacement equation, which can be obtained when its 
term of internal virtual work is zero. 
 

2.3 Formula derivation based on the theorem of reciprocal works 
 

In practice, Eq. (4) for constructing force influence lines of statically indeterminate structure 
can also be derived from the Betti’s theorem of reciprocal works conveniently. Under a unit 
moving load FP=1, the indeterminate structure generates some deformations and internal forces, 
for example, as displayed in Fig. 2(a). The state of forces and deformations of original structure 
equals to that of the released structure by relaxing the relevant constraint and imposing certain 
external load Z1 shown in Fig. 2(b), which is defined as state I. Meanwhile, the state of forces and 
deformations of released structure caused by a generalized displacement in the direction of the 
relaxed constraint in Fig. 2(c) is called as state II.  

The external forces of state I include the unit moving load FP=1 and generalized load Z1. The 
displacements of state II include the unit generalized displacement (without support displacement)  
and the displacement P  corresponding to the unit moving load. Hence, the work done by 
external forces of state I undergoing the displacements of state II is: 12 P 11 1W Z    .  

For the released structure in Fig. 2(c), the generalized displacement 1c =1 is produced by the 
generalized force P. Moreover, the relative displacement of original structure in Fig. 2(a) with 
respect to the generalized force P is zero, and the relative rotational angle of section E at the 
equivalent released structure in Fig. 2(b) is also zero. Consequently, based on the fact that the 
displacement of original structure or the equivalent released structure corresponding to the 
generalized load Z1 is zero, the work done by the external forces of state II undergoing the 
displacements of state I is W21=P·0=0. 
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With the theorem of reciprocal works W12=W21 (Timoshenko and Young 1965, Thompson and 
Haywood 1986, Leet and Uang 2002, Ghali et al. 2003), an equation of reciprocal works is 
obtained 

12 P 1 211 1 0W Z W                                (5) 

Apparently, Eq. (4) standing for the force influence lines of indeterminate structure is easily 
derived from Eq. (5) of reciprocal works, because Eq. (5) can be transformed into Eq. (4) 
immediately. Note that the theorem of reciprocal works can be similarly applied to derive Eq. (5) 
and Eq. (4) of force influence line for determinate structure. Finally, it is pointed out that, the 
formula derivation process of Eq. (4) for the force influence lines of indeterminate and determinate 
structure using the principle of virtual displacement is more natural and direct than that with the 
theorem of reciprocal works. 

 
 

3. Exactly constructing force influence lines of indeterminate structures  
 

Firstly, an exact computational approach based on the load-displacement differential relation of 
beam (i.e., EIy(4)(x)=q(x)) is suggested to construct the force influence lines of statically 
indeterminate beam and frame structures. Subsequently, three examples for determining the 
influence lines of reaction and internal force of indeterminate beams and frame are shown. 
 

3.1 Computational approach for force influence lines of indeterminate structures 
 

By virtue of Eq. (4), an exact approach to calculate the force influence lines of indeterminate 
structure is proposed as follows. 

(1) Remove or relax the constraint of original structure corresponding to the reaction or internal 
force Z of interest for constructing the influence line, and obtain the released structure. 

(2) Impose the unit displacement or unit generalized displacement (i.e., relative displacement, 
and δ1=1) corresponding to the relaxed constraint of released structure, and take the deflected 
shape y(x) of released structure as the outline of the force influence line. This is a major advantage 
of kinematic method for constructing influence lines. One can establish rapidly the general shape 
of influence lines without the need of careful calculation, so as to further identify the most 
unfavorable position of moving load. 

(3) Utilize the load-displacement differential relation of beam with equal sectional area (where 
EI denotes flexural stiffness and q(x) is the distributional load, respectively), namely 

EIy(4)(x)=q(x)                                 (6) 

Because the distributional load of released structure is zero, namely q(x)=0, the analytical 
expression of deflection curve y(x) can be written as a cubic polynomial 

y(x)=ax3+bx2+cx+d                               (7) 

Accordingly, the deflection curve of released structure corresponding to the force influence line is 
a cubic curve. In terms of the specific case of displacement and force of segments in the beam-type 
structure, four boundary and continuity conditions for every segment can be obtained. 

(4) Substituting the four boundary and continuity conditions for every segment into the 
deflection curve Eq. (7) and its first, second and third-order differential formulas, the 
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undetermined coefficients of deflection curves y(x) of all segments can be achieved. Consequently, 
the closed-form expression of influence line Z(x) of reaction and internal force of indeterminate 
structure is obtained 

Z(x)=y(x)                                  (8) 

The above proposed approach to calculate the influence line expression by direct kinematic 
method is versatile, exact and convenient for the reaction and internal forces at any section of 
indeterminate structure. On this basis, one can determine the most unfavorable loadings and the 
most unfavorable internal forces of indeterminate structure. 

Finally, it is pointed out that in the previous works (Kassimali 1999, Hibbeler 2002, Leet and 
Uang 2002, Ghali et al. 2003, Bhavikatti 2005, Long and Bao 2012), the moment-displacement 
differential relation (i.e., EI y′′(x)=M(x)) is used to solve the force influence line of indeterminate 
structure. Actually, although one can apply the force method (i.e., flexibility method), the 
displacement method (i.e., stiffness method), moment distribution method, or especially the 
closed-form moment distribution method (Dowell 2009, Dowell and Johnson 2011) to address the 
bending moment of structure with multiple degrees of indeterminacy, these methods are very 
difficult to acquire an analytical moment function of released structure with removed constraints 
corresponding to shear and moment. Fortunately, the new approach proposed herein utilizes 
another differential relation (i.e., EIy(4)(x)=q(x)=0) and avoids such a difficulty, so as to achieve 
the influence line Z(x) of reaction and internal force of indeterminate structure in a general and 
convenient way. 
 

3.2 Numerical examples 
 

Example 1 Here Examples 7.15 and 7.16 in the reference (Hibbeler 2002) are adopted. Draw 
influence lines of shear FQD and moment MD at D for the two-span continuous beam with one 
degree of indeterminacy and constant cross-section in Fig. 3(a). 

(1) Construct the influence line FQD(x) 

Relax the section D of original structure with a sliding device, and obtain the released system 
with three segments. Subsequently, impose unit relative displacement at D, and outline the 
influence line shape of shear FQD in Fig. 3(b).  

 
 

Fig. 3(a) Two-span continuous beam 
 

 

Fig. 3(b) Shape of influence line for FQD of two-span continuous beam 
 

 D

B δD=1 C A 

l l/2 l/2 

D
B 

FP=1 

C A 
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Fig. 3(c) Shape of influence line for moment MD of two-span continuous beam 
 
 
Three cubic polynomials y(x)=ax3+bx2+cx+d of released structure are written, which contain 12 

undetermined coefficients. Twelve boundary and continuity conditions of released structure are 
listed as: 

       1 2 3 30 2 0y y l y l y l    ,    2 1/ 2 / 2 1y l y l  ,    1 2/ 2 / 2y l y l  ,  

   2 3y l y l  ,    1 30 2 0EIy EIy l   ,    1 2/ 2 / 2EIy l EIy l  ,  

   2 3EIy l EIy l  ,    1 2/ 2 / 2EIy l EIy l   

Then, the unknown constants are determined and the equation of influence line FQD(x) is 
written as follows: 

3
3

3
3

3 2
3 2

1 5
(0 2 )

4 4
1 5

( ) 1 ( 2 )
4 4

1 3 11 3
( 2 )

4 2 4 2

x x x l
l l

y x x x l x l
l l

x x x l x l
l l l

   

    

      

 

For instance, 1 2( 2) 0.5938, ( 2) 0.4062y l y l   , 3(3 2) 0.0938y l    

(2) Draw the influence line MD(x) 
Relax the section D with a pin and get the released system. Meantime, sketch the influence line 

shape of moment MD by direct kinematic method, as shown in Fig. 3(c). 
Similarly, three cubic polynomials y(x)=ax3+bx2+cx+d of released structure with 12 unknown 

coefficients are listed, and 12 boundary and continuity conditions are written as: 

       1 2 3 30 2 0y y l y l y l    ,    21 / 2 / 2y l y l ,    1 2/ 2 / 2 1y l y l  ,  

    2 3y l y l  ,    1 30 2 0EIy EIy l   ,    1 2/ 2 / 2EIy l EIy l  ,  

   2 3EIy l EIy l  ,    1 2/ 2 / 2EIy l EIy l   

Thus, the influence line function MD(x) is formulated as: 

 

3
2

3
2

3 2
2

3
                          (0 )

8 8 2
5

                    ( )
8 8 2 2

3 11 3
     ( 2 )

8

1

1

4 4

1

8

l
x x x

l
l l

y x x x x l
l

l
x x x l x l

l l

   

    

     

 

D 

θD=1 
B 

C A 
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(a) Influence line of shear force FQD (b) Influence line of moment MD (unit: m) 

Fig. 4 Quantitative influence lines of internal forces of two-span continuous beam 

 

Fig. 5(a) Three-span continuous beam with 3 degrees of indeterminacy 

 
 

 
 

 

Fig. 5(b) Shape of influence line for FRB of three-span continuous beam 
 
 
Especially, for l=6 m, y1(l/2)=y2(l/2)=1.2188, y(3l/2)=−0.2813 

Finally, the plots of influence lines of FQD and MD are shown in Figs. 4(a) and 4(b) separately. 
Comparing them with the ones in the reference (Hibbeler 2002), it is evident that the diagram of 
influence line of FQD (Hibbeler 2002) is not totally correct, because the curvature of segment DB 
(from x=3 m to x=6 m) in the influence line should be concave upward rather than concave 
downward. 

Example 2 Draw the influence lines of reaction FRB and moment MB at support B and moment 
ME at E for the three-span statically indeterminate beam with 3 degrees of indeterminacy and 
constant cross-section in Fig. 5(a). 

(1) Construct the influence line FRB(x) 

Remove the support B of original structure, and obtain the released system with three segments. 
Then, impose unit displacement at B, and outline the influence line shape of reaction FRB in Fig. 
5(b).  

Twelve boundary and continuity conditions of released structure with 3 segments are listed as: 

       1 2 3 30 2 2 3 0y y l y l y l    ,    1 2 1y l y l  ，  1 0 0y   ,  

   1 2 0y l y l   ,    2 32 2y l y l  ,    2 32 2EIy l EIy l  ,  3 3 0EIy l   

As a result, the equation of influence line FRB(x) is written as follows: 

C A
δB=1 

B D
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Fig. 5(c) Influence line shape for moment MB of three-span beam 
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(2) Construct the influence line of moment MB  
Relax the section B with a pin joint and get the released system. Then, outline the shape of 

influence line of MB by direct kinematic method shown in Fig. 5(c). 
With the 12 boundary and continuity conditions: 

           1 1 2 2 3 30 2 2 3 0y y l y l y l y l y l      ,  1 0 0y   ,     1 2 1y l y l   ,  

   2 32 2y l y l  ,    1 2EIy l EIy l  ,    2 32 2EIy l EIy l  ,  3 3 0EIy l   

the closed-form expression of influence line MB(x) is obtained: 

 

3 2
2

3 2
2

3 2
2

6 6
 0 )

13 13
5 27 46 24

   ( 2 )
13 13 13 13

1 9 24
 2 (2 3 )

13 13 13

(x x x l
l l

l
y x x x x l x l

l l
l

x x x l x l
l l

   

      

     

 

Assuming l=6 m, the influence line plot of MB is displayed in Fig. 5(d). In particular, y(3)= 
–0.3462, y(9)=–0.5192, and y(15)=0.1731. The results are equal to those in the reference (Long 
and Bao 2012). 
 
 

Fig. 5(d) Quantitative influence line for moment MB of three-span beam (unit: m) 
 

A B C DθB=1
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Fig. 5(e) Influence line shape for moment ME of three-span beam 
 

Fig. 5(f) Quantitative influence line for moment ME of three-span beam (unit: m) 
 
 

(3) Construct the influence line of moment ME  
Relax the section E at the center of span BC with a hinge and obtain the released system, and 

then outline the influence line shape of ME in Fig. 5(e). 
Combining with 16 boundary and continuity conditions of four segments:  

           1 1 2 3 4 40 2 2 3 0y y l y l y l y l y l      ,    32 3 / 2 3 / 2y l y l , 

   1 0 0y   ,    1 2y l y l  ,    2 33 / 2 3 / 2 1y l y l  ,     3 42 2y l y l  , 

     1 2EIy l EIy l  ,    2 33 / 2 3 / 2EIy l EIy l  ,    3 42 2EIy l EIy l  ,  

 4 3 0EIy l  ,    2 33 / 2 3 / 2EIy l EIy l   

the influence line formula of ME(x) is obtained: 

 
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For l=6 m, the influence line plot of ME is presented in Fig. 5(f), and y(9)=1.0240. 
Example 3 The four-span continuous frame in Fig. 6(a) is adapted from the reference (Dowell 

2009), and draw the influence line of moment MI at the central section I of span BC. 
Firstly, relax the section I of span BC with a hinge and obtain the released system with 8 

segments, and then outline the influence line shape of MI in Fig. 6(b). 
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Fig. 6(a) Four-span continuous frame with 9 degrees of indeterminacy (unit: m) 

 

 
Fig. 6(b) Influence line shape for moment MI of four-span frame 

 
 
Thirty-two boundary and continuity conditions of 8 segments (where, member 2, 5 and 7 

represents column BF, CG and DH, respectively) are listed as:  

1 1 3 2 4 6 5 6 7

8 8 2 5 7 2 5 7

(0) (80) (80) (25) (180) (180) (30) (290) (25)

(290) (360) 0, (0) (0) (0) 0, (0) (0) (0) 0

y y y y y y y y y

y y y y y y y y

       

          
 

1 3 2 4 5 6 6 7 8

1 2 3 4 5 6

(80) (80) (25), (180) (30) (180), (290) (25) (290),

( (80) (25) (80)) 0, ( (180) (30) (180)) 0,

y y y y y y y y y

EI y y y EI y y y

             

          
  

6 7 8( (290) (25) (290)) 0,EI y y y      3 4(130) (130) 1y y   ,  3 4(130) (130),y y  

3 4(130) (130),EIy EIy  3 4(130) (130),EIy EIy   1 8(0) (360) 0EIy EIy    

Finally, the influence line formula of MI(x) is written as follows and its plot is displayed in Fig. 
6(c). 
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Fig. 6(c) Quantitative influence line for moment MI of four-span frame (unit: m) 
 
 
4. Conclusions 
 

The existing kinematic method in some popular references is actually indirect or mixed 
approach, which combines the force method with the energy method (i.e., theorem of reciprocal 
displacements) for drawing the shapes of force influence lines of statically indeterminate structure. 
Moreover, the computational procedure for quantifying the corresponding magnitude of influence 
line is approximate and cumbersome. 

In this paper, the formula of direct kinematic method to construct influence lines of reaction 
and internal forces of statically indeterminate structure is derived, through applying the principle 
of virtual displacement. Furthermore, an exact computational approach with a clear logic and 
unified scheme as well as wide applicability based on the load-displacement differential relation of 
beam (i.e., EIy(4)(x)=q(x)) is advised to determine these influence lines. Finally, three 
representative examples for calculating the closed-form equations of influence lines of reaction 
and internal forces of statically indeterminate beams and frame are demonstrated. In a versatile and 
convenient way, the formulation of force influence line of indeterminate structure is acquired, 
which is beneficial to the design and state identification of structure and infrastructure engineering.  
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