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Abstract.  An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) 

for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes 

for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the 

elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal 

strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation 

deduced from differential equations of plate structure motion. WFEM scales vary spatially and change 

dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy 

can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the 

degrees-of-freedom in WFEM and sensors in the vibration test. 
 

Keywords:  adaptive-scale damage detection; plate structure; modal strain energy; wavelet finite element 

model 

 
 
1. Introduction 
 

Damage-induced changes in structural modal properties (such as frequencies, mode shapes, 

mode shape curvatures, and modal strain energy) are extensively utilized to locate and quantify 

structural damage (Doebling et al. 1996, Fan and Qiao 2011, Homaei et al. 2014, Xiang et al. 

2014). Some of these damage detection methods rely on analytical structure models, such as finite 

element models (FEM), and are referred to as model-based damage detection methods. Thin plates 

are common and important types of structural components in civil engineering structures, but 

relatively fewer studies have been conducted on plate elements than on 1D structural elements, 

such as truss, beam, and frame elements. Cornwell et al. (1999) derived a damage detection 

algorithm for plate-like structures on the basis of modal strain energy calculated from mode shapes 

before and after damage. Lee and Shin (2002) developed a damage identification algorithm for 

plates by using modal properties in the intact state and a frequency response function in the 

damaged state. Yam et al. (2002) investigated the sensitivities of static and dynamic parameters to 
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Fig. 1 Local refinement in traditional plate elements 

 

 

plate damage and provided recommendations for selecting damage indices in different cases. Wu 

and Law (2004) located plate damages by using the changes in uniform load surface curvature 

between intact and damaged states. Bayissa and Haritos (2007) identified plate damage by using a 

parameter derived from the power spectral density of the bending moment response. This method 

can deal with both input–output and output-only problems. Hu and Wu (2009) presented a damage 

detection approach for plate structures based on experimental modal analysis and modal strain 

energy. Kazemi et al. (2010) proposed a plate damage identification method with two stages, 

namely, localization and quantification. This method is based on the variation in modal flexibility 

and artificial neural network technique. On the basis of elemental modal strain energy, Fan and 

Qiao (2012) presented a damage location factor matrix and a severity correction factor matrix to 

locate and quantify damages in plate structures, respectively. Fu et al. (2013) developed a time-

domain response sensitivity-based FEM updating approach to identify local damages in plate 

structures. 

He et al. (2014) highlighted an existing issue with FEM-based damage detection methods. The 

issue is that a delicate FEM with high spatial resolution can provide high-fidelity modal properties 

and enable the detection of minor damage, but it also results in high cost and difficulty in 

computation. The amount of computation increases exponentially along with the degrees-of-

freedom (DOFs) in FEM. Moreover, only low-order modal properties with limited accuracy are 

often identified through vibration testing, which makes delicate FEMs unnecessary. Therefore, a 

multi-scale FEM with high resolution at damage regions and relatively low resolution elsewhere is 

desirable to achieve an appropriate tradeoff between computation accuracy and efficiency (He et 

al. 2014). They suggested that multi-scale FEM resolution adaptively changes according to the 

detection progress. First, suspected damage regions are approximately identified by using a low-

resolution model. Second, accurate results are obtained with local refinement in the suspected 

regions. 

However, implementing multi-scale models in the context of traditional FEMs involves 

reconstructing system matrices and repeating the entire computation process after remeshing local 

suspected damage regions (He and Zhu 2013). The process becomes even more complicated for 

plate structures. Fig. 1 shows a plate with a damaged region, which is represented by the shaded 

area. The plate is initially divided into nine elements. If the center element (ABCD) is identified as 

a suspected damage region, such element is subsequently divided into four equal elements. In the 

subsequent refinement, one node (N0) is introduced inside the element and four hanging nodes on 

the elemental edges (N1 to N4). These hanging nodes need to meet special compatibility 

conditions and may cause numerical computation difficulties (Becker and Braack 2000; Biboulet 

et al. 2013). 
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He et al. (2014) adopted the wavelet finite element model (WFEM) and proposed an adaptive-

scale damage detection strategy for beam structures to resolve the abovementioned dilemma. 

WFEM has been proven to have superior multi-resolutions and localization properties (Ko et al. 

1995, Amaratunga and Sudarshan 2006, He et al. 2012, He and Ren 2013, Li and Chen 2014, 

Wang et al. 2014). This strategy locates and quantifies structural damages in a progressive manner. 

WFEM employs a coarse model to identify likely damaged regions and then estimates accurate 

damage information with local refinement. In the current study, the adaptive damage detection 

strategy is extended from 1D beam elements to 2D thin plate elements. Dynamical equations and 

corresponding lifting schemes for thin plate structures are derived using the tensor products of 

cubic Hermite multi-wavelets, which are employed as the elemental shape functions. 

Consequently, sub-element damage can be located through change ratios of modal strain energy 

and progressively quantified with a damage quantification equation deduced from differential 

motion equations. WFEM scales are adaptively lifted or reduced according to actual needs during 

detection. Hence, appropriate tradeoffs between modeling details and integrity as well as between 

computation accuracy and efficiency are ideally achieved. The effectiveness and advantages of the 

proposed adaptive-scale damage detection strategy are verified through numerical examples of 

simulated plate structures with single and double damages. 

 

 

2. Multi-scale WFEM for thin plate structures 
 

Multi-scale WFEMs are fundamental to the proposed adaptive-scale damage detection strategy 

for plate structures. Such models employ scaling or wavelet functions as elemental shape 

functions. Various wavelet plate elements have been developed by using different wavelet types, 

such as spline wavelets (Chen and Wu 1995, Han et al. 2006), Daubechies wavelets (Diaz et al. 

2009), B-spline wavelets (Xiang et al. 2008, Chen et al. 2010), trigonometric wavelets (He and 

Ren 2013), and Hermite wavelets (Wang and Wu 2013). The wavelet plate element based on 

second-generation cubic Hermite multi-wavelets (Wang and Wu 2013) is adopted for its favorable 

localization characteristics and convenient integral operation. The adaptive-scale detection strategy 

is extended to 2D thin plate structures in this section. 

     Scaling functions at scale 0 consisting of two cubic Hermite splines are provided by 

1 2

0,0 0,0 0,0[ ( ) ( )]x x   ,                                                       (1) 

where 

2

1 2

0,0

( 1) ( 2 1)       [ 1,0]

( ) ( 1) (2 1)         [0,1]

0                               otherwise

x x x

x x x x

     


   



,                                      (2a) 

2

2 2

0,0

( 1)        [ 1,0]

( ) ( 1)        [0,1]

0                   otherwise

x x x

x x x x

   


  



   .                                         (2b) 

     A simple form of cubic Hermite wavelet function at scale 0 (Averbuch et al. 2007) is expressed 
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as 

0,0 1,0  .                                                                 (3) 

     Spanning of scaling functions 1 2 1 2

, ,{ , } { , : ( )}j j j j k j k k K j   Φ Φ Φ  at scale j forms space V
j
, 

where subscripts j and k define the scale and shift of the scaling functions. Spanning of 

corresponding wavelet functions 1 2 1 2

, ,{ , } { , : ( )}j j j j m j m m M j   Ψ Ψ Ψ  at scale j forms space 

W
j
. The orthogonal complement of V

j
 is wavelet space W

j
 (i.e., V

j+1
=V

j
W

j
 and V

0
V

1
∙∙∙V

j
∙∙∙). A 

detailed discussion on cubic Hermite multi-wavelets is provided by Zhu et al. (2013).  

     The 2D cubic Hermite wavelets of scale j are constructed by using the tensor products of 1D 

wavelets (Wang and Wu 2013, Quraishi and Sandeep 2013). They consists of four functions, 

namely 

)()(),( 111 yxyx jjj  ,
          

    
                                   

(4a) 

)()(),( 212 yxyx jjj  ,                                                 (4b) 

)()(),( 123 yxyx jjj  ,                                                 (4c) 

)()(),( 224 yxyx jjj  .                                                 (4d) 

     These functions stand for the displacement, horizontal difference, vertical difference, and 

diagonal difference of the displacement field, respectively. The 2D wavelets at scale j=1 are 

shown in Fig. 2. Spanning of scaling functions 1 2 3 4{ , , , }j jj jj jj jjΦ Φ Φ Φ Φ  at scale j forms space F
j
, 

which also has a multi-resolution property, i.e., F
0
F

1
∙∙∙F

j
, F

j+1
=F

j
G

j
. G

j 
is spanned by the 

corresponding 2D wavelet functions 
jΨ  of scale j, which also has a simple form  

1j jΨ Φ .                                                                (5) 

     According to classical Kirchoff–Love plate theory, the generalized function of the potential 

energy of an elastic rectangular thin plate with dimensions lx by ly is (Zienkiewicz and Taylor 

1961) 

    21 1

2 2

T

p dxdy t w dxdy 
 

   κ Dκ ,                                       (6) 

where Ω
 
is the solving domain, w is the displacement field function, λ is the vibration eigenvalues, 

κ is the generalized strain vector, and D is the plate elasticity matrix. These parameters are defined 

as follows 

T

yx

w

y

w

x

w
]  [

2

2

2

2

2














κ ,                                                   (7) 

0

1 0

1 0

0 0 (1 ) / 2

D







 
 
 

  

D ,                                                   (8) 

242



 

 

 

 

 

 

Adaptive-scale damage detection strategy for plate structures based on wavelet finite... 

  

3

0 212(1 )

Et
D

v



,

                                                             

(9)

 

where v denotes the Poisson’s ratio.  

By using 2D multi-wavelet 
jΦ  as the shape function and translating the corresponding 

coordinate into a standard solving domain, the unknown displacement field function w(ξ, η) is 

expressed as 

1

0 0

0

( , )
j

n n j j

n

w  




  Φ a Ψ b Φ q ,

                                            

(10) 

where ξ
 
and η

 
represent local coordinates, 

0Φ  represents scaling functions at scale 0, 

0 0 1 1[     ]j jΦ Φ Ψ Ψ Ψ represents wavelet functions at scale j, and qj 
is the undetermined 

vector of wavelet coefficients (i.e., coordinates corresponding to wavelet DOFs). Mode shapes 

expressed in general DOFs can be conveniently converted into wavelet DOFs by using the 

 

 

   

(a) Scaling function 1

1Φ                              (b) Scaling function 2

1Φ  

 
(c) Scaling function 3

1Φ                                (d) Scaling function 4

1Φ  

Fig. 2 2D tensor products of cubic Hermite functions 
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interpolation properties of adopted multi-wavelets. 

According to the minimum potential energy principle, we substitute Eq. (10) into Eq. (6) and 

let δ∏p=0, where δ is the variational operator. The wavelet formulations for the free vibration of 

elastic thin plates are then obtained as 

( ) 0j j j K M q ,
                                                       

(11) 

where Mj 
and Kj 

are the element mass and stiffness matrices at scale j; λ is the eigenvalue and qj is 

the eigenvector (i.e., the mode shape vector in wavelet DOFs). 

,0,0 ,0,0

1 2

j j

j x yl l t M Γ Γ
                                                

(12) 

2 2 0 0 0 2 2 0 0 0 0 0 11 11
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j D ( )           K Γ Γ Γ Γ Γ Γ Γ Γ
 ,        
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 ,                    
(18) 

where jΦ   and jΦ  represent the second and first derivatives with respect to local coordinate ξ, 

respectively. Integrals 
, ,

2

j f g
Γ (f,g=0,1,2) are similar to 

, ,

1

j f g
Γ ( f,g=0,1,2), and only lx 

and dξ
 
have to 

be replaced by ly
 
and dη, respectively. 
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     The mode shape vectors expressed with wavelet DOFs can be determined through the 

eigenvalue problem presented in Eq. (10). Lifting or lowering procedures between scales result in 

slight changes in the matrices. The matrices of the current scale (i.e., Eqs. (14) to (18)) are mainly 

retained, and only a few rows and columns need to be added or deleted. Although scale lifting or 

lowering procedures in WFEM are analogous to mesh refinement or roughening processes in 

traditional FEM, the former procedures have simpler operations because re-meshing structures and 

re-constructing entire matrices are not conducted. Furthermore, the challenges associated with 

hanging nodes are avoided. This advantage considerably reduces the computation costs of 

adaptive-scale damage detection, where modeling scales need to be dynamically changed 

according to actual needs. 

 

 

3. Adaptive-scale damage detection 
      

     Damage detection based on modal strain energy has been extensively explored in the context of 

traditional FEM (e.g., Shi and Law 1998, Cornwell et al. 1999, Guan and Karbhari 2008, Yan et 

al. 2010). Owing to the multi-scale features of WFEM, modal strain energy in the proposed 

adaptive-scale damage detection strategy can be computed not only for elements but also for sub-

elements. This condition allows this strategy to identify the damage with a size smaller than that of 

an element. Therefore, partial differential equations that govern plate free vibrations are 

formulated for sub-elements in this section. Consequently, a damage quantification equation is 

derived. 

 

3.1 Damage localization 
       

According to Cornwell et al. (1999), the modal strain energy of an element or sub-element (Ar) 

associated with the i
th
 mode shape of a plate is 

2 2 2 2 2
2 2 2

, 0 2 2 2 2

1
( , )[( ) ( ) 2 ( )( ) 2(1 )( ) ]

2
r

i i i i i
i r

A

MSE D x y v v dxdy
x y x y x y

        
    

      ,         (19) 

2 2 2 2 2
2 2 2

, 0 2 2 2 2

1
( , )[( ) ( ) 2 ( )( ) 2(1 )( ) ]

2
r

d d d d d
d d i i i i i
i r

A

MSE D x y v v dxdy
x y x y x y

        
    

      ,     (20) 

where φi is the i
th
 mode shape function that can be obtained from the i

th
 mode shape vector with  

Eq. (10); Ar represents the element or sub-element with damage; MSEi,r and 
,

d

i rMSE  represent the  

modal strain energy before and after damage, respectively; superscript d  denotes the damaged 

state; and D0 denotes element or sub-element bending rigidity. Intact D0 is utilized as an 

approximation in Eq. (20) when bending rigidity after damage 0

dD  is unknown. A normalized 

change ratio of modal strain energy is employed as a damage location indicator as follows 

    , , , ,

,

, ,

| | | |
/ max( )

d d

i r i r i r i r

i r

i r i r

MSE MSE MSE MSE
NMSECR

MSE MSE

 
 .

                        

(21) 

The damage location indicator is defined as the average of NMSECEi,r for all modes of interest 
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when more than one vibration mode shape is considered. 

,

1

1 m

r i r

i

NMSECR NMSECR
m 

 
 
          

                   
(22) 

      

3.2 Damage quantification 
       

Assuming that plate damage occurrence causes a change in bending rigidity 

00 0 0 0( , ) ( , ) ( , ) ( , ) ( , )d

r

r

D x y D x y D x y D x y D x y        ( 1 0r   ),          (23) 

where βr is the damage index of sub-element Ar. 

Damage causes small perturbations in the i
th
 eigenvalue and mode shape in comparison with 

those of undamaged plates.  

d

i i i     ,                                        (24) 

d

i i i i is s

s i

p    


     ,                                  (25) 

where i  and 
d

i  are the eigenvalues before and after damage, respectively, and i  and 
d

i  are 

the mode shapes before and after damage, respectively. Change in the i
th
 mode shape Δφi is 

expressed as a linear combination of mode shapes other than the present one. According to Clough 

and Penzien (1993), the partial differential equation defining eigensolutions of the undamaged 

plate is 

4 4 4

0 4 2 2 4
[ 2 ] ( , ) 0i i i

i iD m x y
x x y y

  
 

  
   

   
.
                       

(26) 

When the plate is subject to damage, Eq. (26) with small perturbation becomes 

4 4 4

0 0 4 2 2 4

( ) ( ) ( )
[ ][ 2 ] ( ) ( ) 0i i i i i i

i i i iD D m
x x y y

     
   

        
         
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.
   

(27) 

Substituting Eq. (26) into Eq. (27) and neglecting small terms leads to 

4 4 4 4 4 4

0 04 2 2 4 4 2 2 4
[ 2 ] [ 2 ] 0i i i i i i

i i i iD D m m
x x y y x x y y

     
   

        
          

       
.
   

(28) 

By pre-multiplying φs(s≠i) and computing the integral along the solving domain on both sides of 

Eq. (28) in consideration of orthogonal conditions, coefficient pis is computed as 

4 4 4

0 4 2 2 4

1
( 2 )i i i

is s

i s

p D dxdy
x x y y
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

 

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   

     .   (29) 

      Damage-induced changes in MSEi,r are expressed in two ways. 
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(31) 

Supposing that k elements or sub-elements of a plate are localized as damaged regions by 

NCRMSE as described in Section 3.1, the following damage quantification equation is obtained 

from Eqs. (29) and (31). 
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.        (35) 

In the expressions above, (1≤m≤k, 1≤n≤k). After the damage is located using the damage 

location indicator in Eq. (21), it can be qualified by solving the damage quantification equation Eq. 

(32). This two-stage process, which includes localization and quantification, effectively reduces 

matrix size and minimizes computation costs. 

 

3.3 Progressive damage detection 
      

He et al. (2014) proposed an adaptive-scale damage detection strategy for beam structures. This 

strategy is extended to plate structures in the current study. A low-resolution WFEM model is 

utilized to approximate the potential location and damage severity. A multi-resolution model with 

local refinement in suspected regions is employed to obtain accurate detection results. This 

strategy is efficient because WFEM is refined only in key locations, and only a limited number of 

sensors are added for critical regions. The main steps of the adaptive-scale damage detection 

strategy are provided below. 

Step 1: The mode shapes in damaged and undamaged states are determined through sensor 

measurement and multi-scale WFEM, respectively. The corresponding modal strain energy in each 

region is calculated. 

Step 2: The suspected damage region is located with NCRMSE. The region is quantified with 

the damage quantification equation. 

Step 3: High-scale wavelet terms are added to the suspected damage regions to refine the 

WFEM. Each considered region is divided into four sub-regions with the same size. More sensors 

are added to the corresponding regions of the plate when necessary. 

Step 4: Steps 1 to 3 are repeated until changes in the damage detection results after refinement 

are minimal. 

 

 

4. Numerical examples 
 

The effectiveness of the proposed adaptive-scale damage detection strategy is demonstrated 

through numerical examples of thin plates supported on four corners. Fig. 3 shows the thin plate 

dimensions of 600 mm×700 mm×3 mm. The aluminum material has the following properties: 

Young’s modulus E=68.9 GPa, density ρ=2700 kg/m
3
, and Poisson's ratio v=0.27. Table 1 shows 

the two damage cases considered in this study, namely, single-damage and double-damage cases. 

Considering that only lower modal properties are obtained accurately in practical vibration tests, 

the first mode shape is utilized in Section 4.1, whereas the first three mode shapes are utilized in 

Section 4.2. Modal shapes calculated with a densely meshed traditional FEM are regarded as 

measurement results. 

 

4.1 Examples without noise 
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 Case 1 involves a single damage in the rectangle [0.200, 0.250] × [0.375, 0.400] with 20% 

damage severity. Figs. 4 and 5 show the adaptive-scale model refinement process and the 

corresponding damage localization results, respectively.  

In Stage 1, the plate is first modeled by 6×7 wavelet plate elements at scale 0, that is, the 

displacement field function of each element is approximated in wavelet space F0. The 

corresponding number of DOFs at this stage is 220. Fig. 5 shows the damage location indicators 

associated with the first mode shape for each element. Fig. 5(a) shows region [0.2, 0.3] × [0.3, 0.4] 

(ABCD) as an identified suspected damage region. Table 2 describes the damage severity 

estimated with the damage quantification equation. As expected, the damage cannot be localized 

and quantified accurately because of the low-scale model. Subsequently, WFEM is refined in 

region ABCD by adding wavelets of scale 0 in Stage 2. In this stage, the wavelet approximation 

space is lifted to F1. One more measurement point at (0.25, 0.35) is added to increase the 
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Fig. 3 Thin plate in the numerical study 

 
Table 1 Damage scenarios considered in the numerical study 

Damage scenarios 
Damage 

Region Severity (%) 

Case 1 Damage 1 [0.200, 0.250] × [0.375, 0.400] 20 

Case 2 
Damage 1 [0.200, 0.250] × [0.375, 0.400] 20 

Damage 2 [0.350, 0.400] × [0.550, 0.600] 10 
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Fig. 4 Model refinement process in Case 1 

 

 
resolution of the measured mode shape in region ABCD during the vibration test. Only the modal 

strain energy in suspected region ABCD is calculated. Fig. 5 shows the damage location identified 

in a smaller region ([0.25, 0.30] × [0.35, 0.40]) with improved estimation accuracy. Further 

refinement and identification processes are performed to obtain accurate detection results. In Stage 

3, the wavelet approximation space in the suspected region is lifted to F2. Consequently, the 

suspected damage regions are further reduced to [0.250, 0.275] × [0.375, 0.400] and [0.275, 0.300] 

× [0.375, 0.400], which are identical to the real damage regions in Fig. 3. The refinement process 

is continued in Stage 4 by lifting the wavelet approximation space to F3 in the suspected regions. 

Two more measurement points at (0.2625, 0.3875) and (0.2875, 0.3875) are added to the vibration 

test results. The suspected damage regions cannot be reduced further, and the results in Stages 3 

and 4 in Fig. 5 are almost similar. This condition implies that the identified regions in Stage 3 are 

close to the real one and that no further refinement is necessary. Table 2 shows the corresponding 

damage quantification results obtained with Eq. (32). The quantification accuracy of damage 

severity is effectively improved with the progressive refinement of WFEM. Such severity finally 

converges with real values in Stages 3 and 4. Damage severity quantification should only be 

conducted in the last stage to reduce the computation amount. 

Table 1 and Fig. 3 show the double damages in Case 2. The first region [0.200, 0.250] × [0.375, 

0.400] has 20% severity, and the second region [0.350, 0.400] × [0.550, 0.600] has 10% severity. 

Following the similar process employed in Case 1, the damage is progressively identified with 
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(c) Stage 3 (d) Stage 4 

Fig. 5 Adaptive-scale damage identification results in Case 1 

 

 
improved accuracy. Fig. 6, Fig. 7, and Table 2 present the WFEM refinement process, damage 

localization, and quantification results, respectively.  

Damage 2 consists of 1/168 of the entire plate. A good estimation of damage size and severity 

is obtained in Stage 2 and confirmed in Stage 3. Therefore, the wavelet approximation space is 

recovered to F1 in the Damage 2 region in Stage 4. Damage 1 consists of 1/336 of the plate, and 

the relevant region is gradually refined until Stage 4. Therefore, the WFEM scale can be 

adaptively adjusted according to the actual damage. This flexibility and adaptability enable the 

proposed strategy to achieve satisfactory damage detection results with minimized DOFs and 

computation costs. For example, using traditional FEM with uniform meshing in Case 1 requires at 

least 24 × 28 plate elements with 2,896 DOFs to capture the damage location and severity 

accurately. Square plate elements are employed because the actual damage region shape cannot be 

determined in advance. However, only 236 DOFs are employed in Stage 4 for Case 1 by using 

adaptive-scale WFEM. 
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Fig. 6 Model refinement process in Case 2 

 
Table 2 Damage severity quantification results (%) 

Stage Region Case 1 Case 2 

1 
[0.3000, 0.4000] × [0.5000, 0.6000] / 2.8 

[0.2000, 0.3000] × [0.3000, 0.4000] 2.8 2.5 

2 
[0.3500, 0.4000] × [0.5500, 0.6000] / 9.9 

[0.2500, 0.3000] × [0.3500, 0.4000] 10.4 10.9 

3 

[0.3500, 0.3750] × [0.5500, 0.5750] / 9.8 

[0.3500, 0.3750] × [0.5750, 0.6000] / 10.0 

[0.3750, 0.4000] × [0.5500, 0.5750] / 9.8 

[0.3750, 0.4000] × [0.5750, 0.6000] / 9.9 

[0.2500, 0.2750] × [0.3750, 0.4000] 19.1 19.1 

[0.2750, 0.3000] × [0.3750, 0.4000] 18.9 18.9 

4 

[0.2500, 0.2625] × [0.3750, 0.3875] 18.4 19.5 

[0.2500, 0.2625] × [0.3875, 0.4000] 18.7 18.4 

[0.2625, 0.2750] × [0.3750, 0.3875] 20.0 19.8 

[0.2625, 0.2750] × [0.3875, 0.4000] 18.8 18.2 

[0.2750, 0.2850] × [0.3750, 0.3875] 18.8 18.2 

[0.2750, 0.2850] × [0.3875, 0.4000] 19.8 19.6 

[0.2850, 0.3000] × [0.3750, 0.3875] 18.2 17.6 

[0.2850, 0.3000] × [0.3875, 0.4000] 18.4 19.5 
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Fig. 7 Adaptive-scale damage identification results in Case 2 

 

 

4.2 Examples with noise 
      

Measurement noise contaminates the measured modal data in actual vibration tests. In this 

section, a random error is added to the measured mode shapes to consider the measurement noise 

effect. 

(1 )iz iz iz    ,                                                         (36) 

where iz  and rj  are “measured” and accurate mode shape elements of the ith mode at zth DOF, 

respectively; η is the noise level; and ςiz is a zero-mean Gaussian random variable. Six different 

noise levels are considered: 0.5%, 1%, 1.5%, 2%, 2.5%, and 3%. A total of 1000 Monte Carlo 

simulations are performed for each noise level. The coefficient of variance (COV) is employed to 

measure damage detection result variance.  

/aCOV a ,                                                           (37) 
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Fig. 8 COV of damage detection results in Case 1 

 

 

where a  and σa represent the mean and standard deviation of a distribution, respectively. A high 

COV implies that high uncertainty exists in a single sample or more samples are required to 

achieve accurate estimation. 

The average damage location indicators and severity indices obtained from multiple vibration 

tests can well reflect the actual structural damage locations and severity. This finding implies that 

average values from a sufficient number of testing results can minimize noise effects in damage 

detection. Figs. 8(a) and 8(b) show the COVs of estimated damage location indicators and severity 

indices in different scales in Case 1, respectively. Increases in COV, along with the measurement 

noise level, are apparent. Furthermore, uncertainty in detection results increases with the WFEM 

scale. 

 

 

5. Conclusions 
 

     A WFEM-based adaptive-scale damage detection strategy previously proposed for beam 

structures was extended to thin plate structures in this study. Equations of motion and 

corresponding lifting schemes for thin plate structures were derived by using the tensor products of 

cubic Hermite multi-wavelets as elemental interpolation functions. Sub-element damages were 

located and quantified progressively during damage detection. WFEM was gradually refined from 
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low to high resolution in critical regions. Therefore, the WFEM-based adaptive-scale damage 

detection strategy achieved a desirable tradeoff between modeling details and entirety. The 

numerical examples of thin plates supported on four corners demonstrated how the proposed 

strategy accurately and progressively detects damages. The proposed strategy is efficient in terms 

of DOFs, sensors, and computation efforts because the wavelet scale can be adaptively enhanced 

and reduced according to actual needs. Such refinement is necessary only for possible damage 

regions. The two-step detection process (i.e., localization and quantification) also improves the 

efficiency and accuracy of damage detection. 
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