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Abstract.  In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with 39 is 

presented. The formulation is based on complementary energy principle. The proposed element is free of 

shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced 

patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement 

interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is 

successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, 

an appropriate stress approximation is rationally derived. Particularly, in order to improve element’s 

accuracy, the assumed stress field is derived by employing 39 rather than conventional 21. The resulting 

element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very 

thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of 

experimental evaluations. 
 

Keywords:  hybrid stress element; Mindlin plate; arbitrary order Timoshenko beam function; enhanced 

patch test 

 
 
1. Introduction 
 

The finite element method has become the most popular and widely used computational 

method in science and engineering. However, the convergence theory of the finite element is still 

not complete. Patch test has long been recognized as a convergence criterion (Wang 2001) that 

assures the convergence of the finite element. In fact, the applications of the existing patch test are 

limited in 2D/3D elasticity and thin plate problem with homogeneous differential equations. It is 

difficult to accurately assess the convergence of the problem with non-homogeneous differential 

equations, for example, none of the current existing Mindlin plate elements can pass the constant 

shear patch test, such as w=1+x+y, θx=−1, θy=−1. The convergence of element is an unavoidable 

issue which has been a longstanding problem. Investigators who know this problem on Mindlin 

plate have devoted themselves to this issue, but could not find a feasible solution, while quite a 
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few researchers may not be consciously aware of the difficulty of the problem. Mindlin plate 

elements are widely used by commercial software, many authors think there is no problem, but it 

is not rigorous in theory. This paper is aim to establish a Mindlin plate element which can pass the 

strict constant shear patch test. 

Three milestones have been gone through the development of patch test. Firstly, Bazeley et al. 

(1965)
 

proposed the patch test for nonconforming element. It is the most practical method for 

testing the convergence of finite element which based on numerical calculation. However, it is not 

rigorous mathematically. Researchers have been investigating the theory of the patch test with the 

consideration of the effectiveness and practical applications. A mathematical description of the 

patch test was given by Strang (1972). Later, this description was explained as a constraint for 

single element, called individual element condition (Taylor et al. 1986)
 

and can be used to 

construct element function. However, there is no rigorous mathematical proof for this patch test.  

Secondly, based on rigorous mathematical theory, Stummel (1979) established a necessary and 

sufficient condition for the convergence of nonconforming element In addition, he had doubts 

about the patch test of Irons by proposing a simple approximation by nonconforming finite 

elements that passes the patch test of Irons but does not yield approximate solutions converging to 

the solution of the given boundary value problem (Stummel 1980). It should be noted that this 

rigorous convergence condition is for the whole problem domain not for an individual element, 

and the application of this condition requires a strong base of the functional analysis, which restrict 

its application to majority elements and the construction of nonconforming element. The 

development of finite element method necessitates that the patch test become a practical 

convergence criterion to be used not only to exam the element convergence but also as a guidance 

to construct the converged element. Although it is difficult to investigate the patch test 

mathematically, the patch test has long been used in engineering applications. Mathematical 

examples, which pass the patch test but fail to converge, generated considerable controversial 

opinions among engineering researchers (Taylor et al. 1986, Zienkiewicz et al. 1997).  

Thirdly, Wang (2001) elucidated that besides the previously suggested requirements, the 

necessary and sufficient condition for patch test to be used as a convergence criterion should 

include the element function satisfying both theories of weak super-approximation and weak 

continuity. Wang’s work pointed out that the example in Ref. (Stummel 1980) couldn’t satisfy the 

two conditions and might clarify the uncertainty for patch test. 

Historically, the displacement-based approach was the first attempt in the formulation of 

effective Reissner-Mindlin plate-bending elements. However, the original displacement element 

tends to cause the shear locking phenomenon which induces over-stiffness as the plate becomes 

progressively thinner for low order interpolation polynomials in the Reissner-Mindlin elements. 

The evaluation of the shear locking phenomenon has relied on numerical computations on thin 

plate problem. It is well known that the methods of reduced integration (Zienkiewicz et al. 1971) 

and selective integration (Hughes et al. 1978) are efficient approaches to prevent the appearance of 

the shear locking phenomenon. However, it is found that such elements often exhibit extra zero 

energy modes, and also produce oscillatory results for some problems. Moreover, it cannot pass 

the patch test for the analysis of very thin plates. 

To overcome these deficiencies, stabilized techniques have been developed by author MacNeal 

(1978). Then subsequently, Belytschko et al. (1983) proposed the stabilization procedure to 

remove the zero-energy modes by perturbing the stiffness. Bathe and Dvorkin (1985) discussed a 

four-node plate bending element which had no lock and didn’t contain any spurious zero energy 

modes.In addition, several efficient discrete shear elements based on the discrete Kirchhoff 
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constraint and the equilibrium conditions were developed by Batoz and Lardeur (1989), Batoz and 

Katili (1992), Katile (1993). These elements can eliminate locking phenomenon and converge 

towards the discrete Kirchhoff plate bending elements when the thickness of the plate is very thin. 

On the other hand, no element is free of shear locking in theory.  

Bathe et al. (2000) introduced the MITC element and proposed strain energy patch test function 

to evaluate the convergence. Based on Timoshenko beam function, Soh et al. (1999) proposed a 

triangular 9 DOF plate bending element which can be employed to analyze very thin plate (the 

thickness/span ratio of the plate is about 10
-11

). Soon, Soh et al. (2001) introduced a quadrilateral 

12 DOF plate bending element. At this point, the progressively thinner plate which has the 

thickness/span ratio10
-20

 can be calculated. Chen and Cheung (2000) proposed the function of 

patch test for zero shear locking: w=c0+a0x+b0y+a1x
2
/2+c1xy+b2y

2
/2, θx=a0+a1x+c1y, 

θy=b0+c1x+b1y, ai, bi, ci are arbitrary constants. It is apparent that this patch test is more rigorous 

than the patch test using numerical computation of pure bending and pure torsion of a small-scale 

plate. Then, the proposition of rectangular element RDKQM and triangular element RDKTM 

which can pass the above patch test functions (Chen and Cheung 2000, 2001) indicates that the 

shear locking problem is solved. Cen et al. (2006) established a quadrilateral element AC-MQ4 

which employed the Timoshenko beam function and quadrilateral area coordinate. All the three 

elements RDKQM, RDKTM, and AC-MQ4 can be used to solve the extremely thin plate problem 

(the thickness/span ratio of the plate can reach to10
-30

). In other words, these element solutions can 

accurately converge to thin plate finite element solutions. 

On the other hand, mixed/hybrid stress elements (or assumed stress element) were also 

introduced to circumvent the difficulties outlined above. In particular, after the work of Malkus 

and Hughes (1978) on the equivalence between reduced integration displacements and 

mixed/hybrid stress models, this kind of approach became very useful in recent decades. 

Numerous effective elements have been proposed and employed by many authors, such as Lee and 

Pian (1978), Bathe and Dvorkin (1986), Sze and Chow (1991), Zienkiewicz et al. (1993), Taylor 

and Auricchio (1994), the MiSP family by Ayad et al. (1998), Cen et al. (2014) etc.  

Due to the continuity conditions in inter-element, such as C
0
 continuity of 2D/3D elasticity 

problems, C
1
 continuity of thin plate problems and so on, the finite element trail function is 

defined in the Sobolev space which is also called generalized derivative space. There is not any 

particular external loading in the convergence theory in the Sobolev space. In terms of the 

variational basis of patch test proposed by Chen (2006), the test function for the patch test should 

satisfy the equilibrium equations without applied force yet. Chen (2006) proposed the enhanced 

patch test which can be applied to both homogeneous and inhomogeneous differential equations. 

Chen et al. (2009) proposed the enhanced patch test function for Mindlin plate. Current patch test 

for Mindlin plate only satisfies the zero shear deformation condition. The patch test of non-zero 

constant shear for Mindlin plate problem cannot be performed. The question of the convergence 

remained unresolved as to whether Mindlin plate can pass the non-zero constant shear stress patch 

test. Note that there was misunderstanding on this question. For example, Zhang and Kuang 

(2007) used the following patch test function w=(x+y)/2, θx=1/2, θy=1/2 to derive mistakenly 

γxz=∂w/∂x−θx=1
 
and γyz=∂w/∂y−θy=1, then drew the conclusion that the element passed the patch 

test of non-zero constant shear deformation. However, in fact, the above patch test is only for zero 

shear deformation. This example indicates the difficulty and lack of understanding to this question. 

Finally, the convergence test should be performed during the process of developing finite element 

method. Only pass the rigorous non-zero constant shear stress patch test, the convergence can be 

completely guaranteed. 
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Recently, different from the classical Timoshenko beam function, Jelenic and Papa (2011) 

proposed a new arbitrary order Timoshenko beam function. It’s so far the only function which can 

be used to construct the functions of non-zero constant shear patch test for thick beam element. 

Since beam function can be regarded as a function on the boundary, the adopted hybrid stress 

method just requires the boundary function rather than the domain function. Because of this beam 

function is arbitrary order, thus it has high enough order to perform the non-zero constant shear 

stress patch test. Since it is required a complete cubic polynomial for the element function to pass 

the constant shear stress patch test. An 8-node quadrilateral assumed stress hybrid element is 

adopted. 

The present work directly chooses the arbitrary order Timoshenko beam function as boundary 

displacement interpolation function. The purpose of this paper is to set up a quadrilateral Mindlin 

plate-bending finite element within an assumed stress formulation, whose main feature is that 

passes the rigorous enhanced non-zero constant shear patch test. To achieve this objective, the 

following steps have been taken. The first step concerns the choice of the variational framework 

with the adoption of complementary energy principle. Then the arbitrary order Timoshenko beam 

function as boundary displacement interpolation function is chosen for the proposed element. 

Since the choice of the stress approximation is a crucial issue in developing reliable hybrid finite 

element, selecting a suitable stress approximation which satisfies the plate equilibrium equations is 

not trivial. In order to improve the performance of the constructed element, a stress approximation 

ruled by 39 parameters is finally derived. 

 

 

2. Enhanced patch test of finite element methods 
 

The functional of the Hu-Washizu variational principle with relaxed inter-element continuity 

requirement in elasticity is given by 

 
1

( (( ( ) ( ) ) ( ) )
21 e e

n
T T T T T T

mp
V V

F F dv ds W
e


       


  u D u σ σ R u u  

        

(1) 

where u is the element displacement without inter-element continuity requirement and u  is the 

element boundary displacement expressed in terms of nodal displacements, which contain the rigid 

body and the constant strain modes; n is the number of elements; ε, σ are the constant strain and 

constant stress, respectively; F
T
 is the strain differential operator; D is the matrix of elasticity 

constants; the boundary force T corresponding to the constant stress is given by T=Rσ; R is the 

matrix of the direction cosines of the element boundary; and W is the work of the external force. 

Based on this variational principle, Chen et al. (1987, 1998) established a series of generalized 

hybrid element.  

Chen and Cheung (1996, 1997) proposed a refined non-conforming variational principle. For 

the non-conforming element displacement u and the boundary displacement u which are 

expressed in terms of nodal displacements and contain the rigid body and the constant strain 

modes, the functional of variational principle for non-conforming element is given as 

 
* 1

( (( ( ) ( ) ) ( ) )
21 e e

n
T T T T T T

mp c c c c c c
V V

F F dv ds W
e


       


  u D u R u u           (2) 

where εc, σc 
are the constant strain and constant stress, respectively; the boundary force Tc 
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corresponding to the constant stress is given by Tc=Rσc. 

By using 
*

0
mp

  , we obtain the individual element condition of the patch test 

 
*

e e

T T T

c c
V V

F dv ds


 u T u
                            

(3) 

where u
*

 is the element displacement function, which can be either conforming or nonconforming, 

u is inter-element boundary displacement function. For conforming element, u  is the value of 

element displacement at the boundary. For nonconforming element, u  is independent of element 

displacement u. σc is the constant stress that satisfies the equilibrium equation, Tc is the boundary 

force. It can be proved that the individual element condition is the sufficient condition for passing 

the constant stress patch test of homogeneous differential equations Taylor et al (1986). 

For inhomogeneous differential equations, Chen (2006) proposed a new variational principle 

functional for non-conforming element which can be given by 

 
* 1

( ( ( ) ( ) ) ( ) )
21 e e

n

T T T T T T

a
V V

mp
F F dv ds W

e


       

  u N D u N P N T u u            (4) 

where Nα, Pβ
 
are the special strain and special stress, respectively; N is interpolation matrix; the 

boundary force Ta 
corresponding to the special stress is given by Ta=RPβ. 

By using
*

0
mp

  , we obtain the individual element condition of the patch test 

  T T * T T

e e e

a a s a
V V V

F dv ds F dv


   u T u u 
                     

(5) 

where σa 
is the stress of the element that satisfies the equilibrium equation which without external 

force, σa contains the constant stress and non-constant stress. It can be proved that the individual 

element condition is the sufficient condition for passing the patch test of inhomogeneous 

differential equations (Chen 2006). 

The convergence criterion requires that besides passing the enhanced patch test, the element 

function should include the rigid body modes and the lowest order non-zero strain modes of the 

equilibrium state (or fundamental strain mode), and no spurious zero energy modes occur. 

In the case of the inhomogeneous differential equation, the lowest order stress term is chosen to 

be non-zero constant stress. The other stresses determined from the inhomogeneous differential 

equation cannot be constant. Therefore, the compatibility condition of the element function will be 

more rigorous. In the case of homogeneous differential equation, the constant stress satisfies the 

equilibrium equation automatically, and the enhanced patch test degenerates into the constant 

stress patch test automatically. Therefore, the enhanced patch test is applicable to both 

homogeneous and inhomogeneous differential equations. 

 

 

3. The arbitrary order Timoshenko beam function 
 

Euler-Bernoulli beam function has been successfully employed in the construction of refined 

thin plate elements. It is well known that when constructing Mindlin plate element, both thick and 

thin plates should be taken into account, and it is necessary to eliminate shear locking 

phenomenon. To seek out such element displacement function is definitely very difficult. Note that 
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a closed form solution for both thick and thin beams exists in the form of the Timoshenko beam 

function, and it is possible to use it to derive more efficient Mindlin plate elements (Soh et al. 

1999). However, the use of Timoshenko beam function is capable of solving the problem of shear 

locking, it cannot solve the problem of passing the non-zero constant shear patch test. This 

problem hasn’t been resolved for many years. Recently, Jelenic and Papa (2011) presented a new 

arbitrary order Timoshenko beam function. This is the only function which can be used to 

construct the functions of non-zero constant shear patch test for thick beam element so far. The 

arbitrary order Timoshenko beam function can be given as follows 

  
1

1 1 11

1
1

1
,

nn n n
i

i i j i i i

i i ij

nL
w I w N I

in
  



  


   



 
 
 

  
                

(6) 

where L is the beam length, wi 
and θi 

are the values of the displacements and the rotations at the n 

nodes equidistantly spaced between the beam ends, Ii 
are the standard Lagrange polynomials of 

order n−1, and Nj=x/L
 
for j=1

 
and Nj=1−(n−1)/(j−1)(x/L) otherwise, in which x is the coordinate 

along the beam. 

 

 

4. Fundamental equations of Mindlin plate 
 

Consider a plate referred to a Cartesian coordinate frame (o,x,y,z), with the origin o on the 

mid-surface Ω and the z-axis in the thickness direction, −h/2≤z≤h/2, where h is the plate thickness. 

Let ∂Ω be the boundary of Ω. The Reissner-Mindlin theory, i.e., the first-order shear deformable 

theory, is employed. Thus it is assumed that 

        , , , , , , , , ,
y x

u x y z z v x y z z w x y z w x y    
             

(7) 

where u, v, w are displacements along the x, y and z axes, respectively, and θx, θy
 
are the rotations 

of the transverse normal about the x and y axes, w is the transverse displacement field. 

The geometric equations can be written as follows 

 
b

ˆ,
s
w   B B I   

                            
(8) 

where θ=[θx θy]
T
, χ=[χx χy χxy]

T

 
and γ=[γxz γyz]

T

 
respectively, the rotations, the curvatures and the 

shear strains and operators 
b

0

0

x

y

x y

 

  

   

 
 
 
  

B ,
s

x

y

 


 

 
 
 

B ,
0 1

ˆ
1 0

 
 
 

    

The equilibrium equations can be obtained from the strain energy in the form 

 
b

ˆ ,
T T T

s
 B M + I S = 0 B S = 0

                          
(9) 

where vectors M=[Mx My Mxy]
T

 
and S=[Sx Sy]

T
, respectively, the moment and shear resultants. The 

boundary forces can be written as follows 

 

0 sin cos 0 0

cos 0 sin 0 0

0 0 0 cos sin

 

 

 

 



 
    
        

  

M M
T = R

S S

            

(10) 
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where α is the angle between the normal of edge and the local x-axis of element. 

For a linearly elastic material, the constitutive equations can be written as 

 
b s

  D S D  
                            

(11) 

where
 

3

2

1 0

1 0
12 1

1
0 0

2

b

Eh












 
 
 
 
 
 
 

D and
1 0

0 1
s

kGh
 
 
 

D are the elasticity matrices of bending 

and transverse shear moduli, being E the Young’s modulus, G the shear modulus, μ
 
the Poisson’s 

ration, and k=5/6 a correction factor to account for non-uniform distribution of shear stresses 

through the thickness.
 

Substituting geometric Eq. (8) and stress-strain relation (11) into the equilibrium Eq. (9), the 

equilibrium equations are obtained in terms of displacements 
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2 2 23

2 22
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1 1
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x y x y x
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w w
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
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    
    

    

    
    

    

  
   

   

    
   

  


   
    

  


 
             

(12) 

In the patch test, the test function should satisfy the equilibrium Eq. (12). 

 

 

5. Formulation of 24-DOF hybrid stress Mindlin plate element 
 

5.1 Assumed stress Hybrid formulation 
 

The element developed in this paper is based on complementary energy principle. The 

complementary energy principle can be written as 

 
11

2e e

T T

e
d dS



 
   D u  

                       
(13) 

where σ is the stress vector, D is the elasticity matrices, T is the vector of boundary force, and 
T

x y
w    u = is the boundary displacement vector, and w is the transverse displacement, 

,
x y

  are the rotations of the transverse normal about the x and y
 
axes. 

The approximation for stress and boundary displacements can now be incorporated in the 

functional. The stress field is described in the interior of the element as 

399



 

 

 

 

 

 

Tan Li, Zhaohui Qi, Xu Ma and Wanji Chen 

 
T

x y xy x y
M M M S S    P                       (14) 

where P is matrix of stress interpolation functions, and β
 
is the unknown stress parameters. 

The boundary force T can be represented as 

 T RP                                 (15) 

where R is the combination of direction cosine for the boundary normal. 

The boundary displacement field is described by 

 
T

x y
w     u = Lq                           (16) 

where L are interpolation functions, q
 
is nodal displacement parameters. 

Substituting the stress Eq. (14), boundary force Eq. (15) and displacement approximations Eq. 

(16) into the functional (13) 

 
1

2

T T

e
  H Gq                               (17) 

where 

 
1

d
e

T



H = P D P                              (18) 

  
e

T
dS


 G RP L                             (19) 

The form of Eqs. (18) and (19) is directly amenable to numerical integration (i.e., Gauss 

quadrature). In principle, integration rules should be chosen which integrate all terms in H and G 

exactly. Then the internal strain energy can be expressed as 

 
11 1

2 2e

T T
U d




   D H                            (20) 

By means of ∂∏e/∂β=0, we obtained 

 H Gq                                 (21) 

consequently 

 
1

 H Gq                                (22) 

Substitution of β in Eq. (20), the internal strain energy reduces to 

 
1 2T T

U


 q G H Gq                             (23) 

Compared with U=(1/2)q
T
Kq, the element stiffness matrix can be taken as 

 
1T 

K G H G  (24) 
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Fig. 1 Eight-node quadrilateral plate element Fig. 2 Quadrilateral element’s 1-2 boundary 

 

 

The solution of the system yields the unknown nodal displacements q. After q is determined, 

element stress or internal forces can be recovered by use of Eqs. (22) and (14). Thus 

 
1

 PH Gq                                
(25) 

In modeling structures using displacement based or hybrid elements, body forces applied to the 

elements are replaced by equivalent nodal forces. With this replacement, the stiffness and stress 

matrices in element formulations need only to be considered for forces applied at the nodes. 

 

5.2 Formulation of 24-DOF hybrid stress Mindlin plate element 
 

5.2.1 Boundary displacement interpolation based on arbitrary order Timoshenko beam 
function 

As mentioned above, the main drawback of low-order Mindlin plate element is incapable of 

passing the non-zero constant shear patch test. The introduction of arbitrary order Timoshenko 

beam function can avoid this problem. Since beam function is arbitrary order and functions of 

arbitrary order can be obtained, if the order is improved then it can be used to do the non-zero 

constant shear stress patch test. In order to pass strict constant shear stress patch test, a complete 

cubic polynomial is required, thus an 8-node quadrilateral assumed stress hybrid element is 

adopted. According to this idea, an 8-node quadrilateral element was designed as given in Fig. 1. If 

any quadrilateral side is taken as a beam element, take the 1-2 boundary as example. 

(L
2
=a

2
+b

2
) is the length of 1-2 boundary, the displacement w  can be derived, with node 5 

located at the middle of the side as show in Fig. 2. 

 

    

1 1 2 2 5 5 0 ,1 ,5 ,2

1 1 2 2 5 5 0 ,1 ,5 ,2 ,1 ,5 ,2

1 ,1 2 ,2 5 ,5 1 ,1 2 ,2 5 ,5

2

2 2

,

n n n

x x x y y y

x x x x y y y y

w I w I w I w I L

I w I w I w I b a

I I I I I I

  

     

       

      

          

     



       

(26) 

where I1=L1(2L1−1), I2=L2(2L2−1), I5=4L1L2, I0=L1L2(L2−L1)/3, L1=1−s/L, L2=s/L, and s is the 

coordinate along the 1-2 edge. 

The displacement components ū along the 1-2 boundary was given as follows 

θn,1 

θy,5 

1 

2 

5 

a=x2-x1 

b=y1-y2 
θx,

1 

θx,

2 
θy,1 θx,

5 

θy,2 

θn,2 
θn,5 
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y 
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1 0 0 2 0 0 5 0 0

1 2 5 1-2 1-2 1-2

1 2 5

2 2

0 0 0 0 0 0

0 0 0 0 0 0

T

x y

I I b I a I I b I a I I b I a

w I I I

I I I

 

 



 
     
  

1-2
u = q L q=  (27) 

where q1-2=[q1 q2 q5]
T
, qi=[wi θxi θyi]

T
 (i=1,2,5). 

 

5.2.2 Assumed stresses 
In this section, a strategy to select the stress approximation in a rational way is presented. Note 

that the stress functions should satisfy the equilibrium Eq. (9). In practice, initial polynomials are 

usually assumed for the stresses after which the equilibrium equations are applied to these 

polynomials yielding relations between the β’s and ultimately the final form of P. The number of 

stress parameters, which is the number of columns in P, must be at least equal to the number of 

degrees of freedom of the element less the number of degrees of freedom necessary to prevent 

rigid body motion. The following equilibrating stress resultant field is considered. 

 
T

x y xy x y
M M M S S    P

                      
(28) 

where β={βi}, i=1,...,Nb. 

Conventional choice of Pβ
 
is Nb(β)≥nq−nr, while the optimal selection is Nb(β)=nq−nr, nq and nr 

being the degrees of freedom of the element and the number of allowed rigid body motions, 

respectively. The element has 24-DOF, therefore, a stress field with at least 21 parameters is 

needed to describe the stress field and without spurious zero energy modes. Firstly the number of 

{βi} 
is chosen as Nb=21 (the first 21 stress functions in Table 1). Numerical results show that the 

 

 
Table 1 Assumed stress function (i=1…Nb) 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Mx 1 0 0 x y 0 0 0 0 x
2 

xy y
2
 0 0 0 0 0 

My 0 1 0 0 0 x y 0 0 0 0 0 x
2 

xy y
2
 0 0 

Mxy 0 0 1 0 0 0 0 x y -xy 0 0 0 0 -xy x
2
 y

2
 

Qx 0 0 0 1 0 0 0 0 1 x y 0 0 0 -x 0 2y 

Qy 0 0 0 0 0 0 1 1 0 -y 0 0 0 x y 2x 0 

i 18 19 20 21 22 23 24 25 26 27 28 29 

Mx x
3
 x

2
y xy

2 
y

3
 0 0 0 0 0 0 x

4
 x

3
y 

My 0 0 0 0 x
3
 x

2
y xy

2 
y

3
 0 0 -6x

2
y

2
 0 

Mxy -1.5x
2
y -0.5xy

2 
0 0 0 0 -0.5x

2
y -1.5xy

2 
x

3
 y

3
 0 -0.75x

2
y

2
 

Qx 1.5x
2
 xy y

2
 0 0 0 -0.5x

2
 -3xy 0 3 y

2
 4x

3
 1.5x

2
y 

Qy -3xy -0.5y
2
 0 0 0 x

2 
xy 1.5y

2
 3 x

2
 0 -12x

2
y -1.5xy

2
 

i 30 31 32 33 34 35 36 37 38 39 

Mx xy
3 

y
4
 0 0 0 -6 x

2
y

2 
0 0 -3x

2
y

2
 0 

My 0 0 x
4
 x

3
y xy

3 
y

4
 0 -3x

2
y

2
 0 0 

Mxy 0 0 0 0 -0.75x
2
y

2
 0 x

4
 x

3
y xy

3 
y

4
 

Qx y
3
 0 0 0 -1.5 x

2
y -12 xy

2
 0 x

3
 -3 xy

2
 4 y

3
 

Qy 0 0 0 x
3
 1.5 xy

2
 4 y

3
 4 x

3
 -3 x

2
y y

3
 0 
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stiffness matrix has two Spurious zero energy modes (list in Table 6) and converges slowly (list in 

Table 7). The study find that gradually increasing the number of {βi} 
until Nb=28 (fourth order), 

there is a proper rank for the stiffness matrix and the absence of spurious zero energy modes (list 

in Table 6). Moreover, the calculation results are accurate and converged faster. And they are better 

if the number of {βi} 
reaches Nb=39 (complete quartic polynomial). Numerical experimentations 

indicate that this 39 parameter selection of stress field is somewhat more accurate and has no 

spurious zero energy modes (list in Table 6). For this reason, 39β are chosen as the assumed stress 

field. 

It can be shown that the above approximation satisfies the equilibrium Eq. (9). From Eq. (10) 

the boundary force T can be expressed as  

 T = RP                                  (29) 

Then, along the boundary 1-2, G can be obtained  

12 1 2
(1 2)

( )
T

ds


 
 G RP L

                           
(30) 

Similarly, along the other boundaries, G23, G34, G41 can also be obtained by cyclic permutation. 

 

 

6. The function of patch test for Mindlin plate element 
 

According to the equilibrium equations, if the stress terms Mx, My, Mxy
 
are constants, then Sx 

and Sy equal to zero. In this case, it passes the constant bending moment patch test. With the 

purpose of passing the non-zero constant shear deformation patch test, the order of the stress terms 

Mx, My, Mxy
 
in the non-homogeneous equations has to be equal or greater than 1. This requires the 

displacement functions θx, θy
 
to pass the linear bending moment patch test. γzx=∂w/∂x+θy and 

γyz=∂w/∂y−θx
 
are arbitrary non-zero constant strains. The function w is one order higher than the 

order of displacement functions θx, θy. 

The elements developed by Chen and Cheung (2000, 2001) can pass the zero shear patch test. 

For zero shear deformation patch test, θx and θy are linear functions, w is quadratic function. They 

can be assumed as follows 

 

2 2

0 1 2 3 4 5

0 1 2

0 1 2

x

y

w a a x a y a x a xy a y

b b x b y

c c x c y





     

  

  







                    (31) 

where ai, (i=0...5), b0, b1, b2, c0, c1, c2, are arbitrary constants. 

Due to the test function should satisfy the equilibrium equations in terms of displacements, 

substituting Eq. (31) into equilibrium Eq. (12), the test functions can be obtained as follows 

 

2 2

0 1 2 3 4 5

2 4 5

1 3 4

2

2

x

y

w a a x a y a x a xy a y

a a x a y

a a x a y





     

  

   







                    (32) 

For non-zero constant shear deformation patch test, θx and θy are quadratic functions, w is cubic 
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equation. They can be expressed as 

 

2 2 3 2 2 3

0 1 2 3 4 5 6 7 8 9

2 2

0 1 2 3 4 5

2 2

0 1 2 3 4 5

x

y

w a a x a y a x a xy a y a x a x y a xy a y

b b x b y b x b xy b y

c c x c y c x c xy c y





         

     

     







         (33) 

where ai, (i=0...9), bi, (i=0...5) and ci, (i=0...5) are arbitrary constants. 

Due to the test function should satisfy the equilibrium equations in terms of displacements, 

substituting Eq. (33) into equilibrium Eq. (12), the test functions can be obtained as follows 

 

 
 

 
 

2 2 3 2 2 3
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k
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

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
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


         (34) 

where ai, (i=0...9) are arbitrary constants. 

 

  

7. Numerical test 
 

In this section, the numerical study of the described elements, hereinafter called QH8-21β with 

Nb=21, QH8-28β with Nb=28 and QH8-39β with Nb=39 are numerically verified on some standard 

test problems including thin and thick plates and compared with that of other quadrilateral 

elements available in literature. Note that the present element QH8-39β is a high order element, 

each element has 8 nodes and 24 degrees of freedom. The other quadrilateral elements for 

comparison are 4 nodes element with 12 degrees of freedom. Obviously, when four nodes and 

eight nodes element are compared on the same mesh, the eight node element has higher 

computational cost. However, the eight nodes Mindlin plate element can pass the non-zero 

constant shear patch test, the four nodes element cannot. In fact, modern computers has high 

computational efficiency and high-speed processing of massive data. Although the QH8-39β 

element is somewhat time-consuming, it is acceptable to the modern computer. 

 

7.1 Patch test: consistency assessment 
 

Consistency of the developed elements is tested for the constant strain and stress states on the 

patch example with five elements, covering a rectangular domain of a plate as shown in Fig. 3. 

The size of the domain is 0.24×0.12. The mechanical properties of the plate are chosen as E=10
3
, 

μ=0.25, k=5/6. We tested the following states: 

 

Constant bending state 
In this test, the coefficients ai, (i=0...5) of the test functions in Eq. (32) are listed in Table 2. The 

displacements at the nodes on the boundaries are imposed according to Eq. (32). The exact 

displacements and rotations at the internal nodes are expected. The numerical results of the patch  
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Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem 

Table 2 The coefficients of constant bending patch test functions 

a0 a1 a2 a3 a4 a5 

1 2 3 4 5 6 

 
Table 3 Numerical results of constant bending patch test (at node 1) 

 h=1 h=0.01 

 w θx θy Sx Sy w θx θy Sx Sy 

QH8-21β 1.1528 3.440 -2.420 0 0 1.1528 3.440 -2.420 0 0 

QH8-39β 1.1528 3.440 -2.420 0 0 1.1528 3.440 -2.420 0 0 

Exact 1.1528 3.440 -2.420 0 0 1.1528 3.440 -2.420 0 0 

 
Table 4 The coefficients of non-zero constant stress patch test functions 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

1 2 3 4 5 6 7 8 9 10 

 
Table 5 Numerical results of nonzero constant stress patch test (at node 1) 

 h=1 h=0.01 

 w θx θy Sx Sy w θx θy Sx Sy 

QH8-21β 1.1537 23.7459 -18.470 -5333 -6756 1.1537 3.4812 -2.4716 -0.0053 -0.0068 

QH8-39β 1.1537 23.7459 -18.470 -5333 -6756 1.1537 3.4812 -2.4716 -0.0053 -0.0068 

Exact 1.1537 23.7459 -18.470 -5333 -6756 1.1537 3.4812 -2.4716 -0.0053 -0.0068 

 

 

test at node 1 are listed in Table 3. The results demonstrate that both of the proposed hybrid stress 

elements QH8-21β and QH8-39β can pass the constant bending patch test with zero shear stresses 

Sx, Sy. 

 

Non-zero constant shear state 
In this test, the coefficients ai, (i=0...9) of the test functions in Eq. (34) are listed in Table 4. The 

displacements at the nodes on the boundaries are imposed according to Eq. (34). The exact 

displacements and rotations at the internal nodes are expected. The numerical results of the patch 

test at node 1 are listed in Table 5. The results demonstrate that both of the proposed hybrid stress 

elements QH8-21β and QH8-39β can pass the strict patch test with non-zero constant shear 

stresses Sx, Sy. 

The patch test mesh of hybrid stress quadrilateral element is presented in Fig. 3. Given the 

displacements and rotations at the boundary nodes (8 displacements and 16 rotations), while all the 

internal nodal displacements and rotations are to be calculated by the finite element solution 

procedure. Test results (Tables 3 and 5) show that the elements QH8-21β and QH8-39β can pass 

both the constant bending and non-zero constant shear test. 

 

7.2 Stability assessment 
 

As a test of stability, an eigenvalues analysis on the stiffness matrix for one regular element is 

performed. Table 6 reports the first six eigenvalues computed by the single QH8-21β element,  
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Node coordinates 

    xi     yi 

1  0.04  0.02 

2  0.18  0.03 

3  0.16  0.08 

4  0.08  0.08 

E=10
3
, μ=0.25. 

 
x 

prescribed d.o.f. 

   checked d.o.f. 

   
 

Fig. 3 Element patch for consistency assessment of eight-node elements 

 
Table 6 Eigenvalues for regular mesh 

Element QH8-21β QH8-28β QH8-39β 

Eigenvalue 

3.7838e-16 -2.2237e-16 3.8340e-16 

5.8224e-16 -2.2237e-16 -5.2094e-16 

-2.2450e-16 1.0640e-15 -5.2094e-16 

-2.2450e-16 0.0371 0.0371 

-5.3198e-16 0.0371 0.0371 

0.0130 0.0474 0.0363 

Spurious zero energy modes 5-3=2 3-3=0 3-3=0 
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L/2 

mesh A. 4×4  
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mesh B. 4×4 
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L/3 

mesh C. 4×4 
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L/3 L/6 
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L6 

 

Fig. 4 Typical meshes (4×4) for square plate (mesh density N=4) 

 

 

QH8-28β element and QH8-39β element, respectively. The following data are assumed: E=1000, 

µ=0.25, h=0.1. Two spurious modes are observed for the QH8-21β element. Then gradually 

increasing the number of {βi} until Nb=28, three zero eigenvalues corresponding to the three rigid 

body motions of a plate are obtained for the QH8-28β element, showing thus a proper rank for the 

stiffness matrix and the absence of spurious modes in consequence. The QH8-39β element has the 

same stability as the QH8-28β element. 
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(a) Convergence of the transverse displacement (b) Convergence of the moment 

Fig. 5 Performance of the elements QH8-21β and QH8-39β 

 
Table 7 Comparison between the element QH8-21β and QH8-39β  

Element 

mesh 

h=0.1 h=0.01 

QH8-21β QH8-39β QH8-21β QH8-39β 

w* M* w* M* w* M* w* M* 

1×1 0.0601 3.0098 0.1229 2.1528 0.0510 3.0118 0.1227 2.1511 

2×2 0.0963 2.5163 0.1263 2.1226 0.0962 2.5182 0.1261 2.1208 

4×4 0.1170 2.3055 0.1268 2.2490 0.1169 2.3057 0.1265 2.2484 

8×8 0.1240 2.2843 0.1268 2.2805 0.1240 2.2842 0.1265 2.2801 

16×16 0.1259 2.2881 0.1268 2.2883 0.1259 2.2880 0.1265 2.2879 

32×32 0.1264 2.2900 0.1268 2.2903 0.1264 2.2898 0.1265 2.2899 

exact 0.1267 2.2910   0.1265 2.2905   

 

 

7.3 Square plate under uniform load 
 

Fig. 4 shows the typical meshes employed for the study of a square plate. Mesh A is the regular 

type, whereas mesh B and C are the distorted types and the mesh density N=4. Owing to the 

biaxial symmetry, only one-quarter of the plate is described. Moreover, a clamped (w=θx= θy=0) 

and a simply supported (SS2: displacements and rotations around the normal to the edge set to 

zero) cases were considered. The plate material properties are assumed: E=10.92, µ=0.3, k=5/6. 

The loading on the plate is uniformly distributed of magnitude q=1. 

 

7.3.1 Numerical investigation on selection of β parameters 
The performance of the element QH8-21β and QH8-39β are compared when h=0.1 and 0.01 

(Mesh A in Fig. 4). The dimensionless results w*=w/(qL
4
/100D) and M*=M/(qL

2
/100), where 

D=Eh
3
/(12(1−μ

2
)) and L is the plate span, given in the table are related to the displacement and 

moment results at the center of the clamped plate. Fig. 5 shows that the element QH8-39β 

converges faster and has higher accuracy. In other numerical tests, we also found that the 

performance of QH8-39β was better, and here we only list the results of clamped uniformly loaded 

square plate in Table 7 (Taking into account the layout, data in the table only gives four digits after  
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Table 8 Central displacements and moments for the clamped square plate subjected to uniform load 

h/L Mesh type 
Mesh number 

exact 
2×2 4×4 8×8 16×16 

wc/(qL
4
/100D) 

 Mesh A 0.149 0.150 0.150 0.150  

0.1 Mesh B 0.154 0.151 0.150 0.150 0.150 

 Mesh C 0.158 0.153 0.147 0.149  
 

Mesh A 0.126 0.127 0.127 0.127  

0.01 Mesh B 0.131 0.128 0.127 0.127 0.127 

 Mesh C 0.135 0.129 0.118 0.124  

 Mesh A 0.126 0.127 0.127 0.127  

0.001~10
-60

 Mesh B 0.131 0.127 0.127 0.127 0.125 

 Mesh C 0.134 0.129 0.117 0.123  

Mc/(qL
2
/100) 

 Mesh A 2.174 2.280 2.310 2.317  

0.1 Mesh B 2.461 2.347 2.326 2.321 2.31 

 Mesh C 2.670 2.395 2.237 2.284  

 Mesh A 2.123 2.249 2.281 2.288  

0.01 Mesh B 2.417 2.317 2.297 2.292 2.291 

 Mesh C 2.635 2.364 2.098 2.216  

 Mesh A 2.121 2.248 2.280 2.288  

0.001~10
-60 

Mesh B 2.416 2.316 2.296 2.292 2.291 

 Mesh C 2.635 2.364 2.076 2.193  

 

 

the decimal point). Hereinafter, only the element QH8-39β is compared with other reference 

elements. 

 

7.3.2 Shear locking test 
Tables 8 and 9 present the results of the central displacements and moments from thick plate 

(h/L=0.1) to the very thin plate (h/L=10
-60

). No matter which mesh is used, it is obvious that the 

proposed element, QH8-39β is convergent. In addition, the proposed element is free of shear 

locking. Since the element QH8-21β has the similar character, its numerical results aren’t listed 

here. 

 

7.3.3 Clamped and simply supported square plate under uniform load 
The comparison of the presented results with those obtained by other authors is presented in 

Tables 10 and 11 for the thick and the thin plate, respectively. Convergence of the central 

displacement and moment for the thick-plate and the thin plate cases are presented in Figs. 6 and 

7, with respect to the mesh density (Mesh A in Fig. 4). It can be observed that the present element 

performs very well in both thick and thin plate situations. Clearly, the new element converges 

towards the same solution as the elements from the literature, and exhibits an expected faster 

convergence rate. 
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Table 9 Central displacements and moments for the simply supported square plate subjected to uniform load 

h/L Mesh type 
Mesh number 

exact 
2×2 4×4 8×8 16×16 

wc/(qL
4
/100D) 

 Mesh A 0.415 0.424 0.427 0.427  

0.1 Mesh B 0.425 0.427 0.427 0.427 0.427 

 Mesh C 0.430 0.428 0.427 0.427  
 

Mesh A 0.396 0.404 0.406 0.406  

0.01 Mesh B 0.405 0.406 0.406 0.406 0.406 

 Mesh C 0.409 0.407 0.406 0.406  

 Mesh A 0.396 0.404 0.406 0.406  

0.001~10
-60

 Mesh B 0.404 0.406 0.406 0.406 0.406 

 Mesh C 0.409 0.406 0.406 0.406  

Mc/(qL
2
/100) 

 Mesh A 4.527 4.721 4.772 4.784  

0.1 Mesh B 4.865 4.798 4.790 4.789 4.789 

 Mesh C 5.104 4.854 4.802 4.792  

 Mesh A 4.518 4.720 4.772 4.784  

0.01 Mesh B 4.857 4.797 4.790 4.789 4.789 

 Mesh C 5.101 4.853 4.802 4.792  

 Mesh A 4.518 4.720 4.772 4.784  

0.001~10
-60 

Mesh B 4.857 4.797 4.790 4.789 4.789 

 Mesh C 5.101 4.853 4.802 4.792  

 
Table 10 Clamped uniformly loaded square plate: displacement and moment at the center 

(a) Thickness-span ration h/L=0.1 

Element 

mesh 

Zienkiewicz et al. 

(1993) 

Auricchio & Taylor 

(1994) 

Miranda & Ubertini 

(2006) 
QH8-39β 

w* M* w* M* w* M* w* M* 

2×2 0.142 2.185 0.142 1.810 0.163 2.838 0.149 2.326 

4×4 0.149 2.288 0.148 2.196 0.153 2.448 0.150 2.323 

8×8 0.150 2.313 0.150 2.288 0.151 2.351 0.150 2.320 

16×16 0.150 2.318 0.150 2.312 0.151 2.323 0.150 2.319 

exact 0.150 2.31       

 

Table 10 (b) Thickness-span ration h/L=0.001 

Element 

mesh 

Zienkiewicz et al. 

(1993) 

Auricchio & Taylor 

(1994) 

Miranda & Ubertini 

(2006) 
QH8-39β 

w* M* w* M* w* M* w* M* 

2×2 0.111 2.179 0.114 1.731 0.137 2.746 0.126 2.121 

4×4 0.123 2.260 0.123 2.162 0.129 2.424 0.127 2.248 

8×8 0.125 2.282 0.125 2.259 0.127 2.324 0.127 2.280 

16×16 0.126 2.288 0.126 2.282 0.126 2.299 0.127 2.288 

exact 0.127 2.291       
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Table 11 Simple supported (SS2) uniformly loaded square plate: displacement and moment at the center 

(a) Thickness-span ration h/L=0.1 

Element mesh 
Ibrahimbegovic (1992) Soh et al. (2001) Cen et al. (2006) QH8-39β 

w* M* w* M* w* M* w* M* 

2×2 0.447 5.591 0.422 5.223 0.413 5.025 0.415 4.527 

4×4 0.432 4.979 0.425 4.941 0.420 4.842 0.424 4.721 

8×8 0.429 4.836 0.426 4.834 0.425 4.803 0.427 4.772 

16×16 0.428 4.8 0.427 4.801 0.426 4.792 0.427 4.784 

exact 0.427 4.789       

 
Table 11 (b) Thickness-span ration h/L=0.001 

Element mesh 

Zienkiewicz et al. 

(1993) 

Auricchio & Taylor 

(1994) 
Soh et al. (2001) QH8-39β 

w* M* w* M* w* M* w* M* 

2×2 0.403 4.712 0.403 4.119 0.404 5.009 0.396 4.518 

4×4 0.405 4.773 0.405 4.623 0.406 4.839 0.404 4.720 

8×8 0.406 4.785 0.406 4.747 0.406 4.801 0.406 4.772 

16×16 0.406 4.788 0.406 4.778 0.406 4.792 0.406 4.784 

exact 0.406 4.789       
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(a) Thick plate (h/L=0.1) 
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(b) Thin plate (h/L=0.001) 

Fig. 6 Clamped uniformly loaded square plate (mesh A)-convergence of the center deflection and moment 
 

410



 

 

 

 

 

 

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem 

2 4 8 16
-4

-3

-2

-1

0

1

2

3

4

5

Mesh density  N

E
rr

o
r 

o
f 

 w
c
  

(%
)

 

 

QH8-39

Ibrahimbegovic (1992)

Soh A.K. (2001)

Cen S.(2006)

QH8-39

Series Solution

 
2 4 8 16

-5

0

5

10

15

Mesh density  N

E
rr

o
r 

o
f 

 M
c
  

(%
)

 

 

QH8-39

Ibrahimbegovic (1992)

Soh A.K. (2001)

Cen S.(2006)

QH8-39

Series Solution

 
(a) Thick plate (h/L=0.1) 
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(b) Thin plate (h/L=0.001) 

Fig. 7 Simply supported square plate (mesh A)-convergence of the center deflection and moment 

 

 

Fig. 8 A simply supported (SS1) skew plate under uniform load (mesh density N=4) 

 

 

7.4 Simply supported skew plate 
 

Fig. 8 shows a 4×4 mesh for the simply supported (this time, of the so called soft type SS1) 

rhombic plate with 30° skew angle and side length L=100, subjected to a uniform transversal load 

q=1. The plate possesses the following mechanical properties: E=10.92, µ=0.3, k=5/6. The 
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Simply supported,SS1 4×4 mesh 
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dimensionless results w*=w/(qL
4
/10

4
D), M11*=M11/(qL

2
/100) and M22*=M22/(qL

2
/100), where 

D=Eh
3
/(12(1−μ

2
)), given in the table are related to the displacement and moment results at the 

center of the plate. This problem is considered as delicate by many researchers. We have studied 

the problem considering two aspect ratios (L/h=100 and L/h=1000). The transversal displacement, 

maximum and minimum bending moments at the center of the plate are given in Tables 12 and 13 

for the thick and the thin plate, respectively. Numerical results indicate that the element QH8-39β 

exhibits excellent performance for skew plate problem as shown in Fig 9. The accuracy and 

reliability of the proposed element is again clearly illustrated. 

 
7.5 Simply supported circular plate 

 

The circular plate with the simply supported edges SS1 simply supported circular plate of 

 
 
Table 12 Displacement and principal moments at the center of simply supported skew plate (L/h=100) 

Element 

mesh 

Soh et al. (2001) 
Bathe & Dvorkin 

(1985) 

Zienkiewicz et al. 

(1993) 
QH8-39β 

w* M22* M11* w* M22* M11* w* M22* M11* w* M22* M11* 

4×4 0.754 1.723 2.310 0.359 0.921 1.670 0.513 1.132 2.014 0.418 0.963 1.919 

8×8 0.503 1.267 2.067 0.357 0.999 1.782 0.440 1.164 1.992 0.425 1.134 1.941 

16×16 0.440 1.169 1.983 0.384 1.046 1.844 0.431 1.155 1.973 0.425 1.143 1.950 

32×32 0.423 1.137 1.947 0.404 1.076 1.894 0.427 1.149 1.962 0.424 1.143 1.954 

exact 0.423 1.08 1.91          

 
Table 13 Displacement and principal moments at the center of simply supported skew plate (L/h=1000) 

Element 

mesh 

Soh et al. (2001) 
Bathe & Dvorkin 

(1985) 

Zienkiewicz et al. 

(1993) 
QH8-39β 

w* M22* M11* w* M22* M11* w* M22* M11* w* M22* M11* 

4×4 0.756 1.73 2.314 0.358 0.921 1.669 0.512 1.133 2.012 0.416 0.966 1.911 

8×8 0.506 1.271 2.069 0.343 0.957 1.733 0.439 1.164 1.991 0.422 1.136 1.936 

16×16 0.442 1.168 1.985 0.343 0.874 1.717 0.429 1.152 1.967 0.420 1.131 1.938 

32×32 0.424 1.136 1.950 0.362 0.923 1.777 0.424 1.140 1.953 0.417 1.122 1.933 

exact 0.408 1.08 1.91          
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Fig. 9 Convergence test for simply supported (SS1) skew plate 
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Fig. 9 Continued 
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Fig. 10 A simply supported (SS1) circular plate under uniform load and mesh 

 

 

diameter R=0.5 is analyzed next. The plate is subjected to a uniform transversal load q=1 and the 

following properties are assumed: E=10.92, μ=0.3, k=5/6. Only a quadrant of the plate has been 

discredited, as reported in Fig. 10, and the results of displacement and bending moment at the plate 

center in both thick and thin situations are reported in Tables 14 and 15. The present element 

QH8-39β is compared to some existent elements (Bathe and Dvorkin 1985, Miranda and Ubertini 

2006, Katili 1993). It can be observed that the QH8-39β element exhibits excellent performance  
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Table 14 Simply supported (SS1) circular plate: displacement and moment at the center, R/h=5 

Element 

mesh 

Bathe & Dvorkin 

(1985) 

Miranda & Ubertini 

(2006) 
Katili (1993) QH8-39β 

w* M* w* M* w* M* w* M* 

3 0.381 4.78 0.281 5.116 0.396 5.40 0.451 4.638 

12 0.407 5.09 0.413 5.168 0.411 5.23 0.429 5.115 

48 0.414 5.14 0.415 5.162 0.414 5.18 0.421 5.151 

192   0.415 5.158   0.418 5.156 

exact 0.416 5.156       

 
Table 15 Simply supported (SS1) circular plate: displacement and moment at the center, R/h=50 

Element 

mesh 

Bathe & Dvorkin 

(1985) 

Miranda & Ubertini 

(2006) 
Katili (1993) QH8-39β 

w* M* w* M* w* M* w* M* 

3 0.364 4.73 0.269 5.106 0.381 5.39 0.409 5.047 

12 0.390 5.10 0.395 5.145 0.394 5.20 0.401 5.116 

48 0.396 5.14 0.397 5.161 0.397 5.17 0.399 5.151 

192   0.398 5.158   0.398 5.156 

exact 0.398 5.156       
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(a) Thick plate (R/h=5) 
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(b) Thin plate (R/h=50) 

Fig. 11 Convergence test for simply supported (SS1) circular plate 
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Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem 

for circular plate problem as shown in Fig. 11. Overall good convergence rates are obtained for our 

new QH8-39β element indeed. 

 

 

8. Conclusions 
 

In this paper, a new 8-node quadrilateral Mindlin plate element with 24 degrees of freedom is 

introduced within the framework of hybrid stress element. The proposed element can pass not only 

the zero shear patch test, but also the non-zero constant shear enhanced patch test. This is the first 

time to use the hybrid stress method to derive the Mindlin plate element which can pass the 

non-zero constant shear enhanced patch test. 

The arbitrary order Timoshenko beam function is used successfully to derive the boundary 

displacement interpolation. For the assumed stress field, 39β is adopted instead of 21β since 

numerical results show that the former is better. Therefore, 39β is suggested to be used for this 

element. 

Moreover, a number of numerical investigations have been carried out to assess the 

performance of the present element in comparison with some plate elements. Numerical results 

suggested that the element can be used for the analysis of both moderately thick and thin plates, 

and the convergence for the very thin case can be ensured theoretically. The element is reliable and 

free of shear locking. 
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