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Abstract.  The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the 

cross-section vary linearly along the length is investigated by using the Adomian modified decomposition 

method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam 

becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless 

natural frequencies and the closed form series solution of the corresponding mode shapes can be easily 

obtained simultaneously. The computed results for different taper ratios as well as different offset length and 

rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence 

and comparison with the previous published results. It is shown that the AMDM provides an accurate and 

straightforward method of free vibration analysis of rotating tapered beams. 
 

Keywords:  adomian modified decomposition method; rotating tapered beam; taper ratio; natural 
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1. Introduction 
 

The determination of natural frequencies and mode shapes of rotating tapered beams is very 

important for the design of helicopter blades, airplane propellers and wind turbines etc. As a result, 

the free vibration analysis of rotating tapered beams has been extensively studied by many 

researchers with great success. For examples, the publications (Banerjee 2000, Banerjee et al. 

2006, Banerjeea and Jackson 2013) used the dynamic stiffness method based on Frobenius 

solutions to solve the free bending vibration of the uniform and tapered rotating beam. The 

publications (Wang and Wereley 2004, Vinod et al. 2007) imposed spectral finite element method 

for vibration analysis of rotating blades with uniform tapers under cantilever and hinged boundary 

conditions. The publications (Ozdemir and Kaya 2006a, b, Rajasekaran 2013) applied differential 

transformation method (DTM) for the free vibration analysis of tapered rotating beams. Bazoune 

(2007) discussed the effect of taper ratio on the natural frequencies of the beam using finite 

element method. 

    Recently, a relatively new computed approach called Adomian modified decomposition method 

(AMDM) (Adomian 1994) has been applied to the free vibration problem for several beam 

structures, such as linear and nonlinear tapered beam under general boundary conditions (Hsu et 
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al. 2008, Mao and Pietrzko 2012), multiple-stepped beams (Mao 2011), elastically connected 

multiple-beam systems (Mao 2012) and uniform rotating beam (Mao 2013). The AMDM has 

shown reliable results in providing analytical approximation that converges rapidly (Adomian 

1994). In this study, the AMDM is extended to analyze the free vibration for the rotating tapered 

Euler-Bernoulli beams under various taper ratios, rotating speeds and offset lengths. The AMDM 

is a straightforward and powerful method for solving linear and nonlinear differential equations. 

The main advantages of AMDM are computational simplicity and do not involve any linearization, 

discretization, perturbation. In AMDM the solution is considered as a sum of an infinite series, and 

rapid convergence to an accurate solution.  

    Using the AMDM, the governing differential equation for the rotating tapered beam becomes a 

recursive algebraic equation. The boundary conditions become simple algebraic frequency 

equations which are suitable for symbolic computation. Moreover, after some simple algebraic 

operations on these frequency equations, the natural frequency and corresponding closed-form 

series solution of mode shape can be determined simultaneously. Finally, the effects of the taper 

ratios, rotating speeds and offset lengths on the natural frequencies and mode shapes are 

investigated. The results are compared with previous published ones to demonstrate the accuracy 

and efficiency of the proposed method. 

 

 

2. AMDM for the rotating beams 
 

Consider the free vibration of a rotating tapered cantilever Euler-Bernoulli beam with length L, 

both continuously linearly varying width b(x) and thickness h(x), as shown in Fig. 1. The variation 

of the width and thickness along beam length L are defined as 

                         
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where b0 and h0 are the width and thickness at the root of the beam, respectively. cb and ch are the 

width and thickness taper ratios, respectively.  

 

 

 

Fig. 1 A rotating tapered cantilever Euler-Bernoulli beam 
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The partial differential equation describing the out-of-plane bending vibration of a rotating 

tapered beam is as follows (Banerjee et al. 2006, Wang and Wereley 2004) 
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where E and  are Young’s modulus and the density of the beam, respectively. A(x) and and I(x) 

are the cross-sectional area and the cross-sectional moment of inertia of the beam, respectively.  
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where 
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T(x) in Eq. (2) is the axial force due to the centrifugal stiffening and is given by the following 

(Banerjee et al. 2006, Wang and Wereley 2004) 

                      dxxrxAxT
L

x  2                                                  (5) 

where  is the angular rotating speed of the beam, r is offset length between beam and rotating 

hub.  

According to modal analysis approach (For harmonic free vibration), the w(x, t) can be 

separated in space and time 

                            tiextxw ,                                                              (6) 

where 1i , (x) and  are the structural mode shape and the natural frequency, respectively.  

Substituting Eq. (6) into Eq. (2), then separating variable for time t and space x, the ordinary 

differential equation for the rotating beam can be obtained 
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To rewrite Eqs. (5) and (7) into dimensionless form, we define 
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where  is the dimensionless natural frequency, and the nth dimensionless natural frequency is 

denoted as  (n). U is the dimensionless rotating speed of the beam. 
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Substituting Eq. (4) into Eq. (5), the axial force T(x) within a rotating beam can be expressed as 
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Substituting Eqs. (4) and (9) into Eq. (7), then rewrite Eq. (7) in dimensionless form 
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According to the AMDM (Adomian 1994, Hsu et al. 2008, Mao 2012, 2013),  (X) in Eq. (10) 

can be expressed as an infinite series 

                         





0m

m

m XCX                                                          (11) 

where the unknown coefficients Cm will be determined recurrently. 
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Applying both sides of Eq. (10) with G-1, we get 

      

   

   

   

   

   XXccXcXc

dX

Xd
XXXU

dX

Xd
XXXXU

dX

Xd
XX

dX

Xd
XXX

dX

Xd
XXXXGXGG

hbhb 
















22

3

4

2

321

2

2

2
4

4

3

3

2

210

2

2

2
2

432

3

3
3

4

2

321

4

4
4

4

3

3

2

21

11

1

432

1262

4322















 

  

422



 

 

 

 

 

 

AMDM for free vibration analysis of rotating tapered beams 

  

  

      

   

   

   

   

   XXccXcXc

dX

Xd
XXXU

dX

Xd
XXXXU

dX

Xd
XX

dX

Xd
XXX

dX

Xd
XXXXGXGG

hbhb 
















22

3

4

2

321

2

2

2
4

4

3

3

2

210

2

2

2
2

432

3

3
3

4

2

321

4

4
4

4

3

3

2

21

11

1

432

1262

4322















 

 

(14) 

Substituting Eqs. (11) and (13) into Eq. (14), we get 
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Comparing Eq. (11) to Eq. (15), the coefficients Cm (m>4) in Eq. (11) can be determined by 

using the following recurrence relations 
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We may approximate the above solution by the M-term truncated series, Eq.(11) can be 

rewritten as 
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Eq. (20) implies that 
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m XC  is negligibly small. The number of the series summation limit 

M is determined by convergence requirement in practice. 

423



 

 

 

 

 

 

Qibo Mao 

From above analysis, it can be found that there are five unknown parameters (C0, C1, C2, C3 and 

) for the free vibration analysis of the rotating beam. These unknown parameters can be 

determined by using the boundary condition equations of the beam, and then the natural 

frequencies and corresponding mode shapes for the rotating beams can be obtained. 

 

 

3. Natural frequencies and mode shapes 
 

The cantilevered boundary conditions of the rotating beam shown in Fig. 1 can be expressed 

into dimensionless form (Banerjee 2000, Banerjee et al. 2006, Wang and Wereley 2004), wet get  
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Substituting Eq. (20) into Eqs. (21) and (22), we get 
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According to Eq. (20), the second and third spatial derivative of the mode shapes can be 

expressed as 

              
 

  





2

0

22

2

21
M

m

m

m XCmm
dX

Xd 
                                           (24) 

           
 

   





3

0

33

3

321
M

m

m

m XCmmm
dX

Xd 
                                     (25) 

By using Eqs. (24) and (25), Eq. (22) can be expressed as 
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Substituting Eqs. (16)-(19) and (23) into Eqs. (26) and (27), Cm (m>3) in Eqs. (26) and (27) can 

be expressed as linear functions of C2 and C3 through a recursive way. It means that there are only 

three unknown parameters (C2, C3 and ) in Eqs. (26) and (27). So these two boundary condition 

equations can be expressed as 
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Table 1 The convergence of the dimensionless natural frequencies (n) for a tapered beam (U=12, R=0, 

cb=0, ch=0.5) 

M 
Mode index 

1 2 3 4 

10 26.495055041695 40.536930048779 75.300698302519 206.053571179223 

20 13.452009966574 33.995750398931 64.602868940583 108.008955209130 

30 13.470052122327 34.038087943671 65.509436018609 110.430372129048 

40 13.471236306204 34.093487129711 65.533042916599 110.218531535904 

50 13.471129006455 34.087677953868 65.523660855132 110.225006691375 

60 13.471129934581 34.087674922285 65.523664134660 110.225008319294 

70 13.471129933314 34.087674923875 65.523654261033 110.225008006113 

80 13.471129933318 34.087674923877 65.523654261717 110.225008006927 

90 13.471129933314 34.087674923685 65.523654261270 110.225008006227 

100 13.471129933314 34.087674923682 65.523654261246 110.225008006567 

 13.4711
a
 34.0877

 a
 65.5237

 a
 N/A. 

aResults from Wang and Wereley (2004) 

 

 

The explicit forms for fij in Eqs. (28) and (29) are very complex. However, all the algebraic 

calculations are finished quickly using symbolic computational software (such as MATLAB). 

From Eqs. (28) and (29), the nth dimensionless frequency parameter (n) can be solved by 
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Notice that Eq. (30) is a polynomial of degree N evaluated at . By using the functions 

sym2poly and roots in MATLAB Symbolic Math Toolbox, Eq. (30) can be directly solved. The 

next step is to determine the nth mode shape function corresponding to nth dimensionless 

frequency (n). Substituting the solved (n) into Eqs. (28) or (29), then C3 can be expressed as the 

function of C2.  
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Substituting solved C0, C1, C2, C3 and (n) into equations. Eqs. (16)-(18) and using Eq. (19), all 

other coefficients Cm+4 (m0) can be determined. Then the corresponding nth mode shape function 

can be obtained by using Eq. (20). 

 

 

4 Numerical calculations 
 

In order to verify the proposed method to analyze the free vibration of the rotating tapered 

beam shown in Fig. 1, several numerical examples will be discussed in this section.  

As mentioned earlier, the closed-form series solutions of mode shape functions in Eq. (20) will 

have to be truncated in numerical calculations. It is important to check how rapidly the 

dimensionless natural frequencies (n) computed through AMDM converge toward the exact  
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Table 2 The first five dimensionless natural frequencies (n) for a beam with different dimensionless 

rotating speed U and offset length R when taper ratios cb=0 and ch=0.5 

R U 
Mode index n 

1 2 3 4 5 

0 

0 
3.823785 18.317261 47.264827 90.450478 148.001745 

3.82379
 a
 18.3173

 a
 47.2648

 a
 90.4505

 a
 148.002

 a
 

1 
3.986618 18.474006 47.417284 90.603916 148.156266 

3.98661
 a
 18.4740

 a
 47.4173

 a
 90.6039

 a
 148.156

 a
 

5 
6.743399 21.905325 50.933807 94.206358 151.814249 

6.74340
 a
 21.9053

 a
 50.9338

 a
 94.2064

 a
 151.814

 a
 

10 
11.501549 30.182744 60.563880 104.611993 162.677340 

11.5015
 a
 30.1827

 a
 60.5639

 a
 104.612

 a
 162.677

 a
 

12 
13.471130 34.087675 65.523654 110.225008 168.698805 

13.4711
 b

 34.0877
 b

 65.5237
 b

 N/A. N/A. 

0.5 

1 
4.090409 18.576241 47.521021 90.710782 148.265331 

4.09041
 c
 18.5762

 c
 47.521

 c
 90.7108

 c
 N/A. 

2 
4.797840 19.332499 48.280957 91.486873 149.053055 

4.79784
 c
 19.3325

 c
 48.281

 c
 91.4869

 c
 N/A. 

3 
5.777354 20.531144 49.520040 92.764695 150.355963 

5.77735 20.5311 49.520 92.7647 N/A. 

4 
6.905011 22.099559 51.201280 94.522100 152.159643 

6.90501
 c
 22.0996

 c
 51.2013

 c
 94.5221

 c
 N/A. 

5 8.112317 23.963571 53.279988 96.730532 154.444926 

10 14.550041 35.830843 68.033704 113.328854 172.206341 

1 

1 
4.191561 18.677904 47.624510 90.817507 148.374307 

4.19156
 c
 18.6779

 c
 47.6245

 c
 90.8175

 c
 N/A. 

2 
5.132800 19.720216 48.686515 91.908976 149.485898 

5.1328
 c
 19.7202

 c
 48.6865

 c
 91.9090

 c
 N/A. 

3 
6.386783 21.343711 50.403352 93.697163 151.318673 

6.38678
 c
 21.3437

 c
 50.4034

 c
 93.6972

 c
 N/A. 

4 
7.793079 23.425519 52.706332 96.139351 153.844302 

7.79308
 c
 23.4255

 c
 52.7063

 c
 96.1394

 c
 N/A. 

5 9.275320 25.851548 55.516746 99.182173 157.025860 

10 17.047961 40.660692 74.676635 121.331238 181.161248 

2 

1 
4.386682 18.879550 47.830751 91.030537 148.591990 

4.38668
 c
 18.8795

 c
 47.8308

 c
 91.0305

 c
 N/A. 

2 
5.742591 20.473019 49.486678 92.746713 150.347390 

5.74259
 c
 20.473

 c
 49.4867

 c
 92.7467

 c
 N/A. 

3 
7.452740 22.879476 52.120555 95.531374 153.223681 

7.45274
 c
 22.8795

 c
 52.1206

 c
 95.5314

 c
 N/A. 

4 
9.310318 25.866257 55.581704 99.284677 157.152488 

9.31032
 c
 25.8663

 c
 55.5817

 c
 99.2847

 c
 N/A. 

5 11.234823 29.248242 59.713029 103.889078 162.048101 

10 21.156567 48.841444 86.280212 135.724961 197.672644 
aResults from Banerjee et al. (2006) 
bResults from Wang and Wereley (2004) 
cResults from Ozdemir and Kaya (2006b) 
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Table 3 The first five dimensionless natural frequencies (n) for a tapered beam with different dimensionless 

rotating speed U and offset length R when taper ratios cb=ch=0.5 

R U 
Mode index n 

1 2 3 4 5 

0 

0 
4.625150 19.547613 48.578899 91.812768 149.389914 

4.62515
 a
 19.5476

 a
 48.5789

 a
 91.8128

 a
 149.390

 a
 

1 
4.764053 19.680336 48.707343 91.940946 149.518351 

4.76405
 a
 19.6803

 a
 48.7073

 a
 91.9409

 a
 149.518

 a
 

2 
5.156415 20.073355 49.090608 92.324357 149.902965 

5.15641
 a
 20.0733

 a
 49.0906

 a
 92.3243

 a
 149.903

 a
 

5 
7.290145 22.635992 51.691808 94.962652 152.566572 

7.29014
 a
 22.6360

 a
 51.6918

 a
 94.9627

 a
 152.567

 a
 

10 
11.941488 30.029893 60.039884 103.809834 161.700572 

11.9415
 b

 30.0299
 b

 60.0399
 b

 103.810
 b

 161.701
 b

 

1 

1 4.945145 19.856664 48.884979 92.122548 149.702951 

2 5.795338 20.756249 49.791371 93.045254 150.637870 

5 9.794041 26.194609 55.704367 99.246969 157.014783 

10 17.600101 39.857367 72.822931 118.589459 177.787425 

2 

1 5.119662 20.031412 49.061923 92.303758 149.887302 

2 6.368664 21.416902 50.481660 93.760064 151.368853 

5 11.762285 29.309358 59.424681 103.335376 161.327475 

10 21.806335 47.618456 83.510951 131.533983 192.375077 

3 

1 5.288261 20.204620 49.238183 92.484579 150.071403 

2 6.892955 22.057301 51.161912 94.468930 152.095971 

5 13.436296 32.111656 62.906675 107.251026 165.515375 

10 25.307513 54.236272 92.873277 143.173631 205.797707 
aResults from Banerjee et al. (2006) 
bResults from Banerjeea and Jackson (2013) 

 

 

value as the series summation limit M is increased. To examine the convergence of the solution, a 

beam with dimensionless rotating speed U=12 and dimensionless offset length R=0 is considered. 

The taper ratios of the beam are assumed as cb=0 and ch=0.5. Table 1 shows the dimensionless 

natural frequencies (n) as the function of the series summation limit M. Clearly, the (n) 

converges very quickly as the series summation limit M is increased. If M=50 is used, the first 

fourth 1 can be kept accurate to the sixth decimal place. The excellent numerical stability of the 

solution can also be found in Table 1. 

For brief, the series summation limit M in Eq. (20) will be simply truncated to M=60 in all the 

subsequent calculations. The dimensionless natural frequencies (n) are kept accurate to the sixth 

decimal place for comparison purpose. To further check the accuracy of the proposed method, the 

first five dimensionless natural frequencies (n) for beams with taper ratios (cb=0, ch=0.5) and 

(cb=ch=0.5) under different rotating speeds U and offset lengths R are listed in Tables 2 and 3, 

respectively. Those calculated results are compared with those listed in the publications (Banerjee 

et al. 2006, Wang and Wereley 2004, Ozdemir and Kaya 2006b) and excellent agreement is found. 

Due to the stiffening effect of the centrifugal axial force acting on the beam, it can also be found 
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that the natural frequencies increase when the rotating speed or offset length increases, as 

expected. 

Fig. 2 shows the first five mode shapes with different taper ratios and rotating speeds when the 

offset length R=0. From Fig. 2, it can be found that the discrepancies between the mode shapes 

under different rotating speeds become smaller as increasing the modal number. However, the 

natural frequencies are quite different, as shown in Tables 2 and 3. 

 

 

 

Fig. 2 The first five mode shapes for the rotating tapered beams when offset length R = 0. Columns 1, 2 

and 3 are (cb = ch =0), (cb = 0, ch =0.5) and (cb = cb =0.5) respectively. Rows 1, 2, 3, 4 and 5 are the 

first, second, third, fourth and fifth mode respectively 
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Table 4 The effect of taper ratios (cb and ch) on the dimensionless natural frequencies (n) for a tapered 

beam when the dimensionless offset length R=1 and the dimensionless rotating speed U=5 

ch 
cb 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

 (a) The first dimensionless natural frequency (1) 

0 8.940358 9.007297 9.085007 9.176605 9.286602 9.421803 9.593031 9.818689 10.133019 

0.1 8.987776 9.055627 9.134327 9.227003 9.338178 9.474670 9.647317 9.874541 10.190608 

0.2 9.042467 9.111360 9.191192 9.285099 9.397619 9.535583 9.709845 9.938837 10.256833 

0.3 9.106448 9.176547 9.257686 9.353016 9.467089 9.606750 9.782864 10.013868 10.334014 

0.4 9.182617 9.254129 9.336801 9.433799 9.549687 9.691329 9.869593 10.102906 10.425454 

0.5 9.275320 9.348520 9.433021 9.532005 9.650054 9.794041 9.974835 10.210823 10.536052 

0.6 9.391452 9.466714 9.553448 9.654852 9.775524 9.922342 10.10616 10.345274 10.673466 

0.7 9.542785 9.620650 9.710194 9.814634 9.938577 10.088896 10.276386 10.519177 10.850535 

0.8 9.75160 9.832904 9.926143 10.034548 10.162721 10.317491 10.509519 10.756556 11.090864 

 (b) The second dimensionless natural frequency (2) 

0 29.352835 29.406757 29.472448 29.554988 29.662650 29.809672 30.022385 30.354322 30.929973 

0.1 28.697236 28.747688 28.809182 28.886539 28.987641 29.126107 29.327220 29.642630 30.193119 

0.2 28.022082 28.069408 28.127074 28.199644 28.294603 28.424941 28.614871 28.914105 29.439583 

0.3 27.324787 27.369416 27.423716 27.491997 27.581350 27.704123 27.883440 28.167016 28.667808 

0.4 26.602362 26.644830 26.696356 26.760994 26.845441 26.961405 27.130899 27.399585 27.876284 

0.5 25.851548 25.892557 25.942080 26.003930 26.084417 26.194609 26.355400 26.610350 27.063987 

0.6 25.069521 25.110009 25.158576 25.218809 25.296653 25.402552 25.556288 25.799290 26.231631 

0.7 24.256604 24.297887 24.346985 24.407291 24.484422 24.588246 24.737476 24.971423 25.385544 

0.8 23.427109 23.471157 23.523036 23.586008 23.665439 23.770712 23.919568 24.149215 24.550263 

 (c) The third dimensionless natural frequency (3) 

0 69.760710 69.751504 69.754491 69.776791 69.830202 69.935374 70.131316 70.500248 71.246956 

0.1 67.071095 67.064485 67.069251 67.092073 67.144046 67.244648 67.430791 67.780582 68.489564 

0.2 64.314844 64.311112 64.317951 64.341593 64.392417 64.488699 64.665203 64.995797 65.666477 

0.3 61.480879 61.480366 61.489638 61.514470 61.564510 61.656808 61.823910 62.135312 62.767116 

0.4 58.554701 58.557830 58.569983 58.596474 58.646209 58.734973 58.893036 59.185360 59.777753 

0.5 55.516746 55.524049 55.539661 55.568428 55.618498 55.704367 55.853949 56.127503 56.680079 

0.6 52.339641 52.351826 52.371671 52.403558 52.454870 52.538784 52.680790 52.936254 53.448934 

0.7 48.983665 49.001720 49.026906 49.063152 49.117079 49.200537 49.336536 49.575373 50.048849 

0.8 45.389145 45.414554 45.446778 45.489319 45.548067 45.633543 45.766207 45.990922 46.426682 

 (a) The fourth dimensionless natural frequency (4) 

0 129.580326 129.528727 129.489137 129.469822 129.484712 129.558603 129.739159 130.128996 130.992453 

0.1 123.867396 123.821470 123.786681 123.770760 123.786767 123.858009 124.029406 124.397968 125.214572 

0.2 118.003122 117.963266 117.933688 117.921575 117.939102 118.008048 118.170523 118.517761 119.286765 

0.3 111.960553 111.927236 111.903358 111.895556 111.915095 111.982193 112.136062 112.461981 113.182582 

0.4 105.703630 105.677415 105.659835 105.656959 105.679129 105.744955 105.890658 106.195345 106.866696 

0.5 99.182173 99.163759 99.153218 99.156051 99.181649 99.246969 99.385135 99.668825 100.290073 

0.6 92.322688 92.312961 92.310421 92.319987 92.350084 92.415964 92.547534 92.810745 93.381123 

0.7 85.009758 85.009901 85.016663 85.034385 85.070509 85.138536 85.265029 85.508861 86.027849 

0.8 77.040770 77.052409 77.070287 77.098175 77.142513 77.214969 77.338500 77.564100 78.030314 
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Table 4 Continued 

 (a) The fifth dimensionless natural frequency (5) 

0 208.911042 208.834302 208.769584 208.725841 208.718318 208.774471 208.947791 209.355386 210.306328 

0.1 199.183559 199.114199 199.055936 199.017133 199.012061 199.066481 199.230699 199.615133 200.512134 

0.2 189.189884 189.128354 189.077012 189.043619 189.041453 189.094541 189.249924 189.611145 190.453344 

0.3 178.881028 178.827861 178.783995 178.756577 178.757873 178.810130 178.957032 179.295038 180.081492 

0.4 168.190791 168.146630 168.110913 168.090167 168.095616 168.147683 168.286589 168.601455 169.331144 

0.5 157.025860 156.991493 156.964765 156.951566 156.962058 157.014783 157.146373 157.438316 158.110154 

0.6 145.247065 145.223497 145.206837 145.202331 145.219054 145.273603 145.398881 145.668382 146.281271 

0.7 132.629758 132.618323 132.613188 132.618953 132.643581 132.701665 132.822207 133.070251 133.623083 

0.8

8 

118.7637

02 

118.7662

15 

118.7746

13 

118.7928

49 

118.8277

40 

118.8917

63 

119.0097

14 

119.2373

15 

119.7288

94  

 

Fig. 3 The first four mode shapes for the rotating beams under different taper ratios when U=5 and R=1. 

Columns 1, 2 and 3 are cb=0.1, 0.3 and 0.5 respectively. Rows 1, 2, 3, 4 and 5 are the first, second, third 

fourth and fifth mode respectively 
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Next, the beams with different width and thickness taper ratios are discussed. Because the 

proposed method based on AMDM technique offers a unified and systematic procedure for 

vibration analysis for the rotating tapered beams. The modification of taper ratios from one case to 

another is as simple as changing the values of the taper ratios cb and/or ch. And it does not involve 

any changes to the solution procedures or algorithms. 

Table 4 illustrates the effect of the taper ratios on the first four natural frequencies when the 

dimensionless rotating speed U=5 and offset length R=1. From Table 4, it can be found that the 

first natural frequency increases when the width taper ratio cb and/or thickness taper ratio ch 

increases. However, on the contrary, for the second, third and fourth modes, the thickness taper 

ratio ch has an almost linear decreasing effect on the natural frequencies, and the width taper ratio 

cb has little influence on the natural frequencies. This conclusion is well agreed with the results in 

publications (Banerjee et al. 2006, Ozdemir and Kaya 2006b). Fig. 3 shows the effect of the taper 

ratios on the first five mode shapes under different rotating speeds and offset lengths. It can be 

found that the discrepancies between the mode shapes under different taper ratios become much 

large with increasing the mode number.  

 

 

5. Conclusions 
 

In this paper, free vibrations of the rotating tapered cantilever Euler-Bernoulli beams are 

carried out using Adomian modified decomposition method (AMDM). The advantages of the 

AMDM are its fast convergence of the solution and its high degree of accuracy. Natural 

frequencies and corresponding mode shapes with various taper ratio, offset length and rotating 

speed are presented. Furthermore, the natural frequencies obtained by using AMDM are in 

excellent agreement with published results. The effects of the offset length, taper ratios and 

rotating speed on the natural frequencies and corresponding mode shapes are investigated. The 

numerical results show that the natural frequencies increase with the increase in the offset length 

and/or rotating speed. The changes of the mode shapes under different rotating speeds become 

smaller as increasing the modal number. For given rotating speed, the first natural frequency of the 

tapered beam increases when the width and/or thickness taper ratio increases. 
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