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Abstract.  In this study, linear vibrations of an axially moving beam under non-ideal support conditions 

have been investigated. The main difference of this study from the other studies; the non-ideal clamped 

support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially 

moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination 

of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions 

have been obtained using Hamilton’s Principle. Method of Multiple Scales, a perturbation technique, has 

been employed for solving the linear equations of motion. Linear equations of motion are solved and effects 

of different parameters on natural frequencies are investigated. 
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1. Introduction 
 

Axially moving beam vibrations were studied by many researchers. Some tests are performed 

to compare the “first order” perturbative solution with an approximate solution obtained by a finite 

difference scheme (Pellicano and Zirilli 1998). The transverse vibration of a simply supported 

beam moving with constant velocity is considered (Pakdemirli 1998). Non-linear vibrations of an 

axially moving beam are investigated. The non-linearity is introduced by including stretching 

effect of the beam. The beam is moving with a time-dependent velocity, namely a harmonically 

varying velocity about a constant mean velocity. (Ö z et al. 2001). Non-ideal boundary conditions 

are modelled using perturbations. The idea is applied to two beam vibration problems; simply 

supported beam, sliding-clamped beam. Effect of non-ideal boundary conditions on the natural 

frequencies and mode shapes are examined for each case using the Lindstedt-Poincare technique 

(Pakdemirli and Boyaci 2002). The concept of non-ideal boundary conditions is applied to the 

beam problem. Ideal and non-ideal frequencies as well as frequency-response curves are compared 

(Mehmet Pakdemirli and Boyacı 2003). A non-ideal boundary condition is modelled as a linear 

combination of the ideal simply supported and the ideal clamped boundary conditions with the 
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weighting factors respectively. When the non-ideal boundary conditions are close to the ideal 

simply supported boundary conditions, however, the natural frequencies hardly change as k varies 

(Lee 2013). The dynamic response of an axially accelerating, tensioned beam is investigated. Non-

linear vibrations of an axially moving beam are investigated. Linear solutions of the vibration of 

axially moving beams are discussed (Ö z and Pakdemirli 1999, Ö z et al. 2001). The vibration of an 

axially moving Euler-Bernoulli beam with fixed end conditions is investigated. Natural 

frequencies are found depending on mean velocity. The natural frequencies for the fixed-fixed 

axially moving beam are higher than those of a simply supported one (Ö z 2001). The transverse 

vibrations of an axially moving flexible beams resting on multiple supports and effect of axial 

speed on first and second natural frequency of system are investigated. And obtained results are 

compared with older studies (Kural and Ö zkaya 2012). Nonlinear vibrations of an axially moving 

mid-supported and multi-supported string have been investigated. There are non-ideal supports 

allowing minimal deflections between ideal supports at both ends of the string (Yurddaş et al. 

2013, Yurddaş et al. 2014). The method of multiple scales is directly applied to the equations of 

motion obtained for the general case.  Natural frequency equations are presented for intermediate 

and multiple support cases. Results are presented to show the effects of axial speed, number of 

supports, and their locations (Baǧdatli et al. 2013, Baǧdatli et al. 2011). 

In this research, linear vibrations of an axially moving beam under non-ideal support conditions 

have been studied. The main difference of this study from the other studies; the non-ideal supports 

between ideal supports at both ends of the beam is allowed minimal rotations when beam axially 

moving. Non-ideal boundary cases at the both ends are modeled with weighting factor. Equations 

of the motion and boundary conditions have been obtained using Hamilton’s Principle. Method of 

Multiple Scales, a perturbation technique, has been employed for solving the linear equations. 

Equation of motion is made dimensionless using dimensionless parameters. Linear equations of 

motion are solved and effects on the natural frequency of the different parameters are investigated. 

Exact natural frequencies are compared with ideal support conditions to non-ideal boundary 

conditions for different weighting factor (k) parameters and axial moving values (v0). The 

weighting factor which causing non-ideal effects are discussed for simple and clamped support 

conditions. 

 

 

2. Equations of motion 
 

Rotary inertia and shear effect are not included and cross sectional area do not change during 

motion. The Lagrangian can be written as follows 
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A is the mass, û  and ŵ  is axial and longitudinal displacement, v̂  is the axial moving of the 

beam, L is the length of the beam, EA is longitudinal rigidity, EI is flexural rigidity, P is the axial 

force, t̂  is the time. Dot denotes derivative with respect to t̂  and prime symbol derivative with 
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respect to x̂  in Eq. (1). The first integral is the kinetic energy, the second integral is the elastic 

energy in bending, the third integral is the elastic energy in extension due to stretching of the 

neutral axis and the last one is the elastic energy due to axial tension. Applying Hamilton’s 

principle and performing the necessary algebra, Eq. (1) instead of Lagrangian and after that 

general case for the beam is obtained as follows 
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where axial velocity (v) is made non-dimensional by dividing with critical velocity. vb is 

longitudinal rigidity and vf  flexural rigidity. The explanation for vb
2>>1 is given in reference, 

(Chakraborty et al. 1998, Thurman and Mote 1969). The following equation of motion in the non-

dimensional form is written using the Eq. (3) 
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The method of multiple scales will be applied to the equations directly in the next section. The 

amplitudes of vibration are assumed small to guarantee that the nonlinear terms stay in the higher 

orders of perturbation, is in the second order since it is multiplied by a nonlinear term. Axial 

velocity of the beam is determined as shown in Eq. (5) 

tvvv  sin10                                                              (5) 

where of the beam about an arbitrary constant value with small amplitude fluctuations and the 

fluctuation frequency is again arbitrary. Eq. (6) can be showed after inserting velocity as follows 

  wdxwvwtvvtvv

wvtvwtvwvww

b

iv

f




















1

0

22

10

22

1

22

0

2

110

2

1
1sin2sin

cossin22



 

                (6) 

In order to obtain a weak nonlinear system deflection w is transformed yw   
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The method of multiple scales will be applied to the partial differential equation system directly 

(Nayfeh 1981). The displacement functions for the moving beam can be expanded as shown below 

);T(x,Tεy);T(x,Tyεx,ty 101100);(                                               (8) 
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where  is a small book-keeping parameter representing that the deflections are small. This 

procedure models a weak non-linear system T0=t is the usual fast time scale and T1=εt is the slow 

time scales in the method of multiple scales. The time derivatives are expressed in terms of the 

new time variables ∂/∂t=D0+ɛD1, ∂2/∂t2=D0
2+2ɛD0D1+..., where Dn=∂/∂Tn. After expansion, one 

obtains equations of motion as follows 
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3. Numerical analysis 
 

This study aimed to examine only the linear part of the problem. The effects of the natural 

frequency of the linear problem of the non-ideal boundary conditions were investigated. Nonlinear 

effects of the natural frequencies and stability analysis is a continuation of the work. Solution of 

the first order of expansion gives natural frequency values and a solvability condition is obtained 

from the second order of expansion. The first order of perturbation is linear given in Eq. (10); the 

solution may be represented by 
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where A stands for complex amplitude of the preceding terms. Substituting Eq. (11) into Eq. (8), 

one has 
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The non-dimensional form of general form showed in Eq. (13) (Lee 2013). 

General Form 
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When the weighting factor (k) is taken as small value that closed zero, non-ideal clamped 

support is obtained. Similarly, non-ideal simple support is reached when the weighting factor (k) is 

taken closed to 1. The sign in Eq. (13) becomes minus (−) for left end of the beam and plus (+) for 

right end of the beam. 

General boundary cases can be found in matrix form in Eq. (14) 
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Boundary conditions for different cases given in Eqs. (15)-(20); non-ideal boundary conditions 

for Simple and Clamped support are determined by the variation of the parameter k. 
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The following functions can be proposed for the solutions of Eq. (21) 
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Frequency equations can be obtained when the boundary conditions are applied. Natural 

frequencies are plotted in Figs. 1-4 for different cases. 
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Fig. 1 Natural frequency value according to changing parameter of k (vo=0.1) 
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Fig. 2 Natural frequency value according to changing parameter of k (vo=0.1) 
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(b) Case VI 

Fig. 3 Natural frequencies versus weighting factor for different vo values (First mode) 

 

 

In Fig. 1(a), (b), varying natural frequency values according to weighting factor (k) are given 

for first and second mode vibrations of Case II and Case III. Velocity of axially moving beam is 

taken as v0=0.1. Natural frequencies for ideal simple supported boundary condition are obtained 

when k=1. These values are ω1=3.6908, ω2=10.0716 for first and second mode vibrations. Natural 

frequencies of Case I are compared with Case II and Case III. It is seen that frequency values of 

Case III increased 0.63% for first mode and increased 0.34% for second mode while the weighting 

factor (k) varying from 1 to 0.9. Similarly, frequency values of Case II increased 0.32% for first 

mode and 0.17% for second mode while the weighting factor (k) varying from 1 to 0.9. Namely, 

natural frequencies increase when the simple supported boundary condition deviate from its ideal 

form. 

In Fig. 2(a), (b), varying natural frequency values according to weighting factor (k) are given 

for first and second mode vibrations of Case V and Case VI. Velocity of axially moving beam is 

taken as v0=0.1. Natural frequencies for ideal clamped boundary condition are obtained when 

k=0.1. These values are ω1=5.6528, ω2=14.0538 for first and second mode vibrations. Natural 

frequencies of Case IV are compared with Case V and Case VI. It is seen that frequency values of  
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Fig. 4 Natural frequencies depending on vo for first mode 
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Fig. 5 Mode shape of first mode vibrations with v0=0.1 

 

 

Case VI decreased 21.39% for first mode and 19.80 % for second mode while the weighting factor 

(k) varying from 0 to 0.1. Similarly, frequency values of Case V decreased 10.49% for first mode 

and 9.58% for second mode while the weighting factor (k) varying from 0 to 0.1. Namely, natural 

frequencies decrease when the clamped boundary condition deviates from its ideal form. The 

effects of non-ideal boundary conditions on natural frequencies of clamped beam are more 

significant than simple supported beam.  

According to changing vo, natural frequency values are given depending on the weighting 

factor (k) in Fig. 3(a), (b). First mode vibrations are shown for simple and clamped with both ends 

non-ideal conditions using the v0=0, 0.2, 0.4, 0.6, 0.8 and 1 values in Fig. 3(a), (b). Natural 

frequency values are decreased with increasing value v0 at Fig. 3(a) and Fig. 3(b). First mode 

natural frequencies decreased while axial velocity v0 is increasing. The change of natural 

frequency of clamped beam is more explicit than simple supported beam. 

Natural frequency changes depending on vo are given in Fig. 4(a), (b). Natural frequencies of 

simple supported and clamped beams decreased while the axial velocity vo increasing.  

Case V 

Case IV 

Case VI 

Case I 
Case II 
Case III 
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In Fig. 5(a), (b), mode shapes of axially moving beams are given. The effects of non-ideal 

boundary conditions on mode shape for clamped beam are seen explicitly in Fig. 5(b). In Fig. 5(a), 

the effects of non-ideal boundary condition on natural frequencies for simple supported beam 

stayed limited.  

 
 
4. Conclusions 
 

In this study, non-ideal boundary conditions were applied to simple and clamped support with 

one end and both ends non-ideal. Effects of non-ideal boundary conditions and axial velocity on 

natural frequencies are investigated. The weighting factor (k) is expressed as a combination of 

ideal and non-ideal boundary and determines the ratio of non-ideal boundary conditions. Six 

different cases are created to see the effects of non-ideal boundary conditions. First tree cases 

taken as simple supported and the others are taken as clamped boundary conditions. Case I and 

Case IV are ideal simple and clamped supported beams at both ends. Case II and V are non-ideal 

simple supported and clamped beams at one end and ideal supported at other end. Case III and VI 

are non-ideal simple supported and clamped beams at both ends of the beam. Natural frequencies 

of Case I, Case II and Case III are compared. The weighting factor k is chosen as varying from 1 

to 0.9 for simple supported cases. In Case III, frequency values increased 0.63% for first mode and 

increased 0.34% for second mode. Similarly, in Case II, frequency values increased 0.32% for first 

mode and 0.17% for second mode while the weighting factor (k) varying from 1 to 0.9. Natural 

frequencies of Case IV, Case V and Case VI are compared. The weighting factor (k) varying from 

0 to 0.1 for clamped supported cases. In Case VI, frequency values decreased 21.39% for first 

mode and 19.80 % for second mode. Similarly, in Case V, frequency values decreased 10.49% for 

first mode and 9.58% for second mode. Namely, natural frequencies increase in simple supported 

boundary condition and decrease in  clamped boundary condition when the boundary conditions 

deviate from its ideal form. The effect of non-ideal boundary conditions on natural frequencies of 

clamped beam is more significant than simple supported beam. Natural frequencies of simple 

supported and clamped beams decreased while the axial velocity v0 increasing. The change of 

natural frequency of clamped beam is more explicit than simple supported beam. The changes of 

mode shapes of beams under non-ideal boundary conditions are shown. The variations on mode 

shapes stayed limited simple supported beam. 

 
 
References 
 
Baǧdatli, S.M., Ö zkaya, E. and Ö z. H.R.  (2013), “Dynamics of axially accelerating beams with multiple 

supports”, Nonlin. Dyn., 74, 237-255. 

Bağdatli, S.M., Ö zkaya, E. and Ö z, H.R. (2011), “Dynamics of axially accelerating beams with an 

intermediate support”, J. Vib. Acoust., 33(3), 31013. 

Chakraborty, G., Mallik, A.K. and Hatwal, H. (1998), “Non-linear vibration of a travelling beam”, Int. J. 

Nonlin. Mech., 34, 655-670. 

Kural, S. and Özkaya, E. (2012), “Vibrations of an axially accelerating multiple supported flexible beam”, 

Struct. Eng. Mech., 44(4), 521-538. 

Lee, J. (2013), “Free vibration analysis of beams with non-ideal clamped boundary conditions”, J. Mech. 

Sci. Tech., 27(2), 297-303. 

Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley&Sons, USA. 

604



 

 

 

 

 

 

Free vibration analysis of axially moving beam under non-ideal conditions 

 

Ö z, H.R., Pakdemirli, M. and Boyaci, H. (2001), “Non-linear vibrations and stability of an axially moving 

beam with time-dependent velocity”, Int. J. Nonlin. Mech., 36, 107-115. 

Öz, H.R. (2001), “On the vibrations of an axially travelling beam on fixed supports with variable velocity”, 

J. Sound Vib., 239, 556-564. 

Ö z, H.R. and Pakdemirli, M. (1999), “Vibrations of an axially moving beam with time-dependent velocity”, 

J. Sound Vib., 227(2), 239-257. 

Pakdemirli, M. and Boyaci, H. (2002), “Effect of non-ideal boundary conditions on the vibrations of 

continuous systems”, J. Sound Vib., 249, 815-823. 

Pakdemirli, M. and Boyaci, H. (2003), “Non-linear vibrations of a simple-simple beam with a non-ideal 

support in between”, J. Sound Vib., 268(2), 331-241. 

Pakdemirli, M. and Özkaya, E. (1998), “Approximate boundary layer solution of a moving beam problem”, 

Math. Computat. Appl., 3(2), 93-100. 

Pellicano, F. and Zirilli, F. (1998), “Boundary layers and non-linear vibrations in an axially moving beam”, 

Int. J. Nonlin. Mech., 33(4), 691-711. 

Thurman, A.L. and Mote, C.D. (1969), “Free, periodic, nonlinear oscillation of an axially moving strip”, J. 

Appl. Mech., 36, 83. 

Yurddaş, A., Özkaya, E. and Boyaci, H. (2013), “Nonlinear vibrations of axially moving multi-supported 

strings having non-ideal support conditions”, Nonlin. Dyn., 73, 1223-1244. 

Yurddaş, A., Ö zkaya, E. and Boyacı, H. (2014), “Nonlinear vibrations and stability analysis of axially 

moving strings having non-ideal mid-support conditions”, J. Vib. Control, 20(4), 518-534. 

 

 

CC 

605




