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Abstract.  Estimation of geotechnical properties is an essential but challenging task since they are major 

components governing the safety and reliability of the entire structural system. However, due to time and 

budget constraints, reliable geotechnical properties estimation using traditional site characterization 

approach is difficult. In view of this, an alternative efficient and cost effective approach to address the 

overall uncertainty is necessary to facilitate an economical, safe and reliable geotechnical design. In this 

paper a probabilistic approach is proposed for real-time updating by incorporating new geotechnical 

information from the underlying project site. The updated model obtained from the proposed method is 

advantageous because it incorporates information from both existing database and the site of concern. An 

application using real data from a site in Hong Kong will be presented to demonstrate the proposed method. 
 

Keywords:  bayesian inference; empirical correlation; model selection; nonparametric; normally 

consolidated clays; undrained shear strength 

 
 
1. Introduction 
 

In the analysis and design of earth structures and foundations, safety, reliability and cost are 

primary factors for consideration (Kaloop et al. 2014, Wang and Ginger 2014, Rezaiee-Pajand and 

Kazemiyan 2014). The mechanical properties of geomaterials are the major components governing 

these issues. Since geomaterials are naturally formed materials, their properties vary spatially even 

within a relatively homogeneous soil stratum (Vanmarcke 1983, Baecher and Christian 2003). In 

contrast to other construction materials, the properties of geomaterial with considerable inherent 

spatial variability are difficult to prescribe with prior knowledge but they have to be acquired 

through geotechnical site characterization. Several researchers have addressed the fundamental 

levels of uncertainty involved in geotechnical site characterization (e.g., Lumb 1966, Kulhawy 

1996). It has been reported that substantial uncertainty were due to equipment and testing error, 

statistical uncertainty and uncertainty associated with the conversion of test measurements to the 

design parameters in the evaluation of the geomaterial properties.  
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It is obvious that the aforementioned variability and uncertainty significantly influences the 

uncertainty of the geomaterial properties estimation and, hence, the analysis and design of the 

entire structural and foundational system. However, traditional site characterization approaches 

(e.g., Hvorslev 1949, BS 5930 1981) are largely qualitative and they rely on engineering 

experience and judgment. On the other hand, the geotechnical information (i.e., the mechanical 

properties of soils/rocks measured from in situ and laboratory tests) obtained under most of the 

current site characterization practice is inadequate due to the strict requirement of cost and time 

duration. As a result, proper characterization of the subsoil conditions may not be achievable 

(Jaksa et al. 2005). In other words, the design value of geotechnical properties may associate with 

substantial error (Osterberg 1989) and the actual value of a geotechnical property at a specific site 

can never be obtained with high precision. Therefore, probabilistic treatment is deemed necessary 

and it is more appropriate to deduce the geotechnical properties statistically based on the 

appropriate amount of geotechnical information. 

A number of researchers proposed probabilistic approaches for systematic treatment of the 

aforementioned uncertainty in the evaluation of geotechnical properties (Phoon and Kulhawy 

1999, Zhang et al. 2004, Ching et al. 2010, Zhang and Dasaka 2010). However, familiarity with 

these approaches to evaluate and model the uncertainty is so far not prevalent in practice. 

Application of their findings in resolving the aforementioned problems has not yet been 

discovered. On one hand engineers are reluctant to adopt probabilistic analyses because of their 

lack of proficiency with probability theory (Whitman 1984). On the other hand, it is difficult to 

isolate and quantify each individual source of uncertainty (Jaksa et al. 1997) and it requires 

considerable budget associated with the quantification of the spatial soil variability. For example, a 

large amount of data is required to adequately characterize the autocorrelation structure of a soil 

property for modelling the inherent variability of a soil profile (Asaoka and A-Grivas 1982). One 

can utilize the published values of the quantified uncertainty level of various types of geotechnical 

properties for different soils and testing methods (Phoon and Kulhawy 1999). However, the 

applicability is still limited since there is a wide range of combinations of different geological and 

geotechnical environments in which the depositional process and stress history may not be similar. 

As a result, it would be difficult for engineers to select the proper uncertainty level for the site of 

interest. In this respect, a more objective approach is useful for site characterization. 

In geotechnical site characterization practice, it is well recognized that any direct and indirect 

measurements of the geomaterial properties using laboratory and in-situ testing methods are both 

expensive and time consuming. For simplicity and cost consideration, a number of empirical 

correlations have been proposed for the estimation of various important geotechnical properties 

using easily obtained fundamental soil index properties, such as the normalized undrained shear 

strength for normally consolidated clays (Skempton 1957, Bjerrum and Simons 1960, Mesri 1975, 

Larsson 1980, Wroth and Houlsby 1985) and normalized undrained shear strength for 

over-consolidated clays (Mesri 1975, Ladd et al. 1977, Chandler 1988). These correlations, mostly 

formulated using simple regression analysis, have been widely used in common engineering 

practice for decades.  

Unfortunately, these established empirical correlations provide only the “optimal” estimation 

but not the associated uncertainty. Therefore, their reliability and applicability are still 

questionable. It is believed that the shortcomings of these correlations are mainly due to shortage 

of data and lack of a meticulous method regarding the functional form and the influential soil 

parameters for developing a probabilistic model with suitable complexity (Mayne 2012, Ng et al. 

2014). It is anticipated that an empirical model involving more adjustable parameters usually 
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results in smaller fitting error but a complicated model is more liable to the fitting of the 

measurement noise and modeling error (Yuen 2010, Yuen et al. 2007). Therefore, instead of 

minimizing the fitting error, a rigorous approach is necessary to determine the suitable complexity 

of a predictive model. Among different statistical approaches, the Bayesian approach is particular 

useful for these purposes. The Bayesian probabilistic approach has been successfully applied to 

many problems in mechanics, structural and geotechnical engineering (e.g., Yuen and Katafygiotis 

2005, Zhang et al. 2009, Ching et al. 2010, Wang et al. 2010, Chiu et al. 2012a, Kuok and Yuen 

2012, Zhang et al. 2012, Wang and Cao 2013, Yuen et al. 2013, Cao and Wang 2014a, b, Lei et al. 

2014a, Lei et al. 2014b). Recently, the Bayesian model class selection method has been widely 

used to address various geotechnical issues (Yan et al. 2009, Yuen and Mu 2011, Chiu et al. 2012b, 

Cao and Wang 2013, Ng et al. 2014). Based on these studies, some of the probabilistic models for 

the estimation of important geotechnical properties have been developed by use of extensive 

database to correlate with fundamental soil index properties (e.g., Yan et al. 2009, Zhou et al. 

2013, Ng et al. 2014). These models provide an alternative approach for practicing engineers to 

estimate the geotechnical properties in a more reliable, yet simple and economical manner, 

compared to direct and indirect measurements.  

These probabilistic models contain detailed statistical information so they can be utilized to 

perform reliability analysis of the prediction. However, since geotechnical properties are generally 

site dependent, the aforementioned probabilistic models should be updated when new information 

is acquired from the underlying project site. In the context of Bayesian inference, the 

aforementioned probabilistic models can be treated as prior models and they can be updated 

whenever new data points are obtained during the site characterization process. This is important 

to enhance the reliability and applicability of the predictive models. In order to achieve this goal, 

this paper presents a new probabilistic method to update the prior probabilistic models in a 

real-time manner using data points from the concerned project site. The proposed approach is 

computationally very efficient as it updates the model without iteration or nonlinear optimization 

once a new data point is acquired. Furthermore, the computation involves a minimum amount of 

data processing. In this study, the implementation of the proposed probabilistic approach is 

illustrated through an application for a normally consolidated clay site located in Hong Kong. The 

prior model for the determination of the undrained shear strength for normally consolidated clays 

is obtained from a comprehensive database and it will be updated using the geotechnical data 

obtained from the underlying project site. In order to assess the predictive performance of the 

updated model, a comparative study with the prior model will also be presented. It reconfirms that 

the real-time updating is important to enhance the accuracy of the predictive model. The results 

and procedures of the proposed approach highlighted in this paper provide the basis for 

geotechnical engineers to plan the site characterization programs in a more reliable manner. This 

approach can be used for the updating of a wide variety of geotechnical properties in geotechnical 

projects. 

 

 

2. Multivariate linear model 
 

First, a probabilistic model can be obtained according to the following process. Since simplicity 

of a predictive model is important for engineers, a linear correlation model is considered 

𝑄 = 𝒂𝑇𝒙 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑁𝑥𝑁                      (1) 
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where 𝑄 is the target quantity for prediction; 𝒂 is the column vector for the unknown regression 

coefficients; 𝒙 is the input vector including the independent measured variables; and 𝑁 is the 

number of terms in the regression model. Considering the measurement noise and modeling error, 

the measurement of 𝑄 is denoted by 𝑦 and it is modeled as 

𝑦 = 𝒂𝑇𝒙 + 𝜖                                 (2) 

where 𝜖 is the aggregate of the measurement noise and modeling error and it is modeled as 

zero-mean Gaussian random variable with variance 𝜎𝜖
2. Note that the prediction-error variance 𝜎𝜖

2 

is also an uncertain parameter so the total number of uncertain parameters in this model is 𝑁 + 1. 

The prediction errors of different records are assumed statistically independent so the 

likelihood function is given by (Beck and Katafygiotis 1998) 

𝑝(𝐷|𝜽) = (2𝜋)−𝑁𝑜 2⁄ 𝜎𝜖
−𝑁𝑜exp⁡*−

𝑁𝑜

2𝜎𝜖
2 𝐽𝑔(𝒂)+                    (3) 

where 𝐷 is the database including the measurement of 𝒙 and the corresponding values of 𝑦; 𝑁𝑜 

is the number of records in 𝐷; 𝜽 = [𝒂𝑇 , 𝜎𝜖
2]𝑻 is the vector of uncertain parameters in the model; 

and 𝐽𝑔(⁡𝒂) is the goodness-of-fit function given by 

𝐽𝑔(𝒂) =
1

𝑁𝑜
∑ [𝑦(𝑛) − 𝒂𝑇𝒙(𝑛)]2
𝑁𝑜
𝑛=1                         (4) 

A smaller value of the goodness-of-fit function implies better fitting to the data. By using a 

uniform prior distribution of the coefficients, the optimal vector 𝒂̂ can be obtained by maximizing 

the likelihood function 𝑝(𝐷|𝜽) or, equivalently, minimizing the goodness-of-fit function 𝐽𝑔(𝒂). 

The latter can be done by solving the following linear equation 

𝜕𝐽𝑔(⁡𝒂)

𝜕𝒂
= 𝟎                                  (5) 

and the solution is 

𝒂̂ = {∑ [𝒙(𝑛)𝒙(𝑛)𝑻]
𝑁𝑜
𝑛=1 }

−1
∑ [𝒙(𝑛)𝑦(𝑛)]
𝑁𝑜
𝑛=1                       (6) 

Similarly, the most optimal value of the prediction-error variance 𝜎̂𝜖
2 can be obtained by 

solving the following equation 

𝜕𝑝(𝐷|𝜽)

𝜕𝜎𝜖
2 |

𝒂=𝒂̂
⁡⁡                                (7) 

and its solution is given by 

𝜎̂𝜖
2 = 𝐽𝑔(𝒂̂)                                 (8) 

In other words, the optimal value of the prediction-error variance is the goodness-of-fit function 

evaluated at the optimal regression parameters. In addition to the optimal estimation of these 

parameters, the Bayesian approach provides also uncertainty quantification. For large number of 

data points, the posterior probabilistic density function (PDF) can be well approximated as 

Gaussian distribution. The mean is the optimal parameters vector and the covariance matrix of the 
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associated estimation uncertainty is equal to the inverse of the Hessian matrix (Yuen 2010): 

Σ𝜽̂ = 𝐻𝑗(𝜽̂)
−1

. Specifically, the (𝑙, 𝑙′) component of the Hessian matrix 𝐻(𝜽̂) can be obtained 

by 

𝐻(𝑙,𝑙′)(𝜽̂) =
∂2

∂𝜃𝑙𝜃𝑙′
𝐽(𝜽)|

𝜽=𝜽̂

                          (9) 

where the objective function is defined as 𝐽(𝜽) = − ln 𝑝(𝐷|𝜽) with the likelihood function 

𝑝(𝐷|𝜽) given by Eq. (3); and 𝜃𝑙 is the 𝑙th component of the parameter vector 𝜽. In this case, 

the Hessian matrix is readily obtained 

𝐻(𝜽̂) = [
(𝜎̂𝜖

2)−1∑ 𝒙(𝑛)𝒙(𝑛)𝑇
𝑁𝑜
𝑛=1 𝟎𝑁×1

𝟎1×𝑁
1

2
𝑁𝑜(𝜎̂𝜖

2)−2
]                 (10) 

where 𝟎1×𝑁 is the 1 × 𝑁 zero row vector and 𝜎̂𝜖
2 is given by Eq. (8). 

 

 

3. Model class selection 
 

The parametric estimation and the associated uncertainty of a given regression model (i.e., a 

prescribed functional form on the right hand side of Eq. (1)) can be obtained by the method 

described in the previous section. Then, Bayesian model class selection method can be used to 

select the most suitable model class among some possible model class candidates. First, the 

plausibility of a model class can be obtained by using the Bayes’ theorem 

𝑃(𝐶𝑗|𝐷, 𝑈) =
𝑃(𝐶𝑗|𝑈)𝑝(𝐷|𝐶𝑗,𝑈)

𝑝(𝐷|𝑈)
,⁡⁡⁡⁡𝑗⁡ = ⁡1, 2, …⁡, 𝑁𝐶               (11) 

where 𝑃(𝐶𝑗|𝑈) is the prior plausibility of the model class 𝐶𝑗; 𝑈 expresses the user’s judgment 

on the prior plausibility which is taken as uniform in this study, i.e., 𝑃(𝐶𝑗|𝑈) = 1/𝑁𝐶 ; the 

denominator 𝑝(𝐷|𝑈) = ∑ 𝑝(𝐷|𝐶𝑗 , 𝑈)𝑃(𝐶𝑗|𝑈)
𝑁𝐶
𝑗=1  is a normalizing constant that does not depend 

on the model class; 𝑁𝐶 is the number of prescribed model class candidates; and the conditional 

probability density 𝑝(𝐷|𝐶𝑗 , 𝑈) is referred to as the evidence of the model class 𝐶𝑗. Note that the 

user’s preference⁡𝑈 is irrelevant in 𝑝(𝐷|𝐶𝑗 , 𝑈) and so it can be dropped from the notation, i.e., 

𝑝(𝐷|𝐶𝑗 , 𝑈) = 𝑝(𝐷|𝐶𝑗). Maximizing 𝑝(𝐷|𝐶𝑗) with respect to 𝑗 gives the most plausible model 

class since 𝑃(𝐶𝑗|𝑈) is taken to be uniform. The evidence involves a high dimensional integral 

with respect to the uncertain parameters in 𝜽 but it can be well approximated with the following 

asymptotic expansion (Beck and Yuen 2004) 

𝑝(𝐷|𝐶𝑗) ≈ 𝑝(𝐷|𝜽̂, 𝐶𝑗)𝑝(𝜽̂|𝐶𝑗)(2𝜋)
𝑁𝑗 2⁄ |𝐻𝑗(𝜽̂)|

−1 2⁄
, ⁡⁡𝑗 = 1,2, … , 𝑁𝐶        (12) 

where 𝜽̂ is the most probable value of model parameters of model class 𝐶𝑗; 𝑝(𝐷|𝜽̂, 𝐶𝑗) is the 

maximum likelihood value; and 𝑁𝑗 is the number of uncertain parameters for the model class 𝐶𝑗. 

The factor 𝑝(𝜽̂|𝐶𝑗)(2𝜋)
𝑁𝑗 2⁄ |𝐻𝑗(𝜽̂)|

−1 2⁄
 is the Ockham factor that serves as a measure of 
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robustness, and it penalizes the model classes that are sensitive to modeling error and 

measurement noise. For details, please refer to Yuen (2010). By using the Bayesian model class 

selection method, a regression model with suitable complexity can be chosen among a set of 

prescribed model class candidates. 

 

 

4. Real-time updating- based monitoring 
 

The most plausible empirical formula, i.e., the regression model with the most suitable 

complexity, can be obtained by Bayesian model class selection method. With the parametric 

identification method presented in Section 2, the regression coefficients and the uncertainty can be 

quantified. This offline model can be used to predict the target quantity. However, when new data 

(containing the target quantity and the corresponding input variables for prediction) from the 

underlying project site becomes available, it can be used to update the predictive model. It is 

particularly useful because such data is obtained from the underlying project site. Therefore, they 

are associated with much smaller uncertainty than the data used for the construction of the prior 

model. The proposed real-time updating approach will update the predictive model once a data 

point is obtained. 

First, the most plausible model class obtained from the Bayesian model class selection method 

will be fixed for real-time updating. Herein, real-time updating refers to the recursive updating of 

the regression coefficients once a data point is obtained. Considering i data points from the 

underlying project site, the likelihood function in Eq. (3) will become 

𝑝(𝐷𝑖|𝒂) = (2𝜋)−
𝑁𝑜+𝑖

2 (∏ 𝜎𝜀𝑛
−1𝑁𝑜+𝑖

𝑛=1 ) 𝑒𝑥𝑝 {−
1

2
∑

[𝑦(𝑛)−𝒂𝑻𝒙(𝑛)]
2

𝜎𝜀𝑛
2

𝑁𝑜+𝑖
𝑛=1 }           (13) 

where 𝐷𝑖 is the dataset including the training database used for the construction of the prior 

model and the additional i data points from the underlying project site; 𝑁𝑜 is the number of data 

points in the training database; 𝜎𝜀𝑛  is the standard deviation of fitting-error of nth data 

point;⁡𝑦(𝑛) is the measurement of the target quantity of the nth data point; and 𝒙(𝑛) is the 

measurement of the input vector of the nth data point. 

By using 𝐷𝑖, the optimal coefficient vector 𝒂̂𝑖 can be obtained by maximizing the likelihood 

function in Eq. (13) or minimizing the following objective function 

𝐽𝑖(𝒂) = − 𝑙𝑛 𝑝(𝐷𝑖|𝒂)                            (14) 

Furthermore, the fitting-error standard deviation 𝜎𝜀𝑛 , 𝑛 = 1,… ,𝑁𝑜, in the training database can 

be calculated by 

𝜎𝜀𝑛 = 𝜎0 = √
1

𝑁𝑜
∑ [𝑦(𝑛) − 𝒂̂𝑜

𝑇𝒙(𝑛)]2
𝑁𝑜
𝑛=1                     (15) 

where 𝒂̂𝑜 is the optimal coefficient vector obtained using the training database only. 

By taking⁡𝑖 = 1 in Eq. (13), the likelihood function becomes 

𝑝(𝐷1|𝒂) = (2𝜋)−
𝑁𝑜+1

2 (∏ 𝜎𝜀𝑛
−1𝑁𝑜+1

𝑛=1 )𝑒𝑥𝑝 {−
1

2
∑

[𝑦(𝑛)−𝒂𝑇𝒙(𝑛)]
2

𝜎𝜀𝑛
2

𝑁𝑜+1
𝑛=1 }          (16) 
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and it also can be expanded as follows 

𝑝(𝐷1|𝒂) =

(2𝜋)−
𝑁𝑜
2 𝜎0

−𝑁𝑜𝑒𝑥𝑝 ,−
1

2𝜎0
2∑ [𝑦(𝑛) − 𝒂𝑇𝒙(𝑛)]2

𝑁𝑜
𝑛=1 - × ⁡(2𝜋)−

1

2𝜎𝜀𝑁𝑜+1
−1 𝑒𝑥𝑝 .−

[𝑦(𝑁𝑜+1)−𝒂
𝑇𝒙(𝑁𝑜+1)]

2

2𝜎𝜀𝑁𝑜+1
2 /  

(17) 

Therefore, the likelihood function is proportional to 

𝑝(𝐷1|𝒂) ∝ 𝑒𝑥𝑝 *−
1

2
(𝒂 − 𝒂̂𝑜)

𝑇𝐴𝑜(𝒂 − 𝒂̂𝑜)+ 𝜎𝜀𝑁𝑜+1
−1 𝑒𝑥𝑝 .−

[𝑦(𝑁𝑜+1)−𝒂
𝑇𝒙(𝑁𝑜+1)]

2

2𝜎𝜀𝑁𝑜+1
2 /     (18) 

where 𝐴𝑜 is the Hessian matrix of objective function 𝐽0(𝒂) = − 𝑙𝑛 𝑝(𝐷0|𝒂), with 𝒂 evaluated 

at 𝒂̂𝑜. The (𝑙, 𝑙′) component of the Hessian matrix 𝐴𝑜 is given by 

𝐴𝑜
(𝑙,𝑙′) =

∂2

∂𝑎𝑙𝑎𝑙′
𝐽(𝒂)|

𝒂=𝒂̂𝑜

                         (19) 

and the following is readily obtained 

𝐴𝑜 =
1

𝜎0
2∑ 𝒙(𝑛)𝒙(𝑛)𝑇

𝑁𝑜
𝑛=1                           (20) 

By using the relationship 

(𝒂 − 𝒂̂𝑜)
𝑇𝐴𝑜(𝒂 − 𝒂̂𝑜) = 𝒂𝑇𝐴𝑜𝒂 − 2𝒂𝑇𝐴𝑜𝒂̂𝑜 + 𝒂̂𝑜

𝑇𝐴𝑜⁡𝒂̂𝑜           (21) 

and 

[𝑦(𝑁𝑜 + 1) − 𝒂𝑇𝒙(𝑁𝑜 + 1)]2 = 𝑦(𝑁𝑜 + 1)2 − 2𝑦(𝑁𝑜 + 1)𝒂𝑇𝒙(𝑁𝑜 + 1) + [𝒂𝑇𝒙(𝑁𝑜 + 1)]2 (22) 

Eq. (18) can be rewritten as 

𝑝(𝐷1|𝒂) ∝ 𝜎𝜀𝑁𝑜+1
−1 𝑒𝑥𝑝 .−

1

2
𝒂𝑇𝐴𝑜𝒂 + 𝒂𝑇𝐴𝑜𝒂̂𝑜 −

𝑦(𝑁𝑜+1)
2

2𝜎𝜀𝑁𝑜+1
2 +

𝑦(𝑁𝑜+1)𝒂
𝑇𝒙(𝑁𝑜+1)

𝜎𝜀𝑁𝑜+1
2 −

[𝒂𝑇𝒙(𝑁𝑜+1)]
2

2𝜎𝜀𝑁𝑜+1
2 / (23) 

According to Eq. (14), the objective function can be expressed as 

𝐽1(𝒂) = 𝑙𝑛 𝜎𝜀𝑁𝑜+1
− .−

1

2
𝒂𝑇𝐴𝑜𝒂 + 𝒂𝑇𝐴𝑜𝒂𝑜 −

𝑦(𝑁𝑜+1)
2

2𝜎𝜀𝑁𝑜+1
2 +

𝑦(𝑁𝑜+1)𝒂
𝑇𝒙(𝑁𝑜+1)

𝜎𝜀𝑁𝑜+1
2 −

[𝒂𝑇𝒙(𝑁𝑜+1)]
2

2𝜎𝜀𝑁𝑜+1
2 / + 𝑐𝑜  

(24) 

where 𝑐𝑜 is a constant that does not depend on 𝒂. To obtain the updated optimal coefficient 

vector, one can solve the equation 
𝜕𝐽1(𝒂)

𝜕𝒂
= 0 and the solution is given by 

𝒂̂1 = 0𝐴𝑜 +
1

𝜎𝜀𝑁𝑜+1
2 𝒙(𝑁𝑜 + 1)𝒙(𝑁𝑜 + 1)𝑇1

−1

0𝐴𝑜𝒂̂𝑜 +
𝑦(𝑁𝑜+1)𝒙(𝑁𝑜+1)

𝜎𝜀𝑁𝑜+1
2 1           (25) 
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Therefore, the parameters can be updated once the first data point is available. In the same 

fashion, one can update the model parameters after the 𝑖th data point is acquired 

𝒂̂𝑖 = [𝐴𝑖−1 +
1

𝜎𝜀𝑁𝑜+𝑖
2 𝒙(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)𝑇]

−1

[𝐴𝑖−1𝒂̂𝑖−1 +
𝑦(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)

𝜎𝜀𝑁𝑜+𝑖
2 ] 

 ⁡⁡⁡= 𝐴𝑖
−1 0𝐴𝑖−1𝒂̂𝑖−1 +

𝑦(𝑁𝑜+𝑖)𝒙(𝑁𝑜+𝑖)

𝜎𝜀𝑁𝑜+𝑖
2 1                       (26) 

where the Hessian matrix can be obtained by the following recursive formula 

𝐴𝑖 = 𝐴𝑖−1 +
1

𝜎𝜀𝑁𝑜+𝑖
2 𝒙(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)𝑇                     (27) 

However, due to the Woodbury matrix identity, Eq. (26) can be rewritten so that it does not 

require to compute the matrix inverse 

𝐴𝑖
−1 = 𝐴𝑖−1

−1 −
1

𝜎𝜀𝑁𝑜+𝑖
2 +𝒙(𝑁𝑜+𝑖)

𝑇𝐴𝑖−1
−1 𝒙(𝑁𝑜+𝑖)

𝐴𝑖−1
−1 𝒙(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)𝑇𝐴𝑖−1

−1          (28) 

The variable 𝜎𝜀𝑁0+𝑖
 is the standard deviation of the fitting error (including the measurement 

noise and modeling error) of the ith data point from the underlying project site. Since these data 

points are acquired from the same site for prediction, it is expected that they are more reliable and 

possess much lower level of uncertainty than the ones in the training dataset for the construction of 

the prior model. Therefore, the following reduction relationship is assumed 

𝜎𝜀𝑁0+𝑖
=

𝜎0

𝛾
,       𝑖 = 1, 2, …                        (29) 

where 𝜎0 is the standard deviation of fitting-error of training data and it is given by Eq. (15); and 

𝛾 is the reduction factor specified by user. In this study, it is taken as 2. Therefore, the recursive 

Hessian matrix formula and its inverse in Eqs. (27) and (28) can be expressed by 

𝐴𝑖 = 𝐴𝑖−1 +
𝛾2

𝜎0
2 𝒙(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)𝑇 

𝐴𝑖
−1 = 𝐴𝑖−1

−1 −
1

𝜎0
2

𝛾2
+𝒙(𝑁𝑜+𝑖)

𝑇𝐴𝑖−1
−1 𝒙(𝑁𝑜+𝑖)

𝐴𝑖−1
−1 𝒙(𝑁𝑜 + 𝑖)𝒙(𝑁𝑜 + 𝑖)𝑇𝐴𝑖−1

−1 ⁡          (30) 

It is noted that outlier problem can be a concern and the recently developed Bayesian method 

(Yuen and Mu 2012, Mu and Yuen 2015) can be considered to screen out the outliers. 

 

 

5. Application 
 

In this section, an application of the undrained shear strength estimation is presented to 

demonstrate the proposed real-time updating method. Consider the following full model for 

undrained shear strength for normally consolidated clay (Ng et al. 2014) 

𝑆𝑢 = 𝑎1𝜎𝑣
′ + 𝑎2𝑊𝑛 + 𝑎3𝐿𝐼 + 𝑎4𝑊𝑛 ∙ 𝐿𝐼 + 𝑎5𝐿𝐿 ∙ 𝐿𝐼 + 𝑎6            (31) 
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Table 1 Statistics of the training database 

Geographical 

Regions 

Asia 

(n=93) 

Americas 

(n=42) 

Europe 

(n=89) 

Oceania 

(n=38) 

Statistics Mean SD Mean SD Mean SD Mean SD 

Su (kPa) 30.53 17.03 27.16 14.86 28.69 16.93 17.95 5.06 

𝜎𝑣
′ ⁡(kPa) 97.99 60.94 98.70 53.94 95.17 69.01 60.07 22.71 

PL (%) 34 11 28 8 25 8 32 12 

Wn (%) 82 33 58 20 61 25 82 27 

LL (%) 83 32 58 22 69 22 80 19 

 

 
Fig. 1 A-Line chart for classification of the clay types in the training database 

 

 

where 𝑆𝑢 is the undrained shear strength; 𝜎𝑣
′  is the effective overburden pressure; 𝑊𝑛 is the 

water content of soil; 𝐿𝐼 is the liquidity index; and 𝐿𝐿 is the liquid limit. The constant term is 

enforced to be included in the model class candidates and models with subsets of terms of this full 

model are considered as potential model class candidates except the one with the constant 𝑎6 

only. There are 25−1=31 model class candidates in this case. A comprehensive training database 

with 262 data points was compiled (Ng et al. 2014) and the information of training database is 

shown in Table 1. Furthermore, Fig. 1 shows the A-line chart for the records of this training 

database. According to the Unified Soil Classification System (USCS), the clay samples in this 

database are classified into high plasticity clay (CH). 

Using the Bayesian model class selection method, the most plausible model is shown as 

follows (Ng et al. 2014) 
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𝑆𝑢 = 0.2335𝜎𝑣
′ − 2.6915𝑊𝑛 ∙ 𝐿𝐼 + 8.9657                    (32) 

Therefore, the initial optimal parameter vector is given by: 𝒂̂𝑜 = [0.2335, 2.6915, 8.9657]𝑇. 

Furthermore, the fitting error of the prior model was given by: 𝜎𝜀𝑁0
= ⁡6.2994. For more details, 

please refer to Ng et al. (2014). 

To demonstrate the proposed real-time updating method, an additional independent testing 

database of normally consolidated clay in Hong Kong with 51 soil records has been extracted from 

Lumb and Holt (1968). In the same fashion, Fig. 2 shows the A-line chart for the records from the 

underlying project site. Again, the clay samples in this database are classified into high plasticity 

clay (CH) but it can be clearly seen that the distribution is different from the training database to 

certain extent. In view of all these, prediction using the prior model in Eq. (32) provides 

satisfactory estimation but there is certainly significant room for improvement with real-time 

updating. This will be further elaborated in the followings. 

By using the proposed method, the prior predictive model can be updated in the real-time 

manner. Since the identification results depends on the sequence of the data points used in the 

updating process, the order of the data points is randomly selected and 1000 independent runs are 

conducted. Fig. 3 shows the parameter estimation time history in a typical run. It is not surprising 

to observe minor fluctuation in the time histories but a main trend can be clearly observed. This 

reconfirms the importance of the real-time updating using data from the underlying project site. 

The final updated model after using all the 51 data points is 

𝑆𝑢 = 0.2501𝜎𝑣
′ − 1.9860𝑊𝑛 ∙ 𝐿𝐼 + 6.1663                   (33) 

 

 

 

Fig. 2 A-Line chart for the clay samples for real-time updating in the site of concern 
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Fig. 3 A typical updated history of the regression coefficients 

 

  

Fig. 4 Comparative predict results of original model and updated model 

 

 

To justify the necessity of the real-time updating of the predictive model, a comparison study is 

performed using the prior model (Fig. 4(a)) in Eq. (32) and the final updated model (Fig. 4(b)) in 

Eq. (33) in predicting the undrained shear strength. The two dashed lines in each subplot are ±20% 

from the 1:1 perfect agreement line (solid line) and they are used to facilitate the visual judgment 

of the model performance. The average of the ratio between the predicted and measured values is 

shown on the left top corner in each subplot, and SD indicates the standard deviation of the 
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predicted-measured ratio. Both average ratios are larger than 1 and this implies that both models 

overestimate the undrained shear strength. However, the updated model corrects itself by adopting 

the new information from the data points of the underlying project site so this bias is substantially 

reduced. Furthermore, the standard deviation of the updated model is significantly smaller than the 

prior model, indicating improved prediction results. 

Once a data point is obtained, the predictive model (i.e., the coefficient vector 𝒂̂ and the 

Hessian matrix) can be updated and it can be used to predict the rest of the data points. 

Specifically, after the updating with the 𝑖th data point, the model will be used to predict the (i+1) 

th, (i+2) th,…, data points and the associated prediction errors are given by 

𝜀(𝑛) = 𝑦(𝑛) − 𝒂̂𝑖
𝑻𝒙(𝑛)⁡⁡⁡⁡⁡⁡𝑛 = 𝑖 + 1, 𝑖 + 2,…                   (34) 

Two statistical indicators are used for the assessment of the prediction performance and they 

are the mean absolute error (MAE) 

    MAE(𝑖) =
1

51−𝑖
∑ |𝜀(𝑛)|51
𝑛=𝑖+1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 0,1,2, … ,50                (35) 

and the root-mean-squares error (RMSE) 

RMSE(𝑖) = √
1

51−𝑖
∑ 𝜀(𝑛)251
𝑛=𝑖+1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 0,1,2, … ,50                (36) 

Then, the averages of the MAE and RMSE over the 1000 aforementioned independent runs are 

computed and they are shown in Fig. 5. From this figure, it can be seen that the MAE and RMSE 

are reduced by 40% and 50%, respectively, by using the in-situ data for real-time updating. Both 

curves exhibit rapid decrease at the beginning but the rate slows down gradually. This is because  

 

 

 

Fig. 5 Prediction error statistics by the real-time updated model 
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Fig. 6 Prediction error statistics by the prior model 

 

 

the posterior uncertainty in terms of variance is inversely proportional to the number of data 

points. On the other hand, the curves converge to the same point because MAE and RMSE are 

identical when there is only one last data point for prediction (i=50). The error analysis is repeated 

for the prior model without updating and the results are shown in Fig. 6. It can be clearly seen that 

the prediction errors are much larger than those in Fig. 5 so it reconfirms the advantage of the 

proposed real-time updating. 

 

 

6. Conclusions 
 

Due to high level of complexity and uncertainty in the geomaterial properties, it is challenging 

to obtain reliable and representative estimation in site characterization practice. In this paper, a 

probabilistic real-time updating approach is proposed for this purpose. It uses a prior model 

constructed by use of a comprehensive database and this model can be updated once a new data 

point is obtained from the underlying project site. An application is presented to demonstrate the 

effectiveness and efficiency of the proposed method. In this example, a recently developed 

empirical model for the undrained shear strength of normally consolidated clays was adopted and 

it was updated using the data from a site located in Hong Kong. Compared with the prior model, it 

reconfirms that the updated model enhances the predictive performance so the proposed method is 

useful for reliability analysis and reliability-based design of geotechnical projects. 
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