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Abstract.  This paper presents a finite element procedure for dynamic analysis of non-uniform 
Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point 
loads. The material properties are assumed to vary continuously in the longitudinal direction according to a 
predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional 
variation into account, is formulated by using exact polynomials derived from the governing differential 
equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are 
computed by using the implicit Newmark method. The numerical results show that the dynamic 
characteristics of the beams are greatly influenced by the number of moving point loads. The effects of the 
distance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the 
dynamic responses of the beams are also investigated in detail and highlighted. 
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1. Introduction 
 

This paper presents a finite element procedure for dynamic analysis of structures subjected to 

multiple moving point loads which is a great important topic in many engineering fields. The 

moving load problems have been receiving enormous interests from engineers and researchers for 

several decades. A wide range of publications on the problems are briefly discussed herein. The 

early and excellent reference is the book by Fryba (1972), in which a number of closed-form 

solutions for the moving load problems have been derived by using Fourier and Laplace 

transforms. The numerical method, especially the finite element method has also widely been 

employed in analysis of the moving load problems for homogeneous beams (Lin and Trethewey 

1990, Thambiranam and Zhuge 1996). Recently, Nguyen and his co-workers derived the finite 
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element formulations for studying the dynamic response of homogeneous Bernoulli and 

Timoshenko beams resting on elastic foundation subjected to a moving harmonic load (Nguyen 

2008, Nguyen and Le 2011). 

Functionally graded materials (FGMs) are of great importance to many researchers because of 

its wide range of applications in structural mechanics. FGMs initiated by Japanese scientists in 

1984 (Koizumi 1997) can be formed by varying percentage of constituents in any desired direction 

in order to create new materials of specific physical and mechanical properties. Many 

investigations on FGM structures subjected to different types of loadings are summarized by 

Birman and Byrd (2007), only contributions that are most relevant to the present work are 

discussed below.  

Huang and Li (2010) studied the free vibration of non-uniform cross-section beams made of 

axially FGM. Shahba et al. (2011a) employed the exact shape functions from a uniform 

homogenous Timoshenko beam segment to formulate a finite element formulation for computing 

natural frequencies and buckling loads of tapered axially FGM Timoshenko beams. Also using the 

finite element method, Alshorbagy et al. (2011), Shahba et al. (2011b) studied the free vibration of 

transversely and axially FGM Bernoulli beams, respectively. Şimşek and Kocatürk (2009), Şimşek 

(2010), Şimşek et al. (2012) studied the dynamic behavior of transversely and axially FGM beams 

subjected to moving loads by using polynomial series as trial functions for the displacements and 

rotation in solving the governing equations of motion. Li et al. (2013) proposed a method for 

derivation of exact finite element formulations to model the axially FGM and/or transversally 

FGM beams with non-uniform Bernoulli-Euler beams. Nguyen et al. (2013) studied the vibration 

of non-uniform transversely FGM beams under a harmonic moving load by using the finite 

element method. Nguyen (2013), Nguyen and Gan (2014a), Nguyen et al. (2014b) derived the 

finite element formulation for studying the large displacement behavior of FGM beams and 

frames. 

In this paper, the dynamic response of non-uniform FGM Timoshenko beams subjected to 

multiple moving point loads is investigated by using the finite element method. The beam material 

properties are assumed to vary in the longitudinal direction by a defined power law equation. 

Exact polynomials derived from solutions of the governing different equation of a uniform 

homogenous Timoshenko beam element are employed to interpolate displacements and rotation of 

the beams. The implicit Newmark method is used to compute the dynamic responses of the beams. 

The influence of the non-uniform cross sections, the distance between the multiple moving point 

loads as well as the aspect ratio on the dynamic behavior of the beams is examined and 

highlighted. 
 

 

2. Non-uniform FGM beams 
 

A simply supported FGM beam subjected to nload point loads with the same amplitude Q0, 

moving from left to right with a constant speed, as shown in Fig. 1 is considered. The loads are 

placed at a regular interval d. The beam with total length L and a constant cross section height h, is 

assumed to be formed from two different materials. Solid cross section area, A(x), and moment of 

inertia I(x) are assumed to vary longitudinally in two following manners: 

• Type A: 

1 1
( ) 1 , ( ) 1
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m m

x x
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L L
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• Type B: 
2 2

1 1
( ) 1 , ( ) 1
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      
      

         

 

where Am, Im denote the area and moment of inertia of the mid-span section, respectively; 0≤α <2 

is the non-uniform section parameter, defined how the cross section varies. The effective property 

P (Young‟s modulus, shear modulus and mass density) of the beam material is assume to vary in 

longitudinal direction according to a power law equation as 

( ) ( ) 1

n

l r r

x
P x P P P

L
   

 
 
 

                           (1) 

where n is a non-negative power law index, which defined the distribution of the constituents 

along the longitudinal direction of the beam. The lower subscripts „l‟ and „r‟ stand for 'left' and 

„right‟, respectively. As seen from Eq. (1), the left and right end sections of the beam contain pure 

one material. 

 

 

3. Finite element formulation 
 

Adopting the first order shear deformation beam theory, the axial and transverse displacements, 

u1(x,z,t) and u3(x,z,t), respectively at any point of the beam are given by 

1

3

( , , ) ( , ) ( , )

( , , ) ( , )

u x z t u x t z x t

u x z t w x t

 


                           (2) 
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Fig. 1 Non-uniform simply-supported beam made of FGM 
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where u(x,t) and w(x,t) are the axial and transverse displacements of the point on the neutral axis x; 

θ(x,t) is the rotation of cross section at a point with abscissa x; z is the distance from any arbitrary 

point to the neutral axis. Based on the assumptions of Hooke‟s law, the axial strain εx, shear strain 

γxz, and their corresponding axial and shear stresses, ζx and ηxz, respectively, resulted from Eq. (2) 

are as follows 

, ,( , ) ( , )

( )

x x x

x x

u x t z x t

E x

 

 

 



,, ( , ) ( , )

( ),

xz x

xz xz

w x t x t

G x

 

 

 


                 (3) 

where (...),x denotes the derivative with respect to x, and ψ is the shear correction factor with its 

value depends on the geometry of the beam cross section. 

The differential equations of motion of the beam under the moving loads can be derived by 

applying Hamilton‟s principle. By using Eqs. (2)-(3), the strain energy and kinetic energy for the 

beam can be written in the following forms 

     

      

2 2 2

, , ,

0

2 2 2

, , ,

0

1
( ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

l

x x x

l

t t t

U E x A x u E x I x G x A x w

T x A x u w x I x

dx

dx

  

  

  

  

 
 

 
 





,           (4) 

where E(x), G(x), ρ(x) are the Young‟s modulus, shear modulus and mass density of the material 

on the section with abscissa x; (...),t denotes the derivative with respect to t. The potential energy 

from the moving loads is simply given by 

0
1

( , ) ( ( ))
nload

i
i

V Q w x t x s t


   ,                           (5) 

where δ(.) is the Dirac delta function, and si(t)=vti is the distance from i-th load to the left end of 

the beam at time t; v is the speed of the moving loads. 

Applying Hamilton‟s principle to Eqs. (4)-(5), one can obtain the following differential 

equations of motion for the beam in case of ignoring the damping effect in the forms 

 

 

,
( ) ( ) ( ) ( )

, ,

( ) ( ) ( ) ( ) ,, , 1

( ) ( ) ( ) ( ) ( ) ( ) ,, , ,

0,

,

0.

x
x A x u E x A x u

tt x

nload
x A x w G x A x w Qx itt x i

x I x E x I x G x A x w xtt x x



  

   



 
 

 



  


 

 
 

 
 

             

(6) 

The equations of motion in Eq. (6) with the variable coefficients are hardly solved by analytical 

methods. Here, the finite element method is used in solving the equations instead of using 

analytical methods. To this ends, we assume that the beam is being divided into nel two-node beam 

elements with length of l. There are axial and vertical displacements and a rotation at each node, 

and thus the vector of nodal displacements, d, for a generic element contains six components as 

 
T

i i i j j ju w u w d ,                        (7) 
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here and after, a superscript „T‟ denotes the transpose of a vector or a matrix. The axial, transverse 

displacements and cross section rotation inside the element, u, w and θ, respectively are assumed 

to be interpolated from the nodal displacements according to 

, ,
T T T

u wu w   N d N d N d ,                          (8) 

where Nu={Nu1 0 0 Nu2 0 0}
T
, Nw={0 Nw1 Nw2 0 Nw3 Nw4}

T
 and Nθ={0 Nθ1 Nθ2 0 Nθ3 Nθ4}

T
 are the 

matrices of interpolating functions for u, w and θ, respectively. 

As demonstrated by Nguyen (2013), linear functions and cubic polynomials obtained by 

solving static governing differential equations of a uniform homogeneous Timoshenko beam 

element can be employed as interpolation functions for a non-uniform axially FGM beam element. 

Following this idea, the present work employs the following polynomials as interpolations for the 

displacement u, w, and the rotation θ 

1 2,u u

l x x
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                               (9) 
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and 
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In Eqs. (10)-(11), λ is the shear deformation parameter, defined as 

0 0

2

0 0

12 E I

l G A



                            (12) 
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with A0, I0, E0, G0 
are the cross section area, moment of inertia, Young‟s and shear moduli of the 

uniform homogeneous beam. It should be noted that the interpolation functions stated in Eqs. (10)-

(11) were firstly derived by Kosmatka (1995) for a homogeneous Timoshenko beam element. The 

polynomial functions in Eqs. (10) and (11) have been previously employed by several authors in 

the derivation of beam finite elements for free and forced vibration analysis of non-uniform axially 

or transversely FGM beams (Shahba et al. 2011a, Nguyen et al. 2013). In the computations 

reported in the next section, the cross section area, moment of inertia of the section at the right 

node of the element, and Young‟s and shear moduli of the material at the right end of the beam are 

designated as A0, I0, E0, G0, respectively. 

Substituting Eqs. (9)-(11) into Eqs. (4)-(5), we can rewrite the strain and kinetic energies for the 

beam in terms of nodal displacements as 

1

1

,

1
,

2

1

2

nel
T

i

nel
T

i

U

T





 

 

d k d

d m d
                             (13) 

and the potential of the moving loads has a simple form 

0
1

( ( ))
nload

T

w i
i

V Q x s t


   N d .                         (14) 

In Eq. (13), k and m denote the stiffness and mass matrices for the element, respectively. The 

detail expressions for the element stiffness and mass matrices are as follows. 

( ) ,
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u w 

  
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k k k k

m m m m
                           (15) 
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k N N N N

            
(16) 

are the stiffness matrices stemming from stretching, bending and shear deformation of the beam 

element, respectively and  

,

0 0

,

0

( ) ( ) , ( ) ( ) ,
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T T

u u u w w w x
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x

x A x dx x A x dx
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 
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 



 



m N N m N N

m N N

              
(17)

 

are the mass matrices corresponding to the axial and transverse translations and cross section 

rotation, respectively. To improve the accuracy of the finite element formulation, the exact 

variation of the section profiles is employed in evaluation of integrals in Eqs. (16)-(17). 
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Using the derived element matrices, the discrete equations of motion for the beam can be 

written in the form 

ex M D K D F                               (18) 

where M, K are structural mass and stiffness matrices, obtained by assembling the formulated 

element mass and stiffness matrices in a standard way of the finite element method, respectively; 

Fex is the external nodal load vector with the following simply form 

 
1

0 0 0 0...0 0... ...0 0... ...0 0... ... 0 0 0
n i

T

ex w w wx x x
QF N N N            (19) 

The nodal load vector Fex defined by Eq. (19) contains all zero coefficients except for the 

elements currently under loading. In addition, the interpolation functions Nw|xi are evaluated at the 

current position of the i-th load. The system of Eq. (18) can be solved by the direct integration 

method. The implicit average constant acceleration Newmark method, which ensures the 

unconditional convergence (Géradin and Rixen, 1997), is adopted in the present work. In the free 

vibration analysis, the right hand side of Eq. (18) is set to zeros, and a harmonic response, 

sin tD D  is assumed, so that Eq. (18) deduces to an eigenvalue problem as 

 2
 K M D 0                               (20) 

where ω is the circular frequency, and D  is the vibration amplitude. Eq. (20) can be solved by 

using a standard method for the eigenvalue problem (Géradin and Rixen 1997). 

 
 
4. Numerical results 

 

A simply-supported beam made of axially FGM subjected to multiple moving loads is 

investigated. Otherwise stated, the geometric data for the beam area: bm=0.5 m, h=1.0 m, L=5 m 

and 20 m, where bm, h, L are the width of mid-span cross section, height and total length of the 

beam, respectively. The beam is assumed to be composed of steel and alumina. Young‟s modulus 

and mass density of steel respectively are 210 GPa and 7800 kg/m
3
, and that of alumina are 390 

GPa and 3960 kg/m
3
, respectively. The beam material is graded with pure alumina at the left end 

to pure steel at the right end of the beam. The amplitude of each load is Q0=100 kN. A Poisson‟s 

ratio υ=0.3 and a shear correction factor ψ=5/6 is used in the all the computations in this section. 

The total time ∆T necessary for a constant moving speed load to across the beam is L/v, where v is 

the moving speed of the load.  

In the computation reported below, a uniform time increment of / 500dt T   is used for the 

Newmark method. The following dimensionless parameters representing maximum mid-span 

deflection and moving load speed are introduced as 

 
0

0 1

/ 2,
max ,D v

w L t v
f f

w




 

 
 
 

 

where w0=Q0L
3
/48ErIm is the static deflection of a uniform steel beam under a static load Q0 acting 

at the mid-span, and  0 2 2

1 / /r m r mL E I A    is the fundamental frequency of the simply 

supported uniform steel beam. In the below fD is called the dynamic deflection factor. 
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4.1 Verification of formulation 
 

In order to verify the accuracy of the derived formulation and the numerical procedure, the 

fundamental frequency of a uniform FGM beam composed of steel and alumina are computed and 

compared with the numerical result of Şimşek et al. (2012). To this end, for consistence with the 

work by Şimşek et al. (2012), a FGM beam with b=0.4 m, height h=0.9 m and length L=20 m is 

employed in the computation. Tables 1-2 list values of the first two non-dimensional fundamental 

frequencies of the beam with various values of the modulus ratio, Eratio=El/Er, and the power law 

index n for an assumed constant value of mass desity, ρratio=ρl/ρr=1. Very good agreement between 

the frequencies obtained in the present work with that of Şimşek et al. are given in the Tables. The 

non-dimensional fundamental frequency in the Tables is defined as, 

2 2
2 r m

r m

A L

E I

 
   

where ω is the natural frequency of the beam. 

To verify the element formulation in further, the maximum dynamic deflection factor and its 

corresponding speed of an axially FGM beam are evaluated and compared to the published data. 

The computed result is listed in Table 3 for various values of the index n, where the numerical 

result from Şimşek et al. (2012) is also given. The numerical result shown in the Table was 

obtained by varying the moving speed with an increment 1m/s. Very good agreements between 

results are achieved. It should be noted that numerical results listed in Tables 1-3 have been 

obtained by using ten elements. More than ten elements were employed in the analysis, but no 

improvement in the numerical results has been observed. 

 
Table 1 First dimensionless frequency parameter of uniform FGM beam  

Modulus ratio 

Eratio 

Power law index, n 

1 2 5 

Present 
Şimşek et al. 

(2012) 
Present 

Şimşek et al. 

(2012) 
Present 

Şimşek et al. 

(2012) 

0.25 2.7482 2.7532 2.9220 2.9278 3.0772 3.0834 

0.5 2.9056 2.9104 3.0069 3.0122 3.0997 3.1052 

1.0 3.1350 3.1399 3.1350 3.1399 3.1350 3.1399 

2.0 3.4554 3.4611 3.3193 3.3243 3.1877 3.1922 

4.0 3.8866 3.8937 3.5737 3.5794 3.2625 3.2667 

 
Table 2 Second dimensionless frequency parameter of uniform FGM beam 

Modulus ratio 

Eratio 

Power law index n 

1 2 5 

Present 
Şimşek et al. 

(2012) 
Present 

Şimşek et al. 

(2012) 
Present 

Şimşek et al. 

(2012) 

0.25 5.4372 5.4729 5.7283 5.7675 6.0213 6.0639 

0.5 5.7685 5.8047 5.9359 5.9739 6.1060 6.1459 

1.0 6.2317 6.2703 6.2317 6.2703 6.2317 6.2703 

2.0 6.8599 6.9030 6.6372 6.6782 6.4094 6.4482 

4.0 7.6893 7.7399 7.1755 7.2208 6.6495 6.6900 
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Fig. 2 Time history for mid-span deflection of uniform homogeneous beam under three moving 

loads (d=L/4) 

 

Table 3 Maximum normalized dynamic deflections factors of the beam and corresponding speeds for α=0, 

L/h=20 

Power law index 

n 

v [m/s] max(fD) 

Present 
Şimşek et al. 

(2012) 
Present 

Şimşek et al. 

(2012) 

0.3 219 220 1.0195 1.01947 

1 178 179 1.2064 1.20435 

3 144 144 1.5146 1.51669 

Pure Steel 132 132 1.7386 1.73247 

 

 

In order to verify the formulation and numerical procedure in modeling multiple moving loads, 

the time history for mid-span deflection of a uniform homogenous beam subjected to three point 

loads Q0=5324.256 N, moving with a constant speed v=22.5 m/s is computed and the result is 

shown in Fig. 2, where the numerical result obtained by using a dynamic stiffness method of 

Henchi et al. (1997) is depicted by small circles. The beam material properties and geometric data 

in this computation adopted from the work of Henchi et al. (1997) are as follows: L=24.384 m, 

m=9.576 10
3 
kg/m, A=0.576 m, I=2.95 10

-3
 m

4
, E=19 10

11 
N/m

2
, where L, m, A, I, E are the total 

length, mass per unit length, section area, moment of inertia and Young‟s modulus, respectively. A 

good agreement between the numerical result of the present work with that of Henchi et al. (1997) 

is observed from the figure. 

 

4.2 Fundamental frequency 
    

The effect of the section parameter α on the non-dimensional fundamental frequency μ1 of the 

type A FGM beam having aspect ratios, L/h, is shown in Fig. 3 for an index n=3. It can be 

observed that the fundamental frequency of the beam is considerably affected by the section  
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Fig. 3 Effect of section parameter on the dimensionless fundamental frequency of type A FGM 

beam with different values of the aspect ratio (n=3) 

 
Table 4 Convergence of present element in evaluation fundamental frequency parameter μ1 of non-uniform 

FGM beam (n=1, L/h=20) 

Number of element, 

nel 

α 

0.5 1.0 1.5 1.8 

4 3.5007 3.4923 3.4706 3.4427 

8 3.4993 3.4902 3.4668 3.4369 

12 3.4991 3.4898 3.4657 3.4346 

14 3.4991 3.4897 3.4654 3.4338 

16 3.4990 3.4896 3.4652 3.4333 

18 3.4990 3.4895 3.4650 3.4328 

20 3.4990 3.4894 3.4648 3.4322 

22 3.4990 3.4894 3.4647 3.4319 

24 3.4990 3.4894 3.4646 3.4315 

26 3.4990 3.4894 3.4646 3.4313 

28 3.4990 3.4894 3.4646 3.4313 

 

 

parameter and the aspect ratio. The frequency μ1 steadily reduces by raising the section parameter 

α, regardless of the aspect ratio. In addition, the frequency is smaller for a beam associated with a 

lower aspect ratio. In other words, the shear deformation which has been taken into account in the 

present work reduces the fundamental frequency of the FGM beam. Thus, the numerical result 

obtained in this sub-section shows the good ability of the proposed formulation in modeling the 

shear deformation of the FGM beam. It should be noted that the frequency parameter shown in 

Fig. 3 has been obtained by using 28 elements, which is much more than the number of elements 

previously used for the uniform beam. As seen from Table 4, the convergence of the fundamental 

frequency of the non-uniform FGM beams depends on the section parameter, and the beam with a 

higher section parameter requires more number of the elements in evaluating the fundamental 

frequencies.  
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(a) Type A, one load, L/h=5 (b) Type A, one load, L/h=20 

Fig. 4 Relation of deflection factor and moving speed parameter of type A beam (α=0.5). 
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(a) Type A, one load, L/h=5 (b) Type A, one load, L/h=20 

Fig. 5 Relation of deflection factor and power law index of type A beam (α=0.5) 

 

 

4.3 Effect of material non-homogeneity 
 

The material non-homogeneity distribution along the longitudinal direction is defined through 

the power law index n in Eq. (1), and the effect of this index on the dynamic response of the beam 

is examined in this sub-section. In Figs. 4(a)-(b), the relations between the deflection factor and 

the speed parameter of Type A beam subjected to a single moving load are depicted for a non-

uniform section parameter α=0.5, and for two aspect ratios, L/h=5 and L/h=20. As depicted in the 

figures, the dynamic deflection fD is higher for a beam associated with a higher index n, regardless 

of the moving speed and the aspect ratio. This due to the fact that, in refer to the Eq. (1), the beam 

with a higher index n contains more steel and thus it is softer. The dependency of the deflection 

factor fD upon the speed parameter fv observed from Fig. 4(a)-(b) is similar to that of the 

homogeneous beams (Olsson 1991), where fD increases when increasing the speed parameter fv,  
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(a) Type A, one load, L/h=5 (b) Type A, one load, L/h=20 

Fig. 6 Time histories of normalized mid-span deflection of type A beam under a single moving load 

(n=5, fv=0.25) 

 

 

and it then reduces after reaching a peak value, regardless of the index n and the aspect ratio. The 

effect of the material non-homogeneity and the moving speed on the dynamic deflection factor can 

also be observed clearly from Figs. 5(a)-(b), where the relation between fD and the index n of Type 

A beam are shown for various values of the speed parameter fv and for a section parameter α=0.5. 

The effect of the aspect ratio on the dynamic response of the beam can be seen from Figs. 4(a)-(b) 

and Figs. 5(a)-(b), where fD is higher for a beam having a smaller aspect ratio. The dynamic 

deflections in this sub-section (and in the below) have been computed by using 28 elements. More 

than 28 elements have been used, but no improvement in the results was obtained.     

 

4.4 Effect of section profile 
 

The time histories for mid-span deflection of the Type A beam under a single moving load are 

shown in Figs. 6(a)-(b) for various values of the section parameter α and for n=5, fv=0.25. The 

dynamic response of the beam, as clearly observed from the figures, is greatly affected by the 

section parameter, where the maximum dynamic deflection is higher for a beam having larger 

parameter α, regardless of the aspect ratio. Except for the amplitude of the dynamic deflection, the 

aspect ratio hardly changes the dynamic behavior of the beam. 

In Figs. 7(a)-(b), the relation between the maximum deflection parameter, max(fD), and the 

section parameter α of the beam having different aspect ratios is depicted for the two types of the 

section profile and for n=5, fv =0.25. As shown in both figures, the maximum deflection factor of 

the beam with Type A section is more sensitive to the non-uniform section parameter α compares 

to that of the Type B beam, regardless of the number of the moving loads. For a given value of the 

parameter α and the number of moving loads, the maximum deflection factor of Type A beam is 

higher than that of Type B beam and the difference becomes larger for a higher value of α. The 

aspect ratio affects the amplitude of the maximum deflection factor, but it hardly changes the 

relation between this factor and the non-uniform parameter. The maximum deflection factor of the 

beam associated with a lower aspect ratio is much more sensitive to the change of the section 

parameter compares to the beam having a higher aspect ratio. 
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Fig. 8 Time histories for mid-span deflection of type 

A beam under 4 loads (n=3, fv=0.25, /h=20, α=0.5) 

Fig. 9 Deflection factor-speed parameter relation of 

type A beam under 3 loads, n=3, L/h=20, α=0.5 
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Fig. 7 Effect of section profile on relation between maximum deflection factor and non-uniform parameter 

 
 
4.5 Effect of distance between the loads 
 

   The time histories for mid-span deflection of the type A beam under four moving loads are 

depicted in Fig. 8 for various values of the distance between the loads and for n=3, fv=0.25, 

L/h=20. In Fig. 9, the relation between the deflection parameter fD and the moving speed fv of the 

type A beam is shown for various values of the distance between the loads, and for n=3, α =0.5, 

L/h=20. The effect of the distance between the moving loads on the dynamic behavior of the beam 

is clearly depicted in the figures. The dynamic deflection factor is much larger when the distance 

between the loads is smaller, regardless of the moving speed. 
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5. Conclusions 
 

A finite element procedure for analyzing dynamic response of non-uniform axially FGM 

Timoshenko beams subjected to multiple moving point loads has been presented. A first-order 

shear deformation beam element taking the effect of the material non-homogeneity, non-uniform 

cross section, and variation of moving point loads has been formulated by using the shape 

functions derived from the static governing equations of motion of a uniform homogeneous beam 

element to interpolate the displacements and rotation degree of freedoms. The exact variations of 

the section profile were employed in the evaluation of the element stiffness and mass matrices. The 

dynamic response of the beams has been computed by using the implicit Newmark method. The 

numerical results have shown that the formulated element is accurate in evaluating the dynamic 

response of the beams. It has also been demonstrated that the proposed formulated element is 

capable to model the shear deformation of the axially FGM beams. Parametric studies were carried 

out to investigate the effect of the material non-homogeneity, loading parameter and the section 

profile on the dynamic behaviors of the axially FGM beams. 
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