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Abstract.  A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled 

FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are 

taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the 

corresponding tangent matrix is used to compute the critical moments. General expression is derived for the 

lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 

3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and 

the shear effects on the buckling loads are demonstrated through several case studies. 
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1. Introduction 
 

Thick and thin-walled box elements with composite materials are widely used in engineering 

applications like aircraft wings, helicopter rotor blades, robot arms, bridge decks and other 

structural elements in civil constructions. However, in contrast to the steel box beams, the 

composite ones offer competitive solutions to achieve a structural weight reduction and a good 

bending-twist resistance. In addition, the material, the beam length, the load height and the cross-

section parameter can play an important role on the lateral-torsional buckling behavior of such 

structures. The problem of the constrained torsion of isotropic closed-section thin-walled beams 

was addressed in the pioneering works by Vlasov (1962) and Gjelsvik (1981). Vlasov’s theory is 

also used to develop a thin-walled beam model by Fu and Hsu (1995). Kim and Kim (1999) have 

developed a one-dimensional beam theory to deal with coupled deformations of torsion, warping 

and distortion in thin-walled general sectioned beams. These investigations have addressed the 

significant effects of distortion and warping deformations on the analysis accuracy.  

Paulsen and Welo (2001) have also shown the effect of the hour-glass section distortion on the 

buckling phenomena of hollow rectangular beams. While there is a considerable body of literature 
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available on the stability of thin-walled metallic structures (see for example Ruta et al. 2008, 

Pignataro et al. 2010, Erkmen and Attard 2011, Gonçalves 2012, Lofrano et al. 2013, Erkmen 

2014), the corresponding studies on composite structures are rather few. Moreover, these studies 

have been confined only to open cross-section beams. Fraternali and Feo (2000) used a finite 

element formulation by generalizing the classical Vlasov theory of sectorial areas and without 

considering shear deformation to solve the problem of non-linear stability of thin-walled 

composite beams with open cross-section. Sapkàs and kollàr (2002) presented stability analysis of 

simply supported and cantilever composite thin-walled beams with open section subjected to three 

different load conditions, the Ritz method was applied to derive their closed form approximate 

solution for the buckling load. Subsequently, Machado and Cortínez (2005a, b) developed a 

geometrically non-linear theory based on the assumptions adopted by Cortínez and Piovan (2002) 

to study the lateral-torsional buckling behavior of composite bisymmetric open and closed cross-

sections thin-walled beams, the Ritz method was applied in order to obtain an approximate 

tangential matrix that allows to determine the critical loads considering prebuckling deflections, 

effects of shear flexibility were investigated with numerical results. Based on the power series 

expansions of displacement components, an element stiffness matrix for the spatially coupled 

stability analysis of thin-walled composite beam with symmetric and non-symmetric laminations 

has been presented by Kim et al. (2008), their numerical solutions have been compared with 

analytical and finite element results. However, the use of the composite materials was limited by 

the high temperature until the appearance of new material known as functionally graded material 

(FGM). Microscopically the FGM is non-homogeneous but at macro level, the mechanical 

properties vary continuously from one surface to another by smoothly varying the volume 

fractions of the material constituents. It is noted that, FGMs have received wide applications in 

modern industries including aerospace, mechanical, electronics, optics, chemical, biomedical, 

nuclear, and civil engineering to name a few during the past two decades (Bouderba et al. 2013, 

Tounsi et al. 2013, Belabed et al. 2014, Ait Amar Meziane et al. 2014, Fekrar et al. 2014, 

Bousahla et al. 2014, Khalfi et al. 2014, Hebali et al. 2014, Zidi et al. 2014, Al-Basyouni et al. 

2015, Bourada et al. 2015, Ait Yahia et al. 2015). Reviewing the literature on FG materials, it is 

understood that the literature is mostly dedicated to stability analysis of cylindrical shells and very 

few research works have been carried out on FGM box beams. Shen (2009) and later Dung and 

Hoa (2013) investigated the buckling and post-buckling of imperfect cylindrical shells subjected to 

torsion based on the von Karman–Donnell-type non-linear differential equations. The more recent 

work on the study of the buckling of thin-walled box beams made of FGM have been carried out 

by Lanc et al. (2015), they adopted a non-linear displacement field to investigate effects of the 

power-law index and skin-core-skin thickness ratios on the critical buckling loads and post-

buckling responses but the shear effects across the wall-thickness was neglected, therefore, the 

primary purpose of the current work is to fill this gap for studying the lateral-torsional buckling of 

thick and thin-walled FGM box beams. To this end, the considered structure is modeled by 

introducing the function used by Reddy (1984) satisfying the shear-stress-free boundary conditions 

at top, bottom, left, and right of the cross section in non-linear displacement fields. The solution of 

the equilibrium equations are derived via Galerkin Method and the critical moment are obtained by 

requiring the singularity of the tangential matrix with the linear bending problem. Finally, in order 

to put into evidence the effects of transverse shear, three models results are presented in the case of 

simply supported box beams under uniformly distributed loads. 
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(a) (b) 

Fig. 1 Geometry and material variation of the FGM box beam 

 
 
2. Kinematics 
 

Consider a symmetric FGM box beam of length L, minimum cross-sectional dimension c, 

maximum cross-sectional dimension d and wall thickness h (see Fig. 1). The Cartesian coordinate 

system (x, y, z) and the curvilinear system (x, s, n) are used. The coordinate s is measured along the 

tangent to the middle surface in a counter-clockwise direction, while n is the coordinate 

perpendicular to the s coordinate. The origin of the coordinates is set at the center of beam cross-

section.  

It is assumed that the Young’s modulus of FGM beam (Eq. (1)) varies through the wall-

thickness according to power law form used by Wakashima et al. (1990). 

                                                  E(n)= (Et – Eb)[(n/h)+(1/2)]p+ Eb                                               (1) 

Where Et and Eb denote values of the elasticity modulus at n=h/2 and n=−h/2, respectively and 

p is a variable parameter which dictates the material variation profile through the thickness. 

To develop the present model, a number of assumptions are stipulated: 

(a) The beam cross-sections are assumed rigid in their own planes. 

(b) Transverse shear stresses vary parabolically across the minimum and maximum cross- 

sectional dimensions.  

(c) Torsional primary and secondary warping are included in this formulation. 

(d) The Poisson’s coefficient ν is assumed to be constant.  

In general, the displacements, u, v and w of any generic point on the profile section in the x, y 

and z directions, respectively, may be expressed as 
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                                                                   ( –      )                                              (2c) 

Where u0, v0 and w0 are the mid-plane displacements in the x, y, and z directions, while the 

variables  y,  z and   denote the rotations about the z, y and x axes, respectively. The superscript 

primes denote the partial derivatives with respect to x.  

The primary and secondary torsional warping functions  p and  s are replaced by that of 

Sokolnikoff (1946) in Eq. (3). 
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Whereas, f(y) and f(z) represent the shape functions determining the distribution of the 

transverse shear strain and stress through the minimum and maximum cross-sectional dimensions. 

By choosing appropriate f(y) and f(z) terms, different well known models could be expressed: 
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The functions introduced by Reddy (1984) satisfying the shear-stress-free boundary conditions 

is used in the case of model (I). The model (II) is mainly based on constant transverse shear 

stresses through the cross-sectional dimensions. In model (III), deformations due to the transverse 

shear are neglected. 

Let us recall that the kinematic equations (Mohri et al. 2002) can be obtained from Eq. (2) by 

using the model (III). Moreover, the displacement field used by Ziane et al. (2013) is obtained 

from the model (II) by using the approximation cos =1 and sin =  and by disregarding the 

resulting non-linear terms. 

Thus, for Model (I), the expression in Eq. (2) is a generalization of others previously proposed 

in the literature. 

In the case of thin and thick box beams, the components of Green’s strain tensor which 

incorporate the large displacements are reduced to the following one: 
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Substituting Eq. (2) into Eq. (4) one obtain the components of the strain tensor which can be 

expressed in the following form 
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Hooke’s law for FGM beam walls in the global coordinate system for the flanges are obtained 

by replacing the subscripts s and n in Eq. (6) by y and z, respectively, whereas s and n are replaced 

by z and y for the webs. 
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Where (ζxx, ηxn, ηxs) and (εxx, γxn, γxs) are the stress and strain components, respectively. 

 

 

3. Variational formulation 
 

The equilibrium equations can be obtained by using the stationary conditions δ(U−W)=0, where 

U and W are the respectively the strain energy and the external load work. 

The variation of strain energy is 
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In the above equation the subscripts f and w denote respectively the flange and web of the box 

beam.  

Using Eq. (5), the following expression for δU is obtained: 
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The stress resultants are defined by integrating over the flange and web cross-sectional area as 
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Where N is the axial forces, Myc and Mzc are the bending moments, Tsv is the St-Venant torsion 

moment, Bω is the bimoment and MR is a higher order stress resultant. However, the appearance of 

the higher order moments Myh and Mzh and the non-usual transverse shear forces Vy and Vz is due to 

the particular form of the displacement field Eq. (2a). 

In the present study, the lateral buckling of beams initially in bending about the principal axis is 

considered. The applied loads are then reduced to the lateral distributed load on point P located on 

the section contour in Fig. 2(b). The external work variation is defined by the relationship 

   ∫  
 

 
                                                                  (9) 

From the above relationship for v, the following expression for δv and    are obtained 

δv= δv0 – ez cos  δ  – ey sin  δ                                                 (10) 
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(a) (b) 

Fig. 2 Simply supported beam under distributed load 
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3.1 Constitutive equations 
 

Assuming that the edges are free in the axial sense (N=0), and after some calculations, the 

reduced constitutive equations with all elastic effects of FGM box beam may be expressed in the 

terms of stress resultants in the following form 

 {

  
  
  

}  [

     
     

   ̅  

] {

  
 

  
 

 

 
    

}                                          (12a) 

{
 
 

 
 

   

   

   

   

   

  }
 
 

 
 

 

[
 
 
 
 
 
      

      

  
  

     
     

  
  

      

      

     
     

  
  

  
  

    
    ]

 
 
 
 
 

{
 
 

 
 

  

  
  

  

  
  

  

   }
 
 

 
 

                            (12b) 

Here, kij are stiffness coefficients of the FGM box beam. The explicit forms of kij are given in 

the Appendix.  

The beam strain fields of the above equations, associated with the displacement fields are 

defined as 
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3.2 Governing post-buckling equations 
 

Governing equations of the present study can be established by using expressions of the strain 

energy (Eq. (7)) and external load work (Eq. (11)). The equilibrium equations can be rearranged 

and once integrated by parts it writes 
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3.3 Lateral-torsional buckling loads 
 

In the case of simply supported beams, the displacements are approximated by means of the 

following functions, which are compatible with the governing equations and the boundary 

conditions of the beam.   

{v0, w0, θ,  y,  z}= {v1 sin (πx/L), w1 sin (πx/L), θ1 sin (πx/L),  y1 cos (πx/L),  z1 cos (πx/L)}   (15) 

Where v1, w1, θ1,  y1 and  z1 are the associated displacement amplitudes.  

In order to solve the non-linear differential equations  Eq.   4  , Galerkin’s method is first applied 

with the following approximations. 

 os θ=1- θ2/2                                                             (16a) 

s n θ= θ – θ
3
/6                                                            (16b)    

Inserting Eqs. (15) and (16) in (14a) and (14d), and carrying out the integration along the beam 
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length at the fundamental state {v0, w0, θ,  y,  z}={v0, 0, 0,  y, 0}, we find the reduced expressions 

of v1 and  y1. 

Consequently, the tangent stiffness matrix [K(qy,ey)] is formulated through the adoption of 

Newton-Raphson algorithm at the fundamental state in which the functions v1(qy,ey) and  y1(qy,ey) 

are introduced. The expressions of the elements K(qy,ey)ij  are not presented here because of their 

length. 

Once the tangent stiffness matrix is determined, the buckling loads can be obtained by 

requiring the singularity of the tangential matrix Det ([K(qy,ey)])=0. This procedure leads to a non-

linear algebraic problem for the critical loads. After some simplifications, the general expression 

for the critical moment of unshearable FGM beams (Model III) is arranged as 
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With the following coefficients C1 and C2 defined as 
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It clearly appears that in contrast to the case of isotropic beams, for the FGM beams the 

coefficients C1 and C2 depend not only on the geometric ratio Iy/Iz but also on material properties.  

Note that the lengthy expressions of the critical moments for shearable beams (Model I and Model 

II), are not given here due to space limitations. 

 

 

4. Results and discussions 
 

In order to demonstrate the correctness and accuracy of the proposed model, Lateral-torsional 

buckling of both thin and thick-walled FGM box beams is studied. The geometric dimensions of 

the beams are tabulated in Table 1.  

The beam walls are taken to be made of aluminum and alumina with the following material 

properties: Ceramic (alumina, Al2O3): Et=Ec=380 GPa, ν=0.3. Metal (aluminum, Al): Eb=Em=70 

GPa, ν=0.3. 

The variations in lateral buckling moments of FGM box beams for different power law indices 

(p) and different length are given in this section.  

 

 
Table 1 Geometry of the beams 

Parameters Thin-walled beam Thick-walled beam 

d (mm) 24.200 106.700 

c (mm) 13.600 50.800 

h (mm) 0.762 15.240 
 

587



 

 

 

 

 

 

Noureddine Ziane, Sid Ahmed Meftah, Giuseppe Ruta, Abdelouahed Tounsi and El Abbas Adda Bedia 

 

Fig. 3 Lateral-Buckling mode of thick-walled beams under distributed load for p=0.2 and 

L=1.524 m by ABAQUS simulation 

 
Table 2 Buckling moments Mcr (in N.m) for thin-walled box beams, load on top 

p Method L=0.321 m L=0.521 m L=0.721 m 

Ceramic 
Present 8434.35 5386.74 3951.36 

Abaqus 8239.35 5373.07 4085.61 

0.2 
Present 7471.48 4771.06 3499.27 

Abaqus 7389.29 4828.29 3553.02 

1 
Present 5254.02 3355.81 2461.34 

Abaqus 5160.41 3372.17 2484.95 

10 
Present 2299.29 1468.52 1077.05 

Abaqus 2255.01 1473.35 1085.83 

Metal 
Present 1553.69 992.31 727.91 

Abaqus 1517.78 989.78 752.61 

 
Table 3 Buckling moments Mcr (in N.m) for thin-walled box beams, load on bottom 

p Method L=0.321 m L=0.521 m L=0.721 m 

Ceramic 
Present 9731.79 5888.65 4214.96 

Abaqus 9876.89 5922.61 4230.89 

0.2 
Present 8606.63 5210.28 3729.95 

Abaqus 8475.81 5262.88 3741.69 

1 
Present 6053.66 3665.33 2623.91 

Abaqus 5917.81 3674.95 2616.78 

10 
Present 2649.23 1603.96 1148.18 

Abaqus 2585.86 1605.60 1143.42 

Metal 
Present 1792.70 1084.77 776.47 

Abaqus 1819.44 1091.01 779.37 

 

 

Moreover, the effect of the height parameter (ey) on the lateral buckling resistance is 

investigated by using a simply supported beam loaded on top and bottom flange. 

The thin and thick-walled FGM box beams are modeled using ABAQUS software (C3D8 

element type) with forty eight elements through the thickness (see Fig. 3). By (7488, 11520, 

23040) and (9792, 11520, 17280) we define the total number of elements of the thin and thick-
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walled beam associated with the beam lengths (0.321 m, 0.521 m, 0.721 m) and (1.124 m, 1.324 

m, 1.524 m), respectively. 

Based on Model (I), the lateral buckling moments of the thin-walled FGM box beams are 

computed for different values of power law indices p. The numerical results are displayed in 

Tables 2-3, along with the numerical solutions of finite element simulation. 

It can be seen from the comparison shown in Tables 2-3 that the present results agree very well 

with the numerical solutions of ABAQUS analysis, these tables also show that the material 

distribution (p) and beam lengths are inversely proportional to critical moment, as expected.  

The results predicted by the present model for thick-walled box beams are listed in Tables 4-5, 

they show a reasonable agreement with the values of ABAQUS analysis. The comparison in Table 

4 indicates that the maximum relative error of the buckling moment obtained for L=1.324m and 

p=10 is about 6%. 

The results in Tables 2-5 show that the beam resistance to lateral buckling is at greatest when 

the loads are applied on bottom flange. 

It can be observed from Figs. 4-5 that the material distribution (p) has a significant effect on the 

lateral-buckling moments of the short thick and thin-walled box beams for the two load heights, 

this effect is much more significant for the short thin-walled box beams, whereas long beams 

reveal a much lower sensitivity to this effect. The same figures show that with the decrease of the 

 

 
Table 4 Buckling moments Mcr (in N.m) for thick-walled box beams, load on top 

P Method L=1.124 m L=1.324 m L=1.524 m 

Ceramic 
Present 1555118.08 1336705.28 1171843.17 

Abaqus 1578189.97 1359789.27 1112680.99 

0.2 
Present 1370267.89 1178517.66 1033616.60 

Abaqus 1437588.73 1238880.03 1016110.22 

1 
Present 1064530.26 916144.01 803854.19 

Abaqus 1104136.11 951986.06 784692.27 

10 
Present 527417.78 453541.77 370341.23 

Abaqus 496065.82 427573.68 352926.72 

Metal 
Present 286469.04 246235.20 206660.08 

Abaqus 290719.50 250487.61 204966.77 

 
Table 5 Buckling moments Mcr (in N.m) for thick-walled box beams, load on bottom 

P Method L=1.124 m L=1.324 m L=1.524 m 

Ceramic 
Present 1555118.08 1336705.28 1171843.17 

Abaqus 1578189.97 1359789.27 1112680.99 

0.2 
Present 1370267.89 1178517.66 1033616.60 

Abaqus 1437588.73 1238880.03 1016110.22 

1 
Present 1064530.26 916144.01 803854.19 

Abaqus 1104136.11 951986.06 784692.27 

10 
Present 527417.78 453541.77 370341.23 

Abaqus 496065.82 427573.68 352926.72 

Metal 
Present 286469.04 246235.20 206660.08 

Abaqus 290719.50 250487.61 204966.77 
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Fig. 4 Buckling moments vs length of thin-walled box beams 

 

 

Fig. 5 Buckling moments vs length of thick-walled box beams 

 

 

beam length, the differences between the top and bottom loads tend to increase. 

Fig. 6 shows the critical moments vs cross-section ratio (c/d) for different values of power law 

indices p. it is seen that these moments are proportional to cross-section ratio. Moreover, in 

contrast to the case of beams with small flanges, the differences between the top and bottom loads 

become very important for large flanges. 

Effect of the material distribution on the lateral buckling moments of FGM box beams with 

respect to thickness-to-side ratio (h/d) variation is displayed in Fig. 7. This plot reveals that the 

material distribution (p) has a significant effect on the thick beams (this effect becomes greater 

when the load is applied to the bottom flange).  
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Fig. 6 Buckling moments vs cross-section ratio c/d for h=0.000762 m for L=0.721 m 

 

 

Fig. 7 Buckling moments vs thickness-to-side ratio (h/d) for c=0.0136 m and L=0.762 m 

 

  
(a) (b) 

Fig. 8 Buckling moments vs lengths (L) for d=0.0242 m, c=0.017 m and h=0.000762 m 
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Table 6 buckling moments (Mcr in KN.m) for h=0.000762 m and L=0.121 m 

P Model 
c/d=0.70 c/d=0.54 c/d=0.37 

Top Bottom Top Bottom Top Bottom 

Ceramic 

(I) 32.145 49.137 16.951 23.771 7.537 10.055 

(II) 33.952 53.486 17.692 25.256 7.733 10.408 

(III) 35.803 58.071 18.323 26.508 7.874 10.647 

0.2 

(I) 28.041 42.866 14.813 20.775 6.612 8.821 

(II) 29.648 46.705 15.484 22.103 6.800 9.150 

(III) 31.248 50.704 16.023 23.191 6.913 9.351 

0.5 

(I) 23.874 36.500 12.637 17.724 5.664 7.556 

(II) 25.251 39.790 13.216 18.871 5.829 7.845 

(III) 26.620 43.214 13.679 19.806 5.927 8.020 

1 

(I) 19.545 29.927 10.333 14.524 4.678 6.244 

(II) 20.661 32.625 10.799 15.463 4.765 6.436 

(III) 21.803 35.468 11.192 16.249 4.899 6.635 

5 

(I) 10.733 16.411 5.757 8.054 2.571 3.433 

(II) 11.261 17.804 6.026 8.582 2.649 3.569 

(III) 11.977 19.456 6.240 9.014 2.694 3.650 

Metal 

(I) 5.922 9.051 3.122 4.379 1.388 1.852 

(II) 6.254 9.853 3.259 4.652 1.425 1.917 

(III) 6.595 10.697 3.375 4.883 1.450 1.961 

 
 

Fig. 8 shows the influence of shear deformation on the critical moments of FGM box beam for 

p=0, 5; the minimum Mcr occurs for the Model (I), the maximum for the Model (III), the 

intermediate one for the Model (II). These results confirm that the unshearable model is 

conservative. 

It is interesting to note that the shear effect is negligibly small for the long beams, especially for 

structures loaded on top flanges, but for short beams the difference between Model (I) and Model 

(III) is very impressive and can reach 25%. 

This effect is further illustrated in Table 6, which shows that for different values of p, the 

beams with small flanges are very little influenced by transverse shear. With the increase of the 

cross-section ratio c/d, the lateral buckling moments are more and more influenced by this effect. 

The difference between the Model (I) and Model (III) results is significant (16%) for c/d=0.7. 

 

 

5. Conclusions 
 

In this study, attention is focused on the analysis of lateral-torsional buckling for simply 

supported thick and thin-walled FGM box beams under uniformly distributed loads. The properties 

of the assumed beams vary in the wall thickness direction according to power law. The final form 

of the tangential matrix is obtained by employing Galerkin’s technique and then solved after 

applying appropriate boundary conditions. The new proposed non-linear kinematical model, 

depend basically on the non-classical effects such as the primary and secondary warping and the 

transverse shear. 
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From this analysis, following conclusions are drawn:  

1. A general expression for the buckling moment of unshearable FGM beams has been 

proposed. 

2. The results obtained by the present method are in excellent agreement with those of 

ABAQUS simulation. 

3. The present model is applicable to both thin and thick-walled FGM box beams. 

4. The results reveal that the transverse shear effect is important for the short beams and/or high 

cross-section ratios. They also confirm that the unshearable model is conservative. 
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