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Abstract.  An integrated method is proposed for structural nonlinear damage detection based on time series 

analysis and the higher statistical moments of structural responses in this study. It combines the time series 

analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering 

techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of 

the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear 

damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos 

National Laboratory (LANL) USA, from a three-storey building structure considering the environmental 

variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the 

new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are 

finally analyzed and concluded. 
 

Keywords:  structural damage detection; nonlinear damage detection; time series analysis; higher statistical 

moments 

 
 
1. Introduction 
 

Structural damage detection (SDD) plays the most pivotal role in the process of structural 

health monitoring (SHM) (Gul and Catbas 2011). Currently, the vibration-based structural damage 

detection (VBSDD) technique has been recognized and intensively studied as a promising tool for 

monitoring structural conditions and detecting structural damages (Doebling et al. 1998, Sohn et 

al. 2004, Carden and Fanning 2004, Yan et al. 2007, Zhou et al. 2013, Yu et al. 2013, Li and Chen 

2013, Lei et al. 2015). Identifying the presence of the damage might be considered as the first step 

to take preventive actions and to start the process towards understanding the root causes of the 

problem (Gul and Catbas 2009). Most of the VBSDD methods can be classified into two groups: 

model based and feature based (Zhang 2007). For the latter, especially for those based on the time 

series statistical analysis in constructing time-series signature for direct damage diagnosis have 

gained considerable attention recently since their implementation for an automated SHM system is 
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relatively more feasible compared to the model based methods (Lu and Gao 2005, Lee and Yun 

2013, Yao and Pakzad 2014, Dorvash et al. 2014).  

Most of the time series analysis based methodologies aim to fit time series models to the 

vibration data and then try to detect the damage by extracting damage features from these time 

series models. As one of key steps in the SHM, the ideal approach for features extraction is to 

choose features that are sensitive to damage, but are not sensitive to operational and environmental 

variations. However, such an approach is not always possible in real-world structures, and 

intelligent feature extraction procedures are usually required (Farrar and Worden 2007). Some of 

them directly compare the time series models whereas others use the residual errors when the new 

data is used with the previously created model. An AR (Auto-Regressive) model is fitted to the 

measured responses data from a healthy structure by Fugate et al. (2001), the corresponding 

residual errors are defined as the damage-sensitive features, and the X-bar and S control charts are 

employed to monitor the mean and variance of the selected features for SDD. Based on AR 

modeling of the signals from a laboratory tower, Zugasti et al. (2012) presented two SDD methods 

and reported that two methods were able to correctly detect damage in the structure that was 

simulated by loosening some of the bolts in the joints. Yao and Pakzad (2012) proposed two time 

series-based SDD algorithms by using statistical pattern recognition. They defined the Ljung-Box 

statistic of AR model residual sequence and the Cosh spectral distance of the estimated AR model 

spectrum as the damage indexes respectively. Compared with existing AR model based 

algorithms, the subsequent simulation and lab experiments showed that the Ljung-Box statistic is a 

more sensitive feature while the Cosh spectral distance tends to be more stable than Mahalanobis 

distance of coefficients. Further, Yao and Pakzad (2014) derived the sensitivity expressions of two 

damage features, namely the Mahalanobis distance of AR coefficients and the Cosh distance of 

AR spectra. The effectiveness of the proposed methods was illustrated in a numerical case study 

on a 10-DOF system. Sohn and Farrar (2001) proposed a two-step AR-ARX (auto-regressive and 

auto-regressive with eXogenous) model and subsequently used the standard deviation (STD) ratio 

of the residual error to indicate the damage. Lu and Gao (2005) also used the STD of the residual 

error as a damage feature. Gul and Catbas (2011) extracted different damage features from ARX 

models from the different clusters. Although the proposed methodology showed great success for 

the examples, they also acknowledged that the methodology should be verified with more 

experiments and be improved for damage detection with ambient vibration data as well.  

In another study, Nair et al. (2006) employed an ARMA (Auto-Regressive Moving Average) 

model and the first three AR components as the damage sensitive feature. Omenzetter and 

Brownjohn (2006) used Auto-Regressive Integrated Moving Average (ARIMA) models to analyze 

the static strain data from a bridge during construction and operation, however, the authors 

reported that the damage location and their severity could not be identified although the method 

can detect structural changes. Carden and Brownjohn (2008) presented a statistical classification 

algorithm based on analysis of the time-series responses with ARMA models where the ARMA 

coefficients are fed to the classifier. The method is verified with experimental data respectively 

from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and the Malaysia-

Singapore Second Link bridge. The classifier is found to be capable of forming distinct classes 

corresponding to different structural states in most cases. However, the method may not be the 

most suitable SHM paradigm for structures with ambient excitation only. The sensitivity of 

ARMA models of static response data to typical infrastructural damage is unproven yet. 

However, all the above linear time series analysis based methods cannot deal with nonlinear 

damages effectively, such as the fatigue cracks that open and close upon dynamic loading (Chen 
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and Yu 2013). Apart from the mean and standard deviation of the time histories, Mattson and 

Pandit (2006) adopted the higher-order moments of the residuals obtained from vector AR models 

to detect damage. They reported that the residual-based method is capable of identifying non-

linear damage signatures that are too deeply buried in the system dynamics to be identified directly 

from the raw data, but they also found that only use of skewness and kurtosis as features for 

damage diagnosis is less reliable than the variance. Figueiredo et al. (2009) reported that skewness 

and kurtosis showed some differences in the damaged states when compared to the undamaged 

states. They can be used as features to detect damage that results in a linear system subsequently 

exhibiting nonlinear dynamic response. 

In this study, an integrated method is proposed for nonlinear SDD based on time series 

analysis, the higher statistical moments of structural responses and the fuzzy c-means (FCM) 

clustering techniques. Six comprehensive damage indexes are developed in the arithmetic and 

geometric mean of the higher statistical moments. They are then classified by the FCM clustering 

method for achieving nonlinear damage detection. The background of theory of the integrated 

method is first presented in the section two. In order to assess the performance of the integrated 

nonlinear SDD method proposed here, the experimental data downloaded from the web site of the 

Los Alamos National Laboratory (LANL) USA on a three-storey building structure are adopted to 

conduct experimental verification in the following section. Some reasonable conclusions are made 

finally. 

 

 

2. Background of theory 
 

The theoretical background of the integrated method is developed for structural nonlinear 

damage detection based on time-series analysis in this section. Based on linear system theory, AR 

time series models are adopted to describe the acceleration time histories and used in the analysis 

of stationary time series processes, which obey probabilistic laws, in which the mean, variance and 

higher order moments are time invariant. 

 

2.1 Data standardization 
 

Supposing xi∈R n× 1 (i=1,2…p), denotes amplitudes of measured acceleration response data 

with p data sample at all n measurement points. In order to eliminate the effects caused by 

environmental and operational variations from the measured acceleration responses, the data 

standardization is necessary as follows 
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Where, x , 2  and ˆ
ix  are the mean, variance and standardized version of time series signal xi 

respectively. 
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2.2 Traditional damage-sensitive index  
 

AR models attempt to account for the correlations of the current observation in time series with 

its predecessors. A univariate AR model of order p at j-th measured acceleration signal, or AR (p), 

for the time series can be written as 

( ) ( ) ( )
j j j

A q x k e k                                                            (4) 

1 2

1 2
( ) 1

p

j j j pj
A q a q a q a q

  
                                         (5) 

where xj(k)(j=1,2,...m, k=1,2,...,n) are the current and previous values of the time series and ej(k) is 

AR model residual error. The AR coefficients a1j, a2j,..., apj can be evaluated using a variety of 

methods. Here, the coefficients were calculated using the Yule-Walker equations (Box and Jenkins 

1976). For the structural reference (health) state, the corresponding AR model can be made, the  

model parameter ( )
ref

j
A q  and residual error ( )

ref

j
e k  can be obtained. Similarly, for any unknown  

structural test sample yj(k), its residual error is 

( ) ( ) ( )
test test

j j j
e k A q y k                                                         (6) 

If the residual error is assumed as a Gaussian normal distribution with a zero mean, the 

traditional damage-sensitive index (DI) is defined as the standard deviation (STD) ratio of the 

unknown test state to the reference one as follows (Sohn and Farrar 2001) 

( ) ( ) / ( )
j

std test ref

j je e e                                                       (7) 

When the test samples come from the structural health state, AR model can effectively predict 

the sample, therefore the variance of the residual error is close to one of the reference sample, the 

STD ratio in Eq. (7) is approximately equal to one. When the test samples come from the structural 

damage state, the residual error will be increased, the STD ratio will larger than one, therefore, the 

STD ratio can be used to determine if the structures is damaged or not. 

 

2.3 Order of AR model  
 

The order of the AR model is an unknown value. A high-order model may perfectly match the 

data, but will not generalize to other data sets. On the other hand, a low-order model will not 

necessarily capture the underlying physical system response. In order to find out the optimum 

model order, several techniques are used in this study, such as Akaike‟s information criterion 

(AIC), partial autocorrelation function (PAF), final prediction error (FPE) etc. Finally, the AIC is 

chosen in this study, which is used to assess the general performance of linear models. In a simple 

way, this technique returns a value that is the sum of two terms as follows 

2 2mAIC L m                                                               (8) 

Where Lm is the maximized log-likelihood of the residual error, and m is the number of 

adjustable parameters in the model. It assumes a tradeoff between the fit of the model and the 

model complexity. The first term is related to how well the model fits the data, i.e., if the model is 

too simple, the residual errors increase. On the other hand, the second term is a penalty factor 

related to the complexity of the model, which increases as the number of additional parameters 
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grows (Box and Jenkins 1976). 

 

2.4 Nonlinear damage-sensitive index  
 

It should be noted that AR model is a kind of linear model and many classical statistical tests 

depend on the assumption of normality. This approach is based on the assumption that damage 

will introduce either linear deviation from the baseline condition or nonlinear effects in the signal 

and, therefore, the linear model developed with the baseline data will no longer accurately predict 

the response of the damaged system.  

In order to establish the underlying distribution of the data, some higher statistical moments are 

used to estimate the probability density function (PDF) of the measured signals without normal 

distribution. Moreover, it is expected that the damage can introduce significant changes in the 

acceleration-time-history PDFs, as a consequence, the third and fourth statistical moments and 

PDFs are introduced as damage-sensitive features for effectively nonlinear damage detection in 

this study. 

The third statistical moment is a measure of the asymmetry of the PDF. The normalized third 

statistical moment is called as the skewness defined as follows 

3 3
( ) [ ( )] / ( )

j j j jskewness e E e m e e                                          (9) 

Where, a positive skewness represents that the right tail is longer and that the area of the 

distribution is concentrated below the mean. On the other hand, a negative skewness means that 

the left tail is longer and that the area of the distribution is concentrated above the mean. The 

skewness of a standard normal distribution is zero. 

The fourth statistical moment is a measure of the relative amount of data located in the tails of 

a probability distribution. The normalized fourth statistical moment is named as the kurtosis 

defined as follows 

4 4
( ) [ ( )] / ( )

j j j jkurtosis e E e m e e                                       (10) 

Where, a kurtosis greater than three indicates a “peaked” distribution that has longer tails than 

a standard normal distribution. This means that there are more cases far from the mean. Kurtosis 

less than three indicates a “flat” distribution with shorter tails than a standard normal distribution. 

This property implies that fewer realizations of the random variable occur in the tails would be 

expected in a normal distribution. The kurtosis of a standard normal distribution is three. 

Similar to Eq. (7), two damage-sensitive indexes are defined as the Skewness ratio and 

Kurtosis ratio of structural unknown test state to its reference state respectively as follows, 

( ) ( ) / ( )
test ref

j j j

skew
e skewness e skewness e                                        (11) 

( ) ( ) / ( )
j

kur test ref

j je kurtosis e kurtosis e                                         (12) 

When the structure is in a healthy state, the skewness of the AR model residual error is close to 

zero, its kurtosis approaches to three. When the structure is damaged, the skewness will be positive 

or negative, the kurtosis will increase. When both the test and reference data samples come from 

same states, the corresponding skewness and kurtosis ratios will be identical and equal to one 

under same states respectively, or else they will be more or less than one, which can be used to 

detect the nonlinear damage of structures. However, the skewness and kurtosis estimates are 
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extremely sensitive to values that fall in the tails of the distribution because they are magnified by 

a power of three or four, respectively. For this reason, they should be used very carefully. 

 

2.5 Integrated damage-sensitive indexes  
 

The STD ratio in Eq. (7) is a traditional damage-sensitive index (DI) suitable for linear model, 

while DIs defined in Eqs. (11)-(12) can partially represent the nonlinear damage of structures 

because the residual-based method is capable of identifying non-linear damage signatures that are 

too deeply buried in the system dynamics to be identified directly from the raw data, but only use 

of skewness and kurtosis as features for damage diagnosis is less reliable than the variance 

(Mattson and Pandit 2006). In order to integrate their functions of linear-nonlinear characteristics 

as a tradeoff at the same time, six DIs are defines in terms of arithmetic and geometric mean as 

follows 

   1 ( ) / 2std skewDI                                                          (13) 

      2 ( ) / 2std kurDI                                                           (14) 

    3 ( ) / 3std skew kurDI                                                       (15) 

    4

std skewDI                                                             (16) 

        5

std kurDI                                                        (17) 

     3
6

std skew kurDI                                                             (18) 

Here, the arithmetic mean is used to report central tendencies, but it is not a robust statistic 

because it is greatly influenced by outliers. Therefore, the geometric mean is used for comparing 

different items – finding a single “figure of merit” for these items – when each item has multiple 

properties that have different numeric ranges. 

 

2.6 Structural damage detection (SDD) 
 

In the previous section, damage indexes have been defined, but it is difficult to choose a 

threshold values that characterize damage. In order to perform the damage detection, fuzzy c-

means clustering (FCM) algorithm, which was first presented by Bezdek (1981), and recently 

applied to SHM problems by da Silva et al. (2008), is employed to classify the features and to 

supply a fuzzy decision by using the membership of damage index in a cluster (Zhu et al. 2012). 

This algorithm is an unsupervised classification algorithm which uses a certain objective function, 

described in Eq. (19), for iteratively determining the local minima. 

2

1 1

min ( , )
C N

m
ij ij

i j

J C m u d
 

                                                       (19) 

1 1
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N N

m m

ij j ij

j j
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2 ( ) ( )T
ij j i j id x center x center                                                   (21) 

2 2

1 1

1

( ) / ( )
C

m m
ij kj

k

ij d du
 

 



                                                           (22) 

where C is the total number of clusters and N is the total number of objects in calibration. uij is the 

membership function associated with the j-th object of the i-th cluster, which is updated by using 

Eq. (22) in each iteration step. The exponent m is a measurement of fuzzy partition. centeri is the 

centroid of the i-th cluster, xj is j-th object of data set to be clustered, which is set to be any of DIs 

here, dij denotes the distance between j-th object and the centroid of the i-th cluster, here, 

Euclidean distance is described as Eq. (21) (Matlab 2010). 

 

 

3. Experimental verification 
 

In order to assess the performance of the integrated SDD method proposed in this study, some 

experimental data from the three-storey building structure are adopted here, which is downloaded 

from the web site of the Los Alamos National Laboratory (LANL), USA (Figueiredo et al. 2009). 

The three-storey building structure as shown in Fig. 1 is used as a damage detection test bed, in 

which some detailed layout of the mass added at the base and nonlinearity source are shown in 

Fig. 2.  

 

 

 

Fig. 1 Three-storey building model 

 

 

Fig. 2 Added mass and nonlinearity source 
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Table 1 Data labels of structural state conditions 

Group State Case State condition Description 

1 State #1 1-10 Undamaged Baseline condition 

 State #2 11-20 Undamaged Mass = 1.2 kg at the base 

 State #3 21-30 Undamaged Mass = 1.2 kg on the 1st floor 

 State #4 31-40 Undamaged 87.5% stiffness reduction in column 1BD 

2 State #5 41-50 Undamaged 87.5% stiffness reduction in column 1AD and 1BD 

 State #6 51-60 Undamaged 87.5% stiffness reduction in column 2BD 

 State #7 61-70 Undamaged 87.5% stiffness reduction in column 2AD and 2BD 

 State #8 71-80 Undamaged 87.5% stiffness reduction in column 3BD 

 State #9 81-90 Undamaged 87.5% stiffness reduction in column 3AD and 3BD 

 State #10 91-100 Damaged Gap = 0.20 mm 

 State #11 101-110 Damaged Gap = 0.15 mm 

3 State #12 111-120 Damaged Gap = 0.13 mm 

 State #13 121-130 Damaged Gap = 0.10 mm 

 State #14 131-140 Damaged Gap = 0.05 mm 

 State #15 141-150 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base 

4 State #16 151-160 Damaged Gap = 0.20 mm and mass = 1.2 kg on the 1st floor 

 State #17 161-170 Damaged Gap = 0.10 mm and mass = 1.2 kg on the 1st floor 

 

 

3.1 Structural damage scenarios 
 

The nonlinear damage was introduced through nonlinearities resulting from impacts with a 

bumper. When the structure is excited at the base, the suspended column hits the bumper. The 

level of nonlinearity depends on the amplitude of oscillation and the gap between the column and 

the bumper. The operational and environmental variety was simulated by adding mass and 

reducing stiffness at several different locations. Force and acceleration time series samples 

recorded for a variety of different structural state conditions were collected as shown in Table 1 

together with information that describes the different states. Each state includes 10 observed cases, 

each case records 8192 consecutive data samples. For example, State#13-6-Test indicates the sixth 

observed data with case no of 126 in Table 1 for State #13 under unknown test condition. 

Therefore, there are 170 cases for 17 states in total, as listed in Table 1. 

From Table 1, it can be found that the structural state conditions can be categorized into four 

main groups. The first group (State #1) is the baseline condition. The second group includes the 

states (States #2-#9) when the mass or stiffness of the structure are changed. Real-world structures 

have operational and environmental variability, which create difficulties in detecting and 

identifying structural damage. Such variability often manifests itself in linear changes in the 

stiffness or mass of a structure. In order to simulate such operational and environmental condition 

changes, tests are performed with different mass and stiffness conditions (States #2-#9). For 

example, the state condition labeled “State #4” described in Table 1 means that there is a 87.5% 

stiffness reduction in the columns located between the base and 1st floor at the intersection of 

plane B and D as illustrated in Fig. 2(b) by (Figueiredo et al. 2009, Chen and Yu 2013) 

(abbreviated as 1BD in Table 1, other abbreviations can be identified in the similar way). The 

stiffness reduction consists of replacing the corresponded column by another one with half the 
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cross section thickness in the direction of shaking. The third group includes damaged state 

conditions (States #10-#14) simulated through the introduction of nonlinearities into the structure 

using a bumper and a suspended column, with different gaps between them. Finally, the fourth 

group includes the state conditions (States #15-#17) with nonlinear damage in addition to mass 

and stiffness changes used to simulate operational and environmental condition changes. 

 

3.2 Effects of environmental conditions and structural damage 
 

The dynamic characteristics of structures are easily affected by either structural damage or the 

operational environment conditions. How to determine whether it is due to the former or the latter, 

it is not easy. Sometimes the change in dynamic characteristics due to the latter is more significant 

than one by the former. Using the measured excitation force and acceleration responses, the 

frequency response function (FRF) can be obtained under the different conditions, as shown in 

Fig. 3. It can be seen from Fig. 3(a) that the structural frequencies have been shifted due to adding 

mass (State #3) or stiffness reduction (State #9) as compared with the FRF curve of  baseline 

health condition of structure (State #1) at Channel 5 although the structure is all in undamaged 

conditions. If the structural damage conditions (States #14 & 17) are compared with the baseline 

health one, Fig. 3(b) shows that the second frequency of structure will be increased under the 

nonlinear damage of structure (State #14). Further, the third frequency of structure will be  

 

 

20 40 60 80 100 120 140
10

-4

10
-2

10
0

(a)

Frequency(Hz)

L
o
g
 M

a
g
n
it
u
d
e

Frequency Response Function (FRF) -  Channel5

 

 

State#1

State#3

State#9

20 40 60 80 100 120 140
10

-4

10
-2

10
0

(b)

Frequency(Hz)

L
o
g
 M

a
g
n
it
u
d
e

Frequency Response Function (FRF) -  Channel5

 

 

State#1

State#14

State#17

 

Fig. 3 Comparison on FRF curves 
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Fig. 4 Determination of AR model order 
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Fig. 5 Meansured and fitted data 
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Fig. 6 PDFs of AR residuals 

 

 

decreased if both the environmental condition and nonlinear damage are considered 

simultaneously (State #17). Therefore, it is very difficult to estimate the structural damage if the 

frequencies of structures are considered only. 

 

3.3 Traditional damage-sensitive indexes 
 

Fig. 4 shows the effects of AR model orders on the AIC of measured accelerations in baseline 

state (State #1). It can be seen that the changes in AIC curves are very small when the AR order is 

equal to or higher than 50, therefore, AR (50) is determined for prediction of the test samples in the 

following section. Fig. 5 compares the time histories of the measured acceleration responses with 

the fitted ones by using the AR (50) model. It can be found that the fitted ratio are reached to 

68.3%, 85.8%, 92.59% and 90.08% for the data measured at Channels 2, 3, 4 and 5 respectively.  
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Fig. 7 STD ratios for all 170 cases 
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Fig. 8 Normal probability testing 

 

 

Moreover, the residual errors are calculated, the estimated probability density functions (PDFs) 

of residual errors are compared in Fig. 6. They are corresponding to State #1 in red solid line and 

State #13 in blue dotted line respectively. As listed in Table 1, the State #1 indicates one 

undamaged state of structure, but the State #13 represents a damaged one, in which the gap 

between the column and the bumper is set to be 0.1 mm. It can be seen that the estimated PDFs of 

residual errors has changed obviously after the damage occurs in the State #13 condition, 

particular for that in the Channels 4 and 5 near to the gap. Therefore, the changes in the PDFs of 

residual errors can be used to identify the structural damage. The standard deviation (STD) ratios 

of the unknown test state to the reference one, as defined in Eq. (7), are shown in Fig. 7 for all 170 

cases as listed in Table 1. The damaged and undamaged states can be easily identified. 

 

3.4 Extraction of integrated damage-sensitive indexes 
 

Normal probability testing of AR residual errors in State#13-6 is shown in Fig. 8. It can be  
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Fig. 10 Skewness ratios for cases 

 

 

found that the unknown test State #13-6 is a damaged state because the AR residual errors are 

deviate from the normal distribution, particular for ones in Channels 4 and 5. It will not completely 

reflect the statistical distribution if the standard deviation (STD) of AR residual errors are used 

only. The histogram of AR residual errors in State #13-6 is compared with the normal fitting PSD 

curves in solid red line in Fig. 9, which indicates that the distribution of residual errors is 

obviously different from the normal fitting PSD curves, particularly in Channels 4 and 5. By the 

definition of kurtosis, the kurtosis of AR residual errors will greatly higher than ones of the normal 

fitting PSD. 

For all 170 cases as listed in Table 1, the skewness and kurtosis ratios, as defined in Eqs. (11) 

and (12), are calculated and shown in Figs. 10 and 11, respectively. If they are compared with ones 

in Fig. 7, it can be found that after the structure is damaged, the states with lower STD ratios at 

Channels 4 and 5 in Fig. 7, i.e., states #10 and #16, correspond to ones with higher skewness and 

kurtosis ratios at Channels 4 and 5 in Figs. 10 and 11. This shows that the skewness and kurtosis 

ratios are the complementary to the STD ratio. 
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Fig. 12 Integrated damaged-sensitive indexes 

 

 

Further, six integrated damage-sensitive indexes are calculated and shown in Fig. 12. In 

comparison to the STD ratios in Fig. 7, it can be seen that the distribution of damaged indexes are 

more reasonable, the damaged and undamaged states of the structure can be easily identified. 

 

3.5 Structural damage detection 
 

In order to perform the SDD, the fuzzy c-means clustering (FCM) algorithm is employed to 

clarify the damage-sensitive features and used to supply a fuzzy decision by using the membership 

of damage index in a cluster as defined in Eq. (19). Here, the computation parameters C=2 and 

m=2 respectively. The analytical results of membership for the traditional STD ratio is shown in 

Fig. 13. It can be found that there are no damage in both states #10 and #16. In fact, the both SDD 

results are not correct because both states #10 and #16 are in damaged states. In comparison to  
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Fig. 14 Membership due to DI2 and DI5 

 

 

other states, there are the largest gap between the column and the bumper, i.e., 0.2 mm, in both 

states #10 and #16. There are fewer opportunity to hit each other when the structure is excited, so 

the nonlinear damage severity is lower as well. However, the SDD result is correct in state #15 

although the gap and the added mass are the same as ones in states #16. Only one difference 

between them is the different locations of added mass. It is at the base in state #15 but on the first 

floor in state #16. This affects the nonlinear interaction between the column and the bumper when 

the structure is excited at the base. It is also shown that the traditional STD ratio is easily affected 

by the environmental variability. 

All the membership results from six integrated DIs are listed in Table 2, in which, abbreviated 

capital character „FP‟, i.e., false positive, represents that the healthy state of structure is deemed as 

the damage state. While „FN‟, i.e., false negative, means that the damage state of structure is 

deemed as the healthy state. Moreover, sign 'xx/yy' indicates that there are xx misdiagnoses out of 

yy data sample cases. The criterion of diagnosis decision is accepted as the follows: the structure is 

deemed as a healthy state if the membership value is lower than 0.5, otherwise, it is as a damage 

state.  

It can be seen from Table 2 that all membership results from six DIs, i.e., from DI1 through DI6,  

are better than ones due to the traditional STD ratio (γstd). The best result is from the DI3 because 

there are only two misdiagnosis out of 169 data sample cases. DI3 is the arithmetic mean value of  
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Table 2 Membership results for integrated damage-sensitive indexes 

State γstd DI1 DI2 DI3 DI4 DI5 DI6 

FP 0/89 0/89 0/89 0/89 0/89 0/89 0/89 

FN 31/80 3/80 3/80 2/80 5/80 3/80 13/80 

1 0/9 0/9 0/9 0/9 0/9 0/9 0/9 

2 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

3 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

4 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

5 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

6 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

7 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

8 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

9 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

10 10/10 0/10 0/10 0/10 0/10 0/10 0/10 

11 10/10 1/10 0/10 0/10 0/10 0/10 0/10 

12 1/10 0/10 0/10 0/10 0/10 0/10 0/10 

13 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

14 0/10 0/10 0/10 0/10 2/10 0/10 10/10 

15 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

16 10/10 2/10 3/10 2/10 3/10 3/10 3/10 

17 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

 

 

STD, skewness and kurtosis ratios of AR residual errors. Therefore, the skewness and kurtosis 

indexes can provide a benefic complement to the traditional STD ratios. This also indicates that 

the complementary among STD, skewness and kurtosis ratios has been verified.  

Moreover, it can be also found that the results from DI2 and DI5, both due to STD and kurtosis 

ratios in the arithmetic or geometric way, respectively, are better than ones due to both DI1 and 

DI4. The membership results due to DI2 and DI5 are shown in Fig. 14. Further, the DI5 results are a 

little bit better than the DI2 results because the distribution of DI5 membership results are closer to 

the damage membership value of 100% as a whole when the structure is under all the nonlinear 

damaged states #10-#17, which indicates that all the nonlinear damaged states can be effectively 

identified. 

 

 

4. Conclusions 
 

In this study, an integrated method is proposed for structural nonlinear damage detection based 

on time series analysis, the higher statistical moments of structural responses and the fuzzy c-

means (FCM) clustering techniques. Six comprehensive damage-sensitive indexes (DIs) are 

developed in the arithmetic and geometric manner of the higher statistical moments, and are 

classified by using the FCM clustering method to achieve nonlinear damage detection. Some 

experimental data downloaded from the web site of the Los Alamos National Laboratory (LANL) 

USA on a three-storey building structure are adopted to assess the effectiveness and robustness of 

the new nonlinear structural damage detection (SDD) method proposed in this study. The 
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illustrated results show that: (1) The proposed integrated method is an effective tool for structural 

nonlinear damage detection, the damaged and undamaged states of the structure can be easily 

identified based on the newly proposed method.  (2) The traditional standard deviation (STD) ratio 

of the residual errors is easily affected by the environmental variability. The skewness and kurtosis 

indexes can provide a benefic complement to the traditional STD ratio. (3)  All membership results 

from six integrated DIs, i.e., from DI1 through DI6, are better than ones due to the traditional STD 

ratio. The distribution of six integrated DIs are more reasonable. The best result is from the DI3, 

i.e. the arithmetic mean value of STD, skewness and kurtosis ratios of AR residual errors. DI2 and 

DI5, both due to combination of STD and kurtosis ratios in the arithmetic and the geometric way, 

respectively, are better than ones due to both DI1 and DI4. (4) Although the proposed integrated 

methodology showed great success for the examples under investigation, the authors also 

acknowledged that the methodology should be verified with more laboratory experiments using 

different types of structures in the field of structural engineering. 
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