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Abstract.  This paper introduces the combined effect of electric field, magnetic field and thermal field on 

edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. 

The dispersion relation of edge wave has been obtained by using classical dynamical theory of 

thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress 

parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter. 
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1. Introduction 
 

Elastic waves are a complex form of vibratory movement transmitted through a medium 

because when they involve boundaries. This happens due to practical mode of conversion of 

waves after reflection from the boundary and the multiple reflections of so created waves between 

the neighbouring boundaries. Due to this wave velocity will be different towards the core than at 

the edge. The waves propagates in the plate of finite thickness are known as edge waves.  The 

edge waves become surface waves if plate is of infinite thickness. The interaction of elastic and 

electromagnetic fields has numerous applications in various field of science such as detection of 

mechanical explosions in the interior of the earth. The mutual interactions between an externally 

applied electric field, magnetic field, thermal field and the elastic deformation in the solid body, 

give rise to the coupled field of electro-magneto-thermoelasticity. The interaction of elastic and 

electromagnetic fields has numerous applications in various field of science such as detection of 

mechanical explosions in the interior of the earth. The electro-magneto-elastic materials are used 

as magnetic field probes, electric packing, acoustic, hydrophones, medical, ultrasonic image 

processing, sensors and actuators with the responsibility of magnetic-electro-mechanical energy 

conversion. Inspite of the fact that the Maxwell equations governing the electro-magnetic field 

have been known for quite a long time, the interest in the coupled fields of electro-magneto-

thermoelasticity is of recent origin. This is due to the fact only recently has been recognized the 

possibility of applying these coupled theories in such practical situations as optics, acoustics, 
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geophysics, plasma physics and earthquake science.  

Niraula and Wang (2006) studied an effect of temperature on magneto-electro-elastic material 

with a penny-shaped crack. Dey and De (2009) investigated edge wave in non-homogeneous 

plate of finite thickness. Zhu and Shi (2008) discussed magneto-electro-elastic wave propagation 

in non-homogeneous hollow cylinders. Jiangong et al. (2008) investigated non-homogeneous 

magneto-electro-elastic wave propagation in plates. Othman (2010) studied electro-magneto-

thermo shock plane waves for a finite conducting half-space with two relaxation times.  Dai and 

Coman (2010) discussed edge-wave buckling phenomenon. Kumar and Partap (2011) discussed 

vibration analysis of wave motion in micropolar thermoviscoelastic plate. Rao (2011) investigated 

interaction of functionally graded piezoelectric hollow spheres in the presence of electric, 

magnetic and thermal fields. Ponnusamy and Selvamani (2012), discussed waves in thermo elastic 

plate embedded in elastic medium. Das and Kanoria (2012) investigated thermo-magneto-elastic 

interactions in an unbounded in perfectly conducting elastic medium with three-phase-lag effect. 

Abd-Alla and Mahmoud (2012) studied radial vibrations in non-homogeneous isotropic cylinder 

subjected to initial stress and magnetic field. Yu et al. (2013) developed a theory (FOGEMTE) for 

linearly and anisotropic thermo-electro-magneto-elastic medium by introducing the dynamic 

magnetic-electro fields. Selvamani and Ponnusamy (2013) studied wave propagation in a 

generalized thermo elastic circular plate immersed in fluid. Kocaturk and Akbaş (2013) discussed 

wave propagation in a microbeam based on the modified couple stress theory. Alashti and Pashaei 

(2014) studied functionally graded conical shell subjected to temperature and magnetic field. 

Shankar and Ganesan (2012, 1013) studied pyroelectric and pyromagnetic materials in presence of 

electric and magnetic fields and electro-magneto-thermo elastic cantilever beam. Zhen-Bang 

Kuang (2013, 2014) discussed inertial entropy, the Cattaneo-Vernotte’s and Mindlin-type plate 

bending theories. Kakar (2014) investigated magneto-electro-viscoelastic torsional waves in 

aeolotropic tube under initial compression stress. 

In this work, we have investigated the combined effect of electric field, magnetic field, thermal 

field and initial stress on edge waves propagated in a homogeneous, isotopic plate of finite 

thickness. Biot’s equations are modified in context of classical dynamical theory with uniform 

magnetic field and electric field. The dispersion equation for the edge waves has been obtained. 

Further, the dispersion equation is approximated and analyzed numerically for copper and stainless 

steel plate to study the effect of electro-magneto pressure number, initial stress parameter and 

thermoelastic coupling parameter, on the phase velocity of edge waves with the help of MATLAB. 

This study is useful to solve the problems where the factors like elastic field, thermal field, electric 

field, magnetic field and initial stress coexist such as the seismic wave propagation inside the 

earth, geophysics, nuclear devices etc. 

 

 
2. Governing equations 
 

The governing equations of linear, isotropic and homogenous electro-magneto-thermoelastic 

solid with hydrostatic initial stress are 

i. The stress-strain-temperature relation 

( ) e 2 ( ) ,ij ij ij PP ij ij ij

T

s P e T T
k


                                             (1) 

where, sij
 
are the components of stress tensor, P is initial pressure, δij is the Kronecker delta, ωij are 
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Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate... 

the components of small rotation tensor,  ,  are the counterparts of Lame parameters, eij are the 

components of the strain tensor, α is the volume coefficient of thermal expansion, kT is the 

isothermal compressibility, T=Θ−T0 is small temperature increment, Θ is the absolute temperature 

of the medium, T0 is the reference uniform temperature of the body chosen such that 1
0


T

T
 

 ii. The displacement-strain relation 

. ,i

1
(u u ),

2
ij i j je                                                               (2) 

where, ui are the components of the displacement vector  

iii. The small rotation-displacement relation 

. ,i

1
(u u ),

2
ij i j j                                                               (3) 

where, ui are the components of the displacement vector  

iv. The modified Fourier’s law 

* ,i i

i

T
h a h K

x


 


                                                             (4) 

where, K is the thermal conductivity, a, a*≥0 are the thermal relaxation times 

v. The heat conduction equation 

0 i,i 0 i,i,ii
= (  +   ) + γ (u u )p ijKT c T T T                                         (5) 

where, K is the thermal conductivity, cp
 
is specific heat per unit mass at constant strain, τ0 

is the 

first relaxation time, δij is the Kronecker delta, ρ is density and T is the incremental change of 

temperature from the initial state of the solid half space. In the above equations a dot denotes 

differential with respect to time, and a comma in subscript denotes partial differential w. r. t. the 

corresponding coordinates. Moreover the use of the relaxation times τ, τ0 and a parameter δij marks 

the aforementioned fundamental equations possible for the three different theories: 

(1) Classical Dynamical theory: τ=τ0=0, δij=0. 

(2) Lord and Shulman’s theory: τ=0, τ0>0, δij=1.  

(3) Green and Lindsay’s theory: τ≥τ0>0, δij=0. 

vi. Maxwell’s equations 

,0, 0, e e
t t

 


 
 

    
 

                                     (6) 

where,  , B , μe 
and εe 

are electric field, magnetic field, permeability and permittivity of the 

medium.   

vii. The components of electric and magnetic field 

   0 00,0, ,      0,0,e h                                                (7) 

where, h  is the perturbed magnetic field over 0  and e  is the perturbed electric field over 0E . 
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viii. Maxwell stress components 

   ] [ij e i i j j k k ij e i i j j k k ijT H e H e H e E e E e E e            (where i, j, k=1, 2,3)       (8) 

where, Hi, Hj, Hk are the components of primary magnetic field, Ei, Ej, Ek are the components of 

primary electric field, ei, ej, ek are the stress components acting along X-axis, Y-axis, Z-axis 

respectively and δij is the Kronecker delta.  

Using Eq. (8), we get 

2 2

22 0 0e e

u v u v
T H E

x y x y
 

      
      

      
 and 

12 0T                                (9) 

The dynamical equations of motion for the propagation of wave have been derived by Biot 

(1965) and in two dimensions these are given by 

2

11 12

2x

s s u
P B

x y y t




   
   

   
                                                (10) 

2

12 22

2y

s s v
P B

x y x t




   
   

   
                                                 (11) 

where, s11, s22 and s12 are incremental thermal stress components. The first two are principal stress 

components along x- and y-axes, respectively and last one is shear stress component in the x-y 

plane, ρ is the density of the medium and u, v are the displacement components along x and y 

directions respectively, B is body force and its components along x and y axis are Bx 
and By 

respectively. ω is the rotational component i.e., 
1

2

v u

x y


  
  

  
 and  22 11P s s  . 

We consider a homogeneous isotropic prestressed plate of finite thickness and infinite length, 

under constant primary magnetic field H0 and electric field E0 parallel to z-axis. Therefore the 

body forces along x and y axis are given by 

2 2 2 2
2 2

0 02 2x e e

u v u v
B H E

x x y x x y
 

      
      

        
                                   (12) 

2 2 2 2
2 2

0 02 2y e e

u v u v
B H E

x y x x y x
 

      
      

        
                                    (13) 

where, μe 
and εe 

are permeability and permittivity of the medium. 

Following Biot (1965), the stress-strain relations with incremental isotropy are 

11 ( ) 2xx yy xx

T
s e e e T

x
   

 
     

 
                                         (14) 

22 ( ) 2xx yy yy

T
s e e e T

x
   

 
     

 
                                         (15) 

12 2 xys e                                                                 (16) 
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where 

1
, ,

2
xx yy xy

u v v u
e e e

x x x y

    
    
    

                                   (17) 

where, exx and eyy
 
are the principle strain components and exy

 
is the shear strain component, 

γ=(3λ+2μ)αt, αt 
 is the coefficient of linear expansion of the material, λ

 
μ are Lame’s constants, T is 

the incremental change of temperature from the initial state and τ is second relaxation time.  

 

 

3. Formulation of the problem 
 

We consider a homogeneous isotropic prestressed elastic plate of finite thickness 2h composed 

of incompressible elastic medium. Let the origin of the co-ordinate system be located in the middle 

of the layer, the x-axis is taken in the direction of wave propagation and y axis be taken positive 

vertically upwards as shown in the Fig. 1. 

 
 
4. Solution of the problem 
 

From Eq. (12), Eq. (13), Eq. (14), Eq. (15), Eq. (16) and Eq. (17), we get 

2 2 2 2 2 2 2
2 2

0 02 2 2 2
( 2 ) ( ) ( )e e

u v u u v u T T
H E

x x y y x x y t x t x
         

          
            

             
 (18) 

2 2 2 2 2 2 2
2 2

0 02 2 2 2
( 2 ) ( ) ( )e e

v u v u v v T T
H E

y x y x x y y t y t y
         

          
            

             
  (19) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Geometry of the problem 
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From Eq. (18) and (19) by using classical dynamical theory (1956): τ=τ0=0, δij=0, we get 

2 2 2 2 2 2
2 2

0 02 2 2 2
( 2 ) ( ) ( ) ( )e e

u v u u v u
H E T

x x y y x x y t x
        

       
         

         
        (20) 

2 2 2 2 2 2
2 2

0 02 2 2 2
( 2 ) ( ) ( ) ( )e e

v u v u v v
H E T

y x y x x y y t y
        

       
         

         
       (21) 

Eq. (20) and Eq. (21) can be solved by choosing potential functions ϕ and ψ as 

u
x y

  
 
 

 and v
x y

  
 
 

                                               (22) 

From Eqs. (20), (21) and (22), we get 

2
2

2 2 2 2 2

0 0 0 0( 2 ) ( 2 )e e e e

T

H E t H E

  


       


  

      
                     (23) 

2
2

2t

 





 


                                                             (24) 

where, 
2 2

2

2 2x y

 
  

 
  

By using classical dynamical theory: τ=τ0=0, δij=0, Eq. (5) reduces to 

2

0=  + γp

T u v
K T c T

t t x y


    
  

    
                                           (25) 

Introduce Eq. (22) in Eq. (25), we get 

2 20 0
p

p

c TT
T

K t c t

   
    

 
                                               (26) 

From Eq. (23) and Eq. (25), eliminating T, we get 

2
2 2 2

2 2

1

1
0

pc

t K t t

 
 



     
          

     
                                 (27) 

where, 
2 2

2 0 0
1 2 2

0 0

( 2 )
,

( 2 )

e e

e e

H E

H E

    
 

    

  
 

  
 and 0T

K


    

From Eq. (24) and Eq. (25), eliminating T, we get 

2
2

2 2

2

1
0

t




 
   

 
                                                        (28) 

where, 2

2





  
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Eq. (27) and Eq. (28) can further be solved by plane harmonic waves travelling along x-axis as 

(ax t)

2

1
(x, y, t) ( y)eif k

k

                                                      (29) 

(ax t)

2

1
(x, y, t) ( y)eig k

k

                                                     (30) 

where, k is wave number and ω is frequency of oscillation of the harmonic wave. 

From Eq. (27) and Eq. (29), we get 

2 2
2 2 4

1 22 2
( ) 0

( ) ( )
k f ky

ky ky
 

   
    

   
                                            (31) 

2
2 2

12
( ) 0

( )
k g ky

ky


 
  

 
                                                      (32) 

where, 2 2 2 2 2 2 2 2

1 2,k k k k        and 2 2 2 2

1k k   .  

Here 
2

2

2

2





  and α

2
, β

2 
are the roots of following biquadratic equation 

4 2 2 2[ q(1 )] q 0                                                      (33) 

where, Λ
2
=− 2  and the roots α

2
, β

2 
are 

2

2
q 1

q

q






 
  

 

 and 2 2

2
1

q

q


 



 
  

 

                                       (34) 

Here, 2

2

1

,
pi c

q
K

 



  and

2

0

2 2

0 0( 2 )e e

T

K H E




    


  
 are electro-magneto-

thermoelastic coupling parameters. 

The requirement that the stresses and hence the functions ϕ and ψ vanish as (x
2
+y

2
)→∞ leads to 

the following solutions of Eq. (31) and Eq. (32)  

1 2( ) cosh ( ) cosh ( )f ky A ky B ky                                              (35) 

1( ) sinh ( )g ky C ky                                                          (36) 

Introducing Eq. (35) and Eq. (36) in Eq. (29) and Eq. (30), we get 

( )

1 22

1
( , , ) [ cosh ( ) cosh ( )]ei kx tx y t A ky B ky

k

                                    (37) 

                          ( )

12

1
( , , ) [ sinh ( )]ei kx tx y t C ky

k

                                               (38) 

Eq. (23) gives 

2 2 2
20 0

2

1

( 2 ) 1e eH E
T

t

    


 

    
   

 
                                      (39) 
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Eq. (37) and Eq. (39), we get 

2 2
2 2 2 2 ( )0 0

1 22

( 2 ) 1
[( ) cosh ( ) ( ) cosh ( )]ei kx te eH E

T ky B ky
k

   
     



  
       (40) 

 

 

5. Boundary conditions and dispersion equation 
 

The boundary conditions on plane plate y=±h/2 are 

12 12 0x

v
f s P T

x


    


                                                      (41) 

22 22 0y

u
f s P T

x


    


                                                     (42) 

0
T

h T
y


 


                                                              (43) 

where  xf  and yf are incremental boundary forces per unit initial area and is h is the ratio of 

heat transfer coefficient and thermal conductivity. 

From Eqs. (14), (15), (16), (9), (37) and (38), the first boundary condition (41) becomes 

2

1 1 2 2 12
2 (1 ) sin ( ) 2 (1 ) sin ( ) 2(1 ) sin ( ) 0i h A i h B h C

k


       

 
          

 
          (44) 

From Eqs. (14), (15), (16), (9), (37), (38) and (40), the second boundary condition (42) 

becomes 

2 2

1 2 1 12 2
2(1 ) cos ( ) 2(1 ) cos ( ) 2 (1 )cos ( ) 0h A h B i h C

k k

   
      

 

   
             

   

     (45) 

From Eq. (40) and 'h = 0 (thermal insulation), the third boundary condition (43) becomes 

1 1 1 2 2 2sin ( ) sin ( ) 0h A h B                                                   (46) 

where, ,
2

P



  is dimensionless initial parameter and 

2

kh
   

Now eliminating A, B, C from Eq. (44), Eq. (45) and Eq. (46), we get 

2

1 2 2

2 2

1 2 12 2

1 1 2 2

2 (1 ) 2 (1 ) 2(1 )

2(1 ) cot ( ) 2(1 ) cot ( ) 2 (1 )cot 0

0

i i
k

h h i h
k k


    

   
     

 

  

 
    

 

   
          

   

        (47) 
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Solving Eq. (47), we get 

2

1 2 1 1

2 2

2 1 1 22 2

4(1 ) ( )cot ( )

               2(1 ) 2(1 ) [ cot ( ) cot ( )] 0

h

h h
k k

      

  
      



  

  
          
  

       (48) 

Let 
2

2

12
1

k


   and

2
2

22
1

k


                                                      (49) 

If 0, 0h    then
1 2

1 2

1 1
cot ( ) ,cot ( )h h 

 
   

 
 and 

1

1

1
cot ( )h 


 


         (50) 

With the help of Eq. (49) and Eq. (50), Eq. (48) reduces to 

 
2 2 2 2 2 2

2 2 2 2 2 2 2

1 2 1 2 1 22 2 2 2 2 2

1 2 2 1

4(1 ) 1 2(1 ) 1 0
c c c c

k k

 
       

   

      
                 

      

(51) 

 

where,
2

2

2
c

k


  , 2

2





  , ,

2

P



 and 

2
2

2

2





 . 

From Eq. (33), we get 

2 2 2 q(1 )        
 and 2 2 2 q                                           (52) 

From Eq. (49) and Eq. (52), we get 

2 2
2 2

1 2 2 2

1 1

2 (1 )
c ic

  
 

      and 
2 2 2

2 2

1 2 2 2 2

1 1 1

1 1
c ic c

  
  

 
     

 
               (53) 

where, 
2

1

,
p

K

c





  is reduced frequency. 

From Eq. (51) and Eq. (53), we get 

2 4 2 2 2 4
2 2

2 4 2 2 2 2 2

1 1 2 2 2 1 2

4(1 ) 4(1 ) 4(1 ) 4(1 ) (1 )
c ic c c c ic

    
      

   
            

   
   (54) 

The Eq. (54) is the expression for frequency equations of edge waves. 

Equating imaginary parts of Eq. (54), we get 

2 2
2 2

2 2

1 2

4(1 ) 4(1 )
(1 )

c
 

  
   


                                               (55) 

Let 
2

2

2

1 (1 )



 
 


 and 

2

2

2

p

c
v


 , then Eq. (55) becomes 

24(1 ) 4(1 ) pv                                                         (56) 
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Table 1 Material properties (Copper) 

λ μ αt K cp

 
ρ 

9.5×10
10

N/m
2 

4.5×10
10

N/m
2
 16.6×10

-6
K

-1 
401 W/(m.K) 0.39 KJ/Kg K 8746 Kg/m

3
 

  
Table 2 Material properties (Stainless Steel) 

λ μ αt K cp

 
ρ 

11.2×10
10

N/m
2 

8.1×10
10

N/m
2
 17.3×10

-6
K

-1 
16 W/(m.K) 0.49 KJ/Kg K 7800 Kg/m

3
 

 

  

  

Fig. 2 Variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

P



 (initial stress parameter) for 

different values of 
2

2

0

a
H

c
R

c
  (electro-magneto pressure number) at constant ε (thermoelastic coupling 

parameter) for copper and stainless steel 

 

 

Also, 
2 2

2 2

2 2

1 0(1 ) (1 )(1 )HR

 

   
  

  
                                        (57) 

where,
2

2

0

a
H

c
R

c
  is electro-magneto pressure number,  

2 2
2 0 0e e
a

H E
c

 




  is electro-magneto wave 

velocity, 
2

2

2

p

c
v


 is edge phase velocity, 2

0

2
c

 




  is isothermal dilatational, ε is thermoelastic 

coupling parameter and 2

2





  is rotational wave velocity. 

 
 
6. Numerical analysis 
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We consider copper and stainless steel material and as a numerical example because it has wide 

applications in industry. The parameters for the copper material are taken in Table 1 and 

parameters for the stainless steel material are taken in Table 2 respectively. Numerical results have 

been obtained graphically for both copper and stainless steel materials. The effect of electric field, 

magnetic field, temperature, thermoelastic coupling and initial stress on phase velocity of edge 

wave is shown. 

 Fig. 2 shows the variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

P



 (initial 

stress parameter) for different values of 
2

2

0

a
H

c
R

c
  (electro-magneto pressure number) at constant   

(thermoelastic coupling parameter) for copper and stainless steel. The value of ε=0.005 is taken to 

draw Fig. 2.  It is observed that in both the materials, the phase velocity of edge waves decreases 

sharply with the increase in the initial stress parameter. Also, the curves show that the phase 

velocity increases as electro-magneto stress parameter increases for both copper and stainless steel 

materials for all RH′s, but the behavior of the curve remains the same. 

Fig. 3 represents the variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

2

0

a
H

c
R

c
  

(electro-magneto pressure number) for different values of 
2

P
G 


  (initial stress parameter) at 

constant ε (thermoelastic coupling parameter) for stainless steel and copper. The value of ε=0.005 

is taken to draw Fig. 3. The phase velocity of edge waves increases slowly with the increase in the 

electro-magneto pressure number. The magnitude of phase velocity decreases as the initial stress  

 

 

 
 

Fig. 3 Variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

2

0

a
H

c
R

c
  (electro-magneto pressure 

number) for different values of 
2

P
G 


  (initial stress parameter) at constant ε (thermoelastic coupling 

parameter) for stainless steel and copper 
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Fig. 4 Variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with ε (thermoelastic coupling parameter) 

for different values of 
2

P
G 


  (initial stress parameter) at constant 

2

2

0

0.7a
H

c
R

c
   (electro-magneto 

pressure number) for stainless steel and copper 

 

 
parameter increases, but the behavior of the curve remains the same.  

Fig. 4 shows that the 
2

2

2

p

c
v


  (phase velocity) of edge waves practically remains constant with 

the increase in the ε (thermoelastic coupling parameter) for copper and stainless steel, but the 

behavior of the curve remains the same. Moreover the magnitude of phase velocity is less when 

initial stress is more. The curves show the variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves 

with ε (thermoelastic coupling parameter) for different values of 
2

P
G 


  (initial stress 

parameter) at constant 
2

2

0

0.7a
H

c
R

c
   (electro-magneto pressure number).  

Fig. 5 shows the variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

P



  (initial 

stress parameter) for different values of ε (thermoelastic coupling parameter) keeping 
2

2

0

0.7a
H

c
R

c
   (electro-magneto pressure number) constant for both the materials. It is observed 

that the phase velocity of edge waves decreases sharply with the increase in the initial stress 

parameter and effect of thermal variation on the phase velocity is negligible, but the behavior of 

the curve remains the same.  

 

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0.5

1

1.5

2

2.5

3

3.5
COPPER

 

 

G=0.1

G=0.2

G=0.4

G=0.6

G=0.8

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0.5

1

1.5

2

2.5

3

3.5
STAINLESS STEEL

 

 

G=0.1

G=0.2

G=0.4

G=0.6

G=0.8

ε ε 

vp

 

vp

 

1212



 

 

 

 

 

 

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate... 

 
 

Fig. 5 Variation of 
2

2

2

p

c
v


  (phase velocity) of edge waves with 

2

P



  (initial stress parameter) for 

different values of ε (thermoelastic coupling parameter) keeping 
2

2

0

a
H

c
R

c
  (electro-magneto pressure 

number) constant for stainless steel and copper. 

 

 

7. Conclusions 
 

It can be concluded that the magnetic field, electric field, temperature as well as initial 

compressive hydrostatic stress have significant influence on the phase velocity of edge waves. 

This study also shows that the magnitude of phase velocity decreases as the initial stress parameter 

increases. Also, thermoelastic coupling parameter has a small influence on the phase velocity of 

edge waves. The edge wave phase velocity is higher for higher electro-magnetic stress parameter.  
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