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Abstract.  Optimal sensor placement (OSP) is an integral component in the design of an effective 

structural health monitoring (SHM) system. This paper describes the implementation of a novel 

collaborative-climb monkey algorithm (CMA), which combines the artificial fish swarm algorithm (AFSA) 

with the monkey algorithm (MA), as a strategy for the optimal placement of a predefined number of sensors. 

Different from the original MA, the dual-structure coding method is adopted for the representation of design 

variables. The collaborative-climb process that can make the full use of the monkeys’ experiences to guide 

the movement is proposed and incorporated in the CMA to speed up the search efficiency of the algorithm. 

The effectiveness of the proposed algorithm is demonstrated by a numerical example with a high-rise 

structure. The results show that the proposed CMA algorithm can provide a robust design for sensor 

networks, which exhibits superior convergence characteristics when compared to the original MA using the 

dual-structure coding method. 
 

Keywords:  optimal sensor placement; monkey algorithm; artificial fish swarm algorithm; collaborative 

-climb; modal assurance criterion 

 
 
1. Introduction 
 

Large and complex high-rise structures are sometimes being placed in extreme conditions for 

extended periods of time in recent years (Lei et al. 2013a, Yi et al. 2013, Li et al. 2015). Reliable 

monitoring of structural responses for this type of structures has been the topic of civil engineers’ 

research efforts (Li et al. 2013). Structural responses measured at specified sensor positions 

determine the accuracy of modal parameter identification, and are crucial in the consequent model 

updating, damage quantification and integrity assessment. Owing to economic reasons concerning 

the cost related to data acquisition and analysis, or to practical reasons such as the inaccessibility 

of some degrees of freedom (DOF), responses are usually recorded in a number of locations which 

is smaller than the total number of DOFs of the structure (Meo et al. 2005, Yi and Li 2012a). 
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Therefore, the limited sensors that form the front end of a structural health monitoring (SHM) 

system should be placed in the most advantageous sites. Otherwise, incomplete modal properties 

will be measured and an accurate SHM assessment will be impossible. Normally, the selection is 

based on the previous tests and engineering judgment. In order to detect structural changes 

accurately, effective and efficient approaches need to be further developed (Lei et al. 2012b, 

2013b). 

Up to now, a large body of sensor placement methods has emerged, which varies in their 

choices of the three basic components: model, evaluation criteria, and optimization algorithm 

(Maul et al. 2008). In fact, these three aspects are intervening with each other, and the third aspect 

is the core one that has attracted the majority of research interest since the first two ones can be 

individually determined for each structure. As known, the optimal sensor placement (OSP) 

problem can be formulated as a single-objective optimization function involving discrete-valued 

variables. Conventional gradient-based optimization methods are efficient but lack of reliability in 

dealing with such optimization problem since convergence to the global optimum is not 

guaranteed (Papadimitriou et al. 2005). Hence, the errors between the real and estimated target 

modal responses obtained by sensors placed at the locations determined by these methods cannot 

be guaranteed to be the minimum. Keeping these things in view, attempts have been made by the 

engineers to devise the OSP methods employing advanced combinatorial optimization algorithms 

like the genetic algorithms (GAs). Yao et al. (1993) took the GA as an alternative to the effective 

independence (EfI) method and the determinant of the Fisher information matrix (FIM) was 

chosen as the objective function. Considering the characteristics of the OSP techniques in the 

large-scale spatial lattice structure, Liu et al. (2008) proposed some innovations to enlarge the 

genes storage and improve the convergence of the GA. Chow et al. (2010) developed a GA-based 

optimization method to make the entropy-based optimal sensor configuration approach applicable 

for large-scale structural systems. Yi et al. (2011b) compared the convergence properties of the 

GA and generalized genetic algorithm (GGA) by assessing the results of their use in sensor 

placement of high-rise structural health monitoring. The successful application of the GAs in the 

sensor network design led to the development of several other intelligent optimal algorithms. For 

example, Chiu and Lin (2004) defined the sensor placement problem as a min-max mathematical 

optimization model provided that either discrimination, or distance error, was the objective under 

cost and coverage constraints. Numerical experimental results showed that the simulated annealing 

(SA) algorithm could find the OSP under the minimum cost limitation and outperform the brute 

force approach no matter in the case of smaller or larger sensor fields. Rao and Anandakumar 

(2007) presented an improved hybrid version of the particle swarm optimization (PSO) technique 

by combining with the Nelder-Mead algorithm for solving the combinatorial problem of the OSP. 

Fidanova et al. (2012) proposed ant colony optimization (ACO) algorithm to solve sensor 

deployment problem and compared it with existing evolutionary algorithms. Experimental results 

verified that the ACO algorithm outperforms the other evolutionary algorithms. Minni et al. (2011) 

solved the sensor deployment problem for the simple coverage issue in the 3D terrain using the 

ABC algorithm where the optimal deployment position such that the required sensing range is 

minimum for each target to be monitored by at least one sensor node. Dutta et al. (2011) applied 

the artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms for the 

integrated optimization of piezoelectric actuator and sensor placement and feedback gains. The 

effect of increasing the number of design variables on the optimization process showed that the 

ABC and GSO algorithms were robust and were good choices for the optimization of smart 

structures. Recently, Yi et al. (2012b, 2012c) incorporated the dual-structure coding method and 
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asynchronous-climb process in the monkey algorithm (MA) and adopt it in the field of the OSP.  

The purpose of this paper is to propose a new algorithm based on the original MA although a 

lot of algorithms have been advanced for solving the OSP problem and are widely reported in the 

literature. In this paper, a new hybrid algorithm called collaborative-climb monkey algorithm 

(CMA), which combines the artificial fish swarm algorithm (AFSA) with the MA, is proposed to 

solve the OSP problem in the health monitoring of high-rise structure. The rest of the paper is 

organized as follows: Section 2 gives a brief description of the MA. Section 3 describes the 

proposed CMA including its main features and implementation steps. Section 4 introduces the 

performance index used to optimize the sensor placement. Section 5 demonstrates the 

effectiveness of the proposed algorithm via a numerical simulation study for sensor deployment of 

a high-rise structure. Finally, conclusions are drawn in Section 6. 

 
 
2. Brief description of monkey algorithm 
 

The MA is based on the behavior of the monkeys looking for the highest mountain by climbing 

up from their positions (Zhao and Tang 2008). It consists of three main process namely as the 

climb process, watch-jump process, and somersault process, in which the climb process is 

employed to search the local optimal solution, the watch-jump process to look for other positions 

whose objective values are better than those of the current solutions so as to accelerate the 

monkeys’ search courses, and the somersault process enable monkeys to find new searching 

domains. Obviously, the climb process is the main process to modify the position of the monkeys 

to new ones that can improve the objective function. However, in the original climb process, each 

monkey updates its position by choosing a new position randomly with a fixed step length without 

exchanging any information with other monkeys. That means the monkeys don’t learn from each 

other and the better information obtained by some monkeys doesn’t transfer to other monkeys. 

Namely, they don’t know which choices their neighbors have found are most positive so far and 

how positive the best pattern of choices is. This kind of random and blind search pattern will lead 

to the slower convergence. In order to alleviate this problem, and also to build a much stronger 

search mechanism into the climb process, some improvements need to be embedded. The AFSA is 

inspired by the natural social behavior of fish in searching, swarming and following (Li et al. 

2002, Shen et al. 2011, Tasi and Lin 2011). Searching is a basic biological behavior adopted by the 

fish looking for food. It is based on a random search, with a tendency toward food concentration. 

In order to survive and avoid hazards, the fish will naturally clustered, which called swarming 

behavior. Objectives common to all swarms include satisfying food intake needs, entertaining 

swarm members and attracting new swarm members. The following behavior means when a fish in 

the swarm discovers food, the others will find the food dangling after it. By analysis, it can be 

found that although each fish searches for the food based in its own way, better information on 

searching will be passed to others to guide the movement of fish effectively. Therefore, it’s ideal to 

combine the AFSA and the climb process to improve the algorithm performance. This kind of 

hybrid algorithm embodies the thought of co-evolution, which can be denoted as the CMA. 

 
 
3. Collaborative-climb monkey algorithm for sensor placement 
 

3.1 Coding method and initialization 
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In executing the OSP searching via CMA, a general coding system for the representation of the 

design variables should be devised first since the original MA was designed to solve optimization 

problems with continuous variables while the sensor placement problem is an optimization 

problem involving discrete variables. Considering that the conventional real-value and binary 

coding methods have various kinds of drawbacks, the dual-structure coding method (Yi et al. 

2012c) is adopted here for the representation of design variables in the CMA. Each ordered pair 

(x,c) represent the possible solutions of each monkey (i.e., it specifies the composition and 

arrangement of sensors), where x denotes the position vector in the CMA and c means the binary 

vector which represents the sensor’s location. If the value of the jth bit position of the vector ci is 

1, it implies that a sensor is located on the jth position; and if the value of the jth bit position is 0, it 

means that no sensor is located on the jth position. The outline of solution representation using 

dual-structure coding method is given as follows: 

Step (1): Suppose there be f candidate sensor positions (i.e., the total DOFs of the developed 

finite element (FE) model), thus the f integers from 1~f can be obtained. 

Step (2): For the monkey i in the monkey population, its solution of sensor placement problem 

can be denoted as xci=(xi,ci)={(xi,1,ci,1), (ci,2,ci,2),..., (xi,f, ci,f)}, in which the component of the 

position vector xi is the real number selected randomly from the interval [down, up], where 

down=−5 and up=5, and ci is the binary vector which can be obtained by the follow equation 

,
, ,

1
( )

1 i j
i j i j x

c sig x
e


 


                            (1) 

When using Eq. (1), a judgment threshold ε should be defined first. That is, if sig(xi,j)≤ε, then 

ci,j=0; if sig(xi,j)>ε, then ci,j=1, here j∈{1,2,...,f}. Generally, the ε can be defined as 0.5. To select 

the ε value most appropriately, the parametric analysis is necessary. 

Step (3): Repeat steps (1) and (2), until M monkeys are generated (M is defined as the 

population size of monkeys). 

Remark. What need to be mentioned is that the total number of sensors in ci may not equal to 

the sensor number sp after random initialization. It is impractical and must be avoided. To 

alleviate the problem, the initial monkey population is generated by the regeneration method, i.e., 

going back to step (2). 

In the following iterative process of the proposed CMA, the position vector xi is used first; then 

Eq. (1) is adopted to obtain the binary vector ci which is subsequently used to calculate the 

objective function value; as a consequence, each monkey will arrive at its own best position 

representing the personal optimal objective value f(xi,ci) when the stopping criteria has been 

satisfied. 

 
3.2 Collaborative-climb process 
 

As aforementioned, the original climb process is a random behavior with a tendency toward the 

highest mountain. Keeping this problem in view, the climb process in the original MA is 

significantly modified by incorporate the swarming and following behaviors of the AFSA. i.e., the 

center position of the other monkeys can be used as the search direction of the next step when the 

monkey climbs at certain height, called swarming behavior; and the current optimal solution of the 

monkeys can be used as another search direction, called following behavior; then the monkey 

compares them and chooses a better one as the next search direction. Therefore, by introducing the 

swarming and following behaviors, the algorithm can make the full use of the monkeys’ 
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experiences to guide the movement, which embodies the thought of co-evolution and speeds up 

the search efficiency of the algorithm. Thus, the modified climb process can be divided three parts, 

which is summarized as follows: 

(1) Initial climb process 

For the monkey i with the position xi=(xi,1, xi,2,...,xi,f), an outline of initial climb process is given 

as follows: 

Step (1): Randomly generate integers Δxij in the interval [−a, a], j∈{1,2,...,f}, and form an 

integer vector Δxi=(Δxi1, Δxi2,..., Δxif)
T, where the parameter a (a>0) is called the step length of the 

initial climb process. 

Remark. The step length a plays an important role in the precision of approximation of local 

solution in the iteration process. Usually, the smaller the a is, the more precise the solutions are. 

Considering the characteristics of sensor placement problem, a can be defined as 1, 2, or another 

positive integer. 

Step (2): Obtain monkey’s new position xnew by xi+Δxi, then calculate the objective function 

value f(xnew, cnew), update the monkey’s position xi with xnew (update ci with cnew accordingly) only 

if f(xnew, cnew) is better than f(xi, ci), otherwise keep xi unchanged. 

Remark. It should be noted that in the Step (2) and the following other steps, the new 

components in xi+Δxi may exceed the interval [down, up]. Thus, here if a new component exceeds 

the upper limit up, then take the component to up; if a new component below the lower limit 

down, then take the component to down. 

Step (3): Repeat Steps (1) and (2) until the maximum allowable number of iterations (called the 

initial climb number, here denoted by Nc1) has been reached. 

(2) Swarming behavior 

For the monkey i with the position xi=(xi,1, xi,2,...,xi,f), the steps of the swarming behavior are as 

follows: 

Step (1): Calculate the center position Xcenter of the monkey population except monkey i. 

Step (2): Calculate the variable j of the monkey i in the swarming behavior using the following 

equation 

      ,, ,

, ,

( )( ( ) )

( ) ( ( ( )) ( )

i j centeri j center i j

center i j center i j center

jq

j

x X jx rand X j x

X j rand x X j x X j
x

  

   
  

(2) 

Step (3): Repeat Step (2), until all variables of the monkey i are generated. 

Swarming behavior is executed for the monkey i based on its associated Xcenter which 

guarantees a next position for the monkey. 

(3) Following behavior 

Step (1): Select the current best position Xbest of the monkey population. 

Step (2): Calculate the variable j of the monkey i in the following behavior using the following 

equation 

      ,, ,

, ,

( )( ( ) )

( ) ( ( ( )) ( )

i j besti j best i j

best i j best i j best

zw

j

x X jx rand X j x

X j rand x X j x X j
x

  

   
  

(3) 

Step (3): Repeat Step (2), until all variables of the monkey i are generated. 

Following behavior is executed for the monkey i based on its associated Xbest which determines 

a movement towards for the monkey. 

309



 

 

 

 

 

 

Ting-Hua Yi, Guang-Dong Zhou, Hong-Nan Li and Xu-Dong Zhang 

Thus, an outline of the modified climb process in the proposed CMA can be summarized as 

follows: 

Step (1): Initialize the parameters in climb process. 

Step (2): Carry out the initial climb process to obtain the monkeys’ new positions. 

Step (3): Calculate the xjq by performing the swarming behavior for monkey population 

obtained in Step (2). 

Step (4): Calculate the xzw by executing the following behavior for monkey population obtained 

in Step (2). 

Step (5): Evaluate the xjq and xzw, and then the best is selected to update the monkey’s position. 

Step (6): Repeat Steps (2)~(5) until it has implemented Nc generations. 

 
3.3 Watch-jump process 
 

After the collaborative-climb process, each monkey will look around to find the higher 

mountain. If a higher mountain is found, the monkey will jump there from the current position and 

then repeat the climb process until it reaches the top of the mountain. This process is called 

“watch-jump” process. 

For the monkey i with the position xi=(xi,1, xi,2,...,xi,f), the implementation steps of the 

watch-jump process is as follows: 

Step (1): Randomly generate integer numbers xwij from [xij−b, xij+b], j∈{1,2,...,f}, where the b 

is called eyesight which indicate the maximal distance that the monkey can watch, thus the new 

position xwi=( xwi,1, xwi,2,..., xwi,f)
T can be obtained. 

Remark. The eyesight b can be determined by specific situations, like the step length a, the 

eyesight b should also be defined as 1, 2, or other positive integer in the sensor placement 

problem. 

Step (2): Calculate the objective function ( , )
ii newf xw c , update the monkey’s position xi with xwi 

provided that ( , )
ii newf xw c  be better than f(xi , ci), otherwise go back to Step (1). 

 
3.4 Somersault process 
 

The main purpose of somersault process is to enable monkeys to find out new searching 

domains. In the MA, the barycentre of all monkeys’ current positions is selected as a pivot; all of 

the monkeys will somersault along the direction pointing to the pivot and then begins climbing 

again. 

For the monkey i with the position xi=(xi,1, xi,2,...,xi,f), the outline of the somersault process is as 

follows: 

Step (1): Generate integer numbers θ randomly from the interval [c,d] (called the somersault 

interval which governs the maximum distance that monkeys can somersault, which can be 

determined by specific situtations). 

Step (2): Obtain the monkeys’ pivot p=(p1, p2,... pf)
T by calculating the all monkeys’ barycentre 

M

j ij

i

p x M , j∈{1,2,...,f}. 

Step (3): Calculate xsi,j=xi,j+round(θ|pj−xi,j|), where the round denotes rounding function, update 

the monkeys’ position with xsi=(xsi,1, xsi,2,..., xsi,f) provided that the new objective values of xsi be 

better than former one, and then return to the climb process; otherwise go back to Step (1). 
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Fig. 1 Flowchart of proposed CMA for sensor placement 

 

 

Fig. 1 demonstrates the whole procedure of the proposed CMA to find the optimal sensor 

locations presented herein. The procedure can be fully implemented easily with the high-level 

technical computing language MATLAB (The MathWorks, Natick, MA, USA). 

 

 

4. Objective function 
 

In the optimal sensor network under investigation the objective function is a weighting function 

that measures the quality and the performance of a specific sensor location design. The objective 

function presented herein is derived from the modal assurance criterion (MAC) (Carne and 

Dohmann, 1995) that measures the correlation between mode shapes. 

2( )
MAC

( )( )

T

i j

ij T T

i i j j

 


   
                            (4) 

where, Фi and Фj represent the ith and jth column vectors in the matrix Ф, respectively, and the 
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superscript T denotes the transpose of the vector. 

The MAC is designed as an ideal scalar constant relating to the relationship between two modal 

vectors. In Eq. (4), the element values of the MAC matrix range between 0 and 1, where zero 

indicates that there is little or no correlation between the off-diagonal element MACij(i≠j) (i.e., the 

modal vector easily distinguishable) and one denotes that there is a high degree of similarity 

between the modal vectors (i.e., the modal vector fairly indistinguishable). To achieve this, both 

sets of mode shapes have to be differentiated as much as possible. The reason for the selection of 

this performance index is that the MAC matrix will be diagonal for an OSP strategy, so the size of 

the off-diagonal elements can be defined as an indication of fitness. Thus, the objective function 

can be defined as follows 

 ( , ) max MACij
i j

f x c


                             (5) 

 
 
5. Numerical case study 

 

To demonstrate the possible enhancement of the proposed CMA, two cases to determine the 

optimal sensor network on a high-rise structure are considered. 

Case 1: The original MA with the dual-structure coding (called the SMA); 

Case 2: The proposed NMA. 

 
5.1 Dalian world trade building 
 

The Dalian World Trade Building (DWTB) located in Dalian, China, assures a place among the 

supertall structures in the northeast of China by virtue of its total height of 242 m. It consists of a 

main structure (201.9 m) and an antenna mast (40.1 m), as depicted in Fig. 3(a). It has four stories 

under the ground level and 50 stories above. The DWTB comprises a reinforced concrete inner  
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(a) Overview (b) Full-scale FE model (c) Simplified FE model 

Fig. 2 The DWTB and its FE model 
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structure and perimeter steel frame coupled by outrigger trusses at two levels (the 30th and 45th 

floors). The plan of a standard floor is 37.4 m long by 38.3 m wide, and the floor-to-floor height is 

3.8 m. The 15th, 30th and 45th floors are refuge floors whose height is 5.1 m. 

(1) Calculation model for DWTB 

In order to accurately replicate the behavior of the real structure, a fine three-dimensional (3D) 

FE model should be constructed (Lei et al. 2012a). Based on the design drawing of the DWTB, the 

3D FE model as shown in Figure 3(b) is developed by Yi et al. (2011a). This FE model, 

established with the ETABS software (Computer & Structures, Inc., Berkeley, CA, USA), consists 

of 13,324 node elements, 90,062 frame elements and 22,967 shell elements in total. The vibration 

properties were calculated by performing a modal analysis using the FE analysis code and 

pre/post-processor system ETABS. Here, only translational DOFs in the weak axis are considered 

for possible sensor placement in this case study, as rotational DOFs are usually difficult and 

expensive to measure. Consequently, a total of 50 DOFs are available for the sensor installation. 

As shown in Fig. 2(c), the nodal number increases from 1 at the fixed base to 50 at the free top 

end. 

(2) Optimization results and discussion 

To study the algorithm’s solution evolution over generations under different settings of 

important parameters is necessary for any swarm intelligent algorithms. The important tuning 

parameters for the proposed CMA are the collaborative-climb process number (Nc), the initial 

climb number (Nc1), and the judgment threshold (ε). In the empirical study of the impact of three 

important parameters, the basic parameters of CMA remain unchanged and set as follows: a=1, 

b=2, the somersault interval is defined as [−3,3], and M=5. By the orthogonal experimental design, 

the orthogonal table can be obtained as shown in Table 1, where the numbers in brackets are level. 

A summary of the experimental results follows: 1) the larger Nc, the more iterations is needed for 

algorithm to find the optimal solution, but the higher quality is achieved. It seems that for this 

moderate sized problems, a typical value for Nc can be set as 100. 2) Large number of iterations in 

the initial climb process (Nc1) leads to some improvements in the quality of the solution. 

However, choosing too large Nc1 will decrease the algorithm efficiency and the climb process 

behaves like a pure random search, with less assistance from the historical memory. For this case, 

the Nc1 is set as 20 is reasonable. These two points verified the effectiveness of the proposed 

collaborative-climb method. 3) The judgment threshold ε has some impact on the improvement of  

 

 
Table 1 Empirical study of the impact of different parameters on the solution quality 

Scenario 
Different settings of three important parameters 

Objective values 
Nc Nc1 ε 

1 1 (50) 1 (10) 1 (0.5) 0.0138 

2 1 (50) 2 (20) 2 (0.6) 0.0183 

3 1 (50) 3 (30) 3 (0.7) 0.0108 

4 2 (100) 1 (10) 2 (0.6) 0.0096 

5 2 (100) 2 (20) 3 (0.7) 0.0174 

6 2 (100) 3 (30) 1 (0.5) 0.0120 

7 3 (200) 1 (10) 3 (0.7) 0.0137 

8 3 (200) 2 (20) 1 (0.5) 0.0104 

9 3 (200) 3 (30) 2 (0.6) 0.0097 
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(a) SMA (b) CMA 

Fig. 3 MAC values obtained by SMA and CMA 

 

 

Fig. 4 Maximum MAC off-diagonal value in each of the modes 

 

 

results, which confirms that the parameters need to be tuned so that the best algorithm 

performance can be achieved. Based on this empirical study, the judgment threshold ε can be set as 

0.6. 

Fig. 3 depicts the MAC values obtained by the SMA and CMA using the tuned parameters, 

respectively. Table 2 demonstrates the comparison of maximum MAC off-diagonal value using All 

DOFs, SMA and CMA. Where term “All DOFs” means the MAC matrix obtained from the full 

sensor set. In terms of optimization results in Fig. 3, CMA yield better sensor locations compared 

to the SMA. The largest off-diagonal MAC term is 0.0399 for the SMA, whereas 0.0088 for the 

CMA, which means the search performance of the CMA that has been effectively improved by 

combining the AFSA with the climb process and 77.94% reduction is gained to reach a satisfactory  
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Table 2 Objective function values of each kind of sensor placement scheme 

Scheme selection All DOFs Case 1 Case 2 

Objective function value 0.1442 0.0399 0.0088 

 
Table 3 Sensor placements of the DWTB 

Sensor No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

DOFs (Story) 1 3 4 5 6 8 9 12 16 17 21 25 28 31 35 36 39 42 46 48 

 

 

solution. Fig. 4 demonstrate maximum MAC off-diagonal value in each of the modes obtained by 

the SMA and CMA. It can be easily observed that the CMA is far effective than SMA in 

suggesting the optimal sensor configuration. All of the maximum MAC off-diagonal values 

obtained by the CMA are much smaller than the SMA. What need to be mentioned is that some 

off-diagonal terms of the “All DOFs” in Fig. 4 are quite large compared to other algorithms, which 

indicates that some row vectors may be nearly a linear combination of other row vectors of the 

mode shape matrix specified by redundant sensors. Table 3 shows the optimal sensor configuration 

obtained using the proposed CMA. 

 

 

6. Conclusions 
 

Finding the optimal sensor locations is a complicated nonlinear optimization problem, and the 

conventional optimal methods are often difficult to alleviate the problem. This paper presents a 

novel hybrid algorithm called the CMA for the sensor placement. With the case study, some 

conclusions are summarized as follows: 

• The adopted dual-structure coding method, which uses an ordered pair to stand for the 

possible solutions of each monkey, is an efficient coding method for the sensor placement 

problem. 

• The proposed collaborative-climb process can make the full use of the monkeys’ experiences 

to guide the movement, which embodies the thought of co-evolution and speeds up the search 

efficiency of the algorithm. 

• Numerical studies have been carried out to validate and also demonstrate the efficacy of the 

proposed CMA by a super high-rise structure. The results obtained showed that the convergences 

of the CMA using are better than those of the existing SMA, and 77.94% reduction is gained to 

reach a satisfactory solution. 
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