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Abstract.  In this study, the stresses and electric potential redistributions of a cylinder made from 
functionally graded piezoelectric material (FGPM) are investigated. All the mechanical, thermal and 
piezoelectric properties are modeled as power-law distribution of volume fraction. Using the coupled 
electro-thermo-mechanical relations, strain-displacement relations, Maxwell and equilibrium equations are 
obtained including the time dependent creep strains. Creep strains are time, temperature and stress 
dependent, the closed form solution cannot be found for this constitutive differential equation. A semi-
analytical method in conjunction with the Mendelson method of successive approximation is therefore 
proposed for this analysis. Similar to the radial stress histories, electric potentials increase with time, because 
the latter is induced by the former during creep deformation of the cylinder, justifying industrial application 
of such a material as efficient actuators and sensors. 
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1. Introduction 
 

Piezoelectric effect has important uses in modern engineering because it expresses the 

connection between the electrical and mechanical fields which has wide applications in electro-

mechanical devices, such as actuators, sensors and transducers. Recently, a new class of composite 

materials known as functionally graded materials (FGMs) has drawn considerable attention. A 

typical FGM, with a high bending–stretching coupling effect, is an inhomogeneous composite 

made from different phases of material constituents (usually ceramic and metal). 

The first idea for producing FGMs was their application in high temperature environment and 

improving their mechanical properties. These materials which are mainly constructed to operate in 

high temperature environments, find their application in nuclear reactors, chemical laboratories, 

aerospace, turbine rotors, flywheels and pressure vessels. As the use of FGMs increases, new 

methodologies need to be developed to characterize, analyze and design structural components 

made of these materials.  

Thermoelectroelastic analysis of FGPM components has been investigated by many 
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researchers. Mechanical and thermal stresses in a functionally graded hollow cylinder due to 

radially symmetric were investigated by Jabbari et al. (2002). Analysis of the thermal stress 

behavior of functionally graded hollow circular cylinders was presented by Liew et al. (2003). 

You (2005) presented elastic analysis of internally pressurized thick-walled spherical pressure 

vessels of functionally graded materials. Dai et al. (2006) studied exact solutions for functionally 

graded pressure vessels in a uniform magnetic field. Coupled thermoelasticity of functionally 

graded cylindrical shells was developed by Bahtui and Eslami (2007). Recently Ghorbanpour 

Arani et al. (2011a) investigated the effect of material in-homogeneity on electro-thermo-

mechanical behaviors of functionally graded piezoelectric rotating shaft. Also, they (2011b) were 

studied electro-thermo-mechanical behaviors of FGPM spheres using analytical method and 

ANSYS software. 

None of the above studies have considered creep deformation of the FGPM cylinders. Pai 

(1967) investigated steady-state creep analysis of thick-walled orthotropic cylinders. Sim and 

Penny (1971) analyzed plane strain creep behavior of thick-walled cylinders. Bhatnagar and Arya 

(1974) investigated large strain creep deformation of a thick-walled cylinder of an anisotropic 

material subjected to internal pressure. Simonian (1979) calculated the thermal stresses in thick-

walled cylinders taking account of non-linear creep. Yang (2000) presented a solution for time-

dependent creep behavior of FGM cylinders using Norton’s law for material creep constitutive 

model. Steady-state creep of a pressurized thick cylinder in both the linear and the power law 

ranges was investigated by Altenbach et al. (2008). Loghman et al. (2010) studied the 

Magnetothermoelastic creep analysis of functionally graded cylinders. They found that radial 

stress redistributions are not significant for different material properties, however major 

redistributions occur for circumferential and effective stresses. Semi-analytical solution of time-

dependent electro-thermo-mechanical creep for radially polarized piezoelectric cylinder was 

investigated by Ghorbanpour Arani et al. (2011). They found that Similar to the radial stress 

histories, electric potentials increase with time. Using method of successive elastic solution, 

Loghman et al. (2012) studied magnetothermoelastic creep behavior of thick-walled FGM spheres 

placed in uniform magnetic and distributed temperature fields and subjected to an internal 

pressure. They showed that stresses, strains and effective creep strain rate are changing in time 

with a decreasing rate so that after almost 50 years the time-dependent solution approaches the 

steady state condition when there is no distinction between stresses and strains at 50 and 55 years. 

Recently, time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields 

were presented by Dai et al. (2012). They assumed that material properties, electric parameters, 

permeability, thermal conductivity and creep parameters vary smoothly through the radial 

direction of the FGPM spherical structure according to a simple power-law. 

Apart from a couple of studies, prepared by a few authors here, little or no reference has been 

made so far in the literature on the time-dependent creep analysis of FGPM cylinders. It has been 

shown by Zhou and kamlah (2006) that even at room temperature ferroelectric piezoceramics 

exhibit significant creep effects. This creep is of a primary type and can be expressed by a power 

law constitutive model. To improve the performance and reliability of piezoactuators used for 

high-precision applications, time-dependent creep analysis must be considered when these devices 

are used even at room temperatures.  

However, to date, no report has been found in the literature on the time dependent creep 

behavior of hollow FGPM cylinders based on power-law distribution of mechanical, thermal and 

piezoelectric properties. Motivated by these considerations, we aim to investigate history of 

stresses, strains, deformation and electric potential of a thick hollow FGPM cylinder made of 
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radially polarized anisotropic piezoelectric material using a semi-analytical method base on 

Mendelson’s method of successive elastic solution.  

 

 

2. Heat conduction problem 
 

In this study a distributed temperature field due to steady-state heat conduction has been 

considered. The steady-state, heat transfer equation in the FGPM cylinder with inner radius a and 

outer radius b is solved with the assumed boundary conditions (Ghorbanpour Arani et al. 2011a) 

      
1

( ) 0,
d d

k r r T r
r dr dr

 
 

 
 (1) 

     
,)( aTaT   

     
,)( bTbT   

(2) 

where (′) denotes differentiation with respect to r, K=K(r) is the thermal conductivity and Aij, 

i,j=(1,2) and either designate the thermal conductivity or the heat transfer coefficient depending on 

the type of thermal boundary conditions employed. The constants f1 and f2 have known values on 

the inner and outer radius, respectively. It is assumed that the non-homogeneous thermal 

conductivity K(r) is a power function of the radius 

     
,)( 0

rKrK   (3) 

where γ is in-homogeneity material parameter. Using Eq. (3) into Eq. (1) for the thermal 

conductivity, the heat conduction equation can be written as 

      1

0

1
0.

d d
K r T r

r dr dr

  
 

 
 (4) 

Integrating Eq. (4) yields 

     1
2( ) .

F
T r r F



    (5) 

Applying the boundary conditions (2) results in the following relations for the coefficients A1 

and A2 

     
 

1 ,

1





 
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a
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 (6) 
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2 .

1
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
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 

 
(7) 
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Fig. 1 Hollow FGPM circular cylinder subject to uniform temperature field, uniform internal 

pressure, uniform external pressure and applied voltage V 

 

 

3. Basic formulation of hollow FGPM cylinder 
 

A hollow FGPM cylinder with inner and outer radius of a and b subjected to an inner pressure, 

thermal gradient and an electric potential is considered (Fig. 1). 

The components of displacement and electric potential are assumed 

     

( ),

0,

0,

( ).



 









r

z

u u r

u

u

r

 
    

(8) 

The equation of equilibrium considering the inertia body force and the Maxwell's equation for 

free electric charge density are written as (Ghorbanpour Arani et al. 2011a, 2011b) 

     
,0








rr

rrrr 
 (9) 

     
,0





r

D

r

D rrrr

 

(10) 

where σii(i=r,θ)
 
and Drr are the stress tensor and electric displacement, respectively. 

Also, the strain-displacement and the relation between electric field and electric potential are 

reduced as  

    ,





rr

u

r
 (11) 

    
,

r

u


 

(12) 

    
.

r
Err








 
(13) 

1R 2R

L
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The constitutive relations of cylindrically orthotropic radially polarized piezoelectric media and 

the component of radial electric displacement vector also can be written as (Ghorbanpour Arani et 

al. 2011, Tiersten 1969) 

       11 12 11( ) ( ) ,
             c c

rr rr rr rr rrC T r C T r e E  (14) 

       12 22 12( ) ( ) ,
              c c

rr rr rr rrC T r C T r e E

 

(15) 

       12 22 12( ) ( ) ,
              c c

rr rr rr rrC T r C T r e E

 

(16) 

where cij (i,j=1,2), e1j (i=1,2), αi (i=r,θ)
 
and ∈11 are elastic constants, piezoelectric constants, 

thermal expansion coefficients, dielectric constants, respectively. 

For the analysis, the following dimensionless quantities are introduced as 

     

0rr
r 0 0

22 22 1 i i
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22 rr 11
0 i r 1 00
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C e e
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
  



 

    

   
 

  
 

     

(17) 

Using the above dimensionless variables, Eqs. (5), (9)-(10) can be expressed as 

     1
2( ) , 



  
F

T F  (18) 

     0,rr 

 

 
 



 

(19) 

     0.
 

 
 



r r

 

(20) 

Before substituting the component of the electric field in Maxwell’s equation, appropriate 

functions for all properties are assumed as  

     
,)(0



a

r
r   (21) 

in which Ψr 
represents the general properties of the cylinder such as the elastic, piezoelectric, and 

dielectric coefficients, and Ψ0 
corresponds to the value of the coefficients at the outer surface. 

Substituting Eqs. (17) and (21) into Eqs. (14)-(16) the two components of the stresses and the 

radial electric displacement are obtained as 

0 01 1
1 2 2 2 1 ,



      

          
    

 
       

                 
      

c c

r rr rr

F FdU U d
C F C F

d d
     

(22) 
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0 01 1
2 2 2 2 ,



      

           
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 
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        

(24) 

 

 

4. Solution procedure 
 

The solution of Eq. (20) is 

     3 ,


 r

F
     

(25) 

where 1F is a constant. Substituting Eq. (25) into Eq. (16), we obtain 

      

1 0 1
3 1 2

0 1
2 2 .


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 
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Substituting Eq. (26) into Eqs. (14) and (15), leads to 

      

0 1
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0 11
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(28) 

where 

      
2

111 CL ,   2122 CL , 
2

23 1 L . (29) 

Electric potential ϕ is obtained by integrating the Eq. (26)  
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Fig. 2 Dividing radial domain into some finite sub-domains 

 

 

Finally, substituting Eqs. (27) and (28) into Eq. (19) yields the following in-homogeneous 

ordinary differential equation containing time-dependent creep strains 

2
2 1

1 2 1 3 2 42

2 2
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where 
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(32) 

Eq. (31) is a non-homogeneous second-order ordinary differential equation containing time-

dependent creep strains for displacement field in the FGPM hollow rotating cylinder. 

 

4.1 Semi-analytical solution for thermo-electro- elastic analysis of rotating cylinder 
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A semi-analytical method for solution of the differential Eq. (31) has been applied. The 

solution domain is first divided into some finite divisions as shown in Fig. 2.  

The coefficients of Eq. (31) are evaluated at ξ
m
, mean radius of m

th
 division, and therefore, the 

differential equation with constant coefficients become valid only for the m
th
 sub-domain which can 

be re-written as (Kordkheili et al. 2007, Bayat et al. 2009) 

2

1 2 3 42
0,

 

 
    

 

m m m m md d
K K K U K

d d 
 (33) 

,)( 2

1

mmK     

 
  ,12

mmK     

 
   

 
,

1
2

11

2

2212
3

m

m

C

C
K 














 

 

          
 

         
 

 

 
      

2 0 2 0

1 1 2 1 2 2 1 2 2

4 12

1 1

2 0 2 0

1 1 2 1 2 2 1 2 2 1

22

1 1

2

1 1 2 1 22
32

1 1 1

1 1 1

2 1 2 1 1
( )

1
( )

m

rrm m

m

rr m

m

m

C C C
K F

C

C C C
F

C

C C
F

C C



 



   


   









              
     
  
 

                
     
  
 

       
  

     

    

 
    

 

 
 

3

2

1

2 2

1 1 2 1 2 2 1 2 2

2 2

1 1 1 1

2 1 2 2

2

1 1

( )

1 1 1

( ) .

m

m

m m

m

m

m m

c c m

r

m
cc

mr

C C C

C C

C

C

  

 



   



 
  




 





 

 
 

  

 
               
     

        
 

         
      

(34) 

(35) 

  

(36) 

 

(37) 

Hence, the differential equation can now be solved since the terms corresponding to the creep 

strain functions on the R.H.S have become known. The general solution for Eq. (33) could be 

written as follows 

,21

54


mm

NmNmm

g eFeFU      (38) 

where 

.
2

4)(
,

1

13

2

22

21 m

mmmm

mm

K

KKKK
NN


     (39) 

The particular solution of the differential Eq. (33) may be written as 
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.1XU p       (40) 

Substituting Eq. (40) into Eq. (33) yields 

.
3

4
1 m

m

K

K
X       

(41) 

The complete solution for U
m
 in terms of the non-dimensional radial coordinate is therefore 

written as 

,
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4
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m mh h

 (42) 

where h
m
 is the thickness of m

th
 division. Substituting the displacement from Eq. (42) into Eqs. 

(27)-(28) and (30) the radial and circumferential stresses and electric potential are evaluated. 

The unknowns 
mmmmm

FFFFF 54321 ,,,,  and 
m

F6
 (the constant of integrating of Eq. (30)) are  

determined by applying the necessary boundary conditions between two adjacent sub-domains. 

For this purpose, the continuity of radial displacement, radial stress, temperature and electric 

potential are imposed at the interfaces of the adjacent sub-domains. These continuity conditions at 

the interfaces are 
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 (43) 

and global boundary conditions are written in dimensionless form as 

0)1(  , 0)(   , (Mechanical boundary condition) 0)(  r
, 1)1( r  (44) 

0)(  r , 1)1(  , 0)(   . (electrical boundary condition) 0)1( r
 (45) 

The continuity conditions Eq. (43) together with the global boundary conditions Eqs. (44)-(45)  

yield a set of linear algebraic equations in terms of 
mmmmm

FFFFF 54321 ,,,,  and m
F6

. Solving the  

resultant linear algebraic equations the unknown coefficients are calculated. Then the displacement 
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component, the stresses and the electric potential are determined in each radial sub-domain. 

Increasing the number of divisions improves the accuracy of the results.  

 

4.2 Time-dependent thermo-electro- elastic creep behavior of cylinder   
                         

To obtain time-dependent stresses and electric potential, the creep strains in Eqs. (27)- (28) and 

(30) must be considered. Creep strain rates are related to the material creep constitutive model and 

the current stress tensor by the well known prandtl–Reuss relation. In this case Prandtl-Reuss 

relation is written as (Penny and Marriott 1995) 

 0.5 ,


       

e
r r z

e      
(46) 

 0.5 , 


       

e
r z

e      
(47) 

     

 0.5 .


       

e
z z r

e

 

(48) 

For plane strain condition the axial strain rate disappears, i.e. 0z .  

 0.5 .   z r
      (49) 

Substituting Eq. (49) into the first two of Eqs. (47)-(48) the radial and circumferential strain 

rates are found to be 

 
3

,
4




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

e
r r

e      
(50) 

 
3

.
4

e
r

e

 


   


     

 

(51) 

The Norton’s creep constitutive model for FGPM is considered to be (Norton, 1929) 

,
m

e

n

e tB 
      

(52) 

where 

.50.033.0,5,1011.0 21   nmB      (53) 

In this case the Von Mises equivalent stress is reduced to 

            
2 2 21 3

.
22

              e r z z r r
 (54) 

To obtain history of stresses, deformation and electric potential a numerical procedure based on 

the method of successive approximation has been tailored. 

 

 

5. Numerical procedure to obtain history of stresses, deformation and electric 
potential 
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We have employed Mendelson's method of successive elastic solution to obtain history of 

stresses, displacement and electric potential as follows: 

It was shown that creep strains and their derivatives are involved in non-homogenous part of 

differential Eq. (37) P4. Immediately after loading the creep strains are zero and the solution is an 

elasticity problem. To solve differential Eq. (37) for long time after loading, method of successive 

elastic solution is used. Step by step procedure is explained in the algorithm as follows 

 

 

6. Numerical results and discussion 
 

The numerical results presented here are based on the material properties defined in Table 1 for 

PZT_5 (Jaffe and Berlincourt 1965). The temperature at the inner and outer surfaces of the FGPM 

cylinder are considered to be Ta=50°C
 
and Tb=25°C

 
respectively and the aspect ratio is χ=2. In this 

section, history of stresses, electric potential and radial displacement of the FGPM hollow cylinder 

for two cases of mechanical and electrical boundary conditions (Eqs. (44)-(45)) is investigated. 

Figs. 3(a)-3(b) show radial stress history against dimensionless radius for mechanical and 

electrical boundary conditions, respectively. As can be seen, throughout the cylinder thickness, the  

 
Table 1 Mechanical and electrical properties for PZT_5 

property PZT_5 

c11 111 (GPa) 

c12 75.2 (GPa) 

c22 120 (GPa) 

e11 15.78 (C/m
2
) 

e12 −5.35 (C/m
2
) 

∈11 7.4e−9 (C
2
/Nm

2
) 

αr0 8.53e−6 (1/K) 

αθ0 1.99e−6 (1/K) 

β1 −2.5e−5 (c/m
2
k) 

ρ 7750 (kg/m
3
) 
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Fig. 3 History of radial stress for the FGPM cylinder for (a) mechanical boundary condition 

(b) electrical boundary condition 
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Fig. 4 History of circumferential stress for the FGPM cylinder for (a) mechanical boundary condition 

(b) electrical boundary condition 
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Fig. 5 History of longitudinal stress for the FGPM cylinder for (a) mechanical boundary condition 

(b) electrical boundary condition 

 

 

absolute value of radial stress decreases with time. Maximum change in Ʃr 
occurs in the mid range 

of χ. The change in the rate of radial stress become less significant after 20, begin to converge after 

30, and reaches steady state after 40 years. As can be seen from Figs. 3(a) and 3(b), radial stresses 

are constant with respect to time at the interior and exterior surfaces of the FGPM cylinder, 

satisfying the constant mechanical and electrical boundary conditions set out originally in Eqs. 

(44)-(45). 

Figs. 4-5 demonstrate the plots of circumferential and longitudinal stresses across the cylinder 

thickness for mechanical and electrical boundary conditions, respectively. As can be seen from 

Fig. 4(a), the circumferential stress is positive for mechanical boundary condition, i.e., it remains 

tensile throughout the thickness. As far as the effect of time on these stresses is concerned, they 

decrease with time at the interior surface and increase with time at the exterior. Also, the same as 

the radial stresses, without commenting on the magnitude, the change in the rate of these stresses 

become less significant after 20, begin to converge after 30, and reaches steady state after 40 years. 

Reference stresses are also identified for circumferential and longitudinal stresses which are  
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Fig. 8 History of radial creep strain for the FGPM cylinder for (a) mechanical boundary condition 

(b) electrical boundary condition 
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Fig. 9 History of circumferential creep strain for the FGPM cylinder for (a) mechanical boundary 

condition (b) electrical boundary condition 

 

 

independent of time. Comparing stresses with and without the effect of electric potential one can 

find that imposing an electric potential significantly decreases the highly tensile circumferential 

stresses of the FGPM cylinder. 

Despite different (but satisfied) boundary conditions at the inner and outer surfaces (see Eq. 

45), the histories of the imposed through-thickness electric potentials as shown in Figs. 6(a)-6(b) 

for mechanical and electrical boundary conditions, respectively, is fairly similar to that of the 

compressive radial stress as far as the rate change is concerned. That is perhaps because the 

electric potential histories are induced by the compressive radial stress histories during creep 

deformation of the cylinder. This is expected from the piezoelectric characteristic point of view.  

History of radial displacements is shown in Figs. 7(a)-7(b) for mechanical and electrical 

boundary conditions, respectively.  It is clear that radial displacements increase with time at a 

decreasing rate during creep process of the cylinder and finally reaches a steady state at 40 years. 

Furthermore, maximum radial displacements occur at the interior surface and it decreases 
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smoothly towards the exterior.  

As for the histories of radial and circumferential creep strains for mechanical and electrical 

boundary conditions, respectively, these are presented in Figs. (8)-(9). The radial and tangential 

strains are equal in magnitude but opposite in nature (sign) due to incompressibility condition  

( 0 zr    ) and the assumption of plain strain condition ( 0z ). The absolute value of both  

creep strains with time is much higher at the interior surface as compared with the exterior. As far 

as, the rate of change is concerned, this seems to increases to a maximum between 5 and 10 years, 

and then decreases until it reaches steady state around 30 years of operation.   

 

 

7. Conclusions 
 

Time-dependent creep analysis has been carried out to improve the performance and reliability 

of piezoactuators used for high-precision applications, when these devices are used even at room 

temperatures. Time-dependent thermo-electro-mechanical creep behavior of radially polarized 

FGPM hollow cylinder is investigated using an using a semi-analytical numerical method. History 

of stresses, electric potentials and displacements of two different combinations of mechanical and 

electrical boundary conditions are studied. The results show that in general a major redistribution 

for electric potential takes place throughout the thickness. Electric potentials are increasing with 

time in the same direction as the compressive radial stress histories. In fact the electric potential 

histories are induced by the compressive radial stress histories during creep deformation of the 

FGPM cylinder. It has also been concluded that imposing an electric potential significantly 

decreases the highly tensile tangential stresses. 
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