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Abstract.  In this paper, a two-layer partial interaction composite beams model considering the higher 
order shear deformation of sub-elements is built. Then, the governing differential equations and boundary 
conditions for static analysis of linear elastic higher order composite beams are formulated by means of 
principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams 
subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this 
problem is also developed, and the results of the proposed FE program are in good agreement with the 
analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, 
parametric studies are performed to investigate the influences of parameters including rigidity of shear 
connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, 
internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the 
distribution of internal forces and the stresses. 
 

Keywords:  composite beams; Timoshenko beam theory; higher order shear deformation; shear effect; 
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1. Introduction 
 

Composite beams are extensively utilized in structural engineering, aerospace, automotive and 

underwater problems, as they make better use of material properties of their components. For 

instance, timber-concrete or steel-concrete elements are widely applied to civil engineering. Due to 

the stiffness of the shear connectors, which connect each sub-element as a whole, a variety of 

mathematical models have been proposed. Early works tended to neglect the effects of transverse 

shear deformation and interfacial shear slip between sub-elements, i.e., a full shear interaction can 

be achieved with a rigid connection. Recently, researchers (Schnabl et al. 2007a, b), however, have 

found that the shear deformation of sub-layers and the stiffness of the shear connectors influence 

significantly on the mechanical behavior of thick two-layer composite beams. 

Based on the small deformation elastic hypothesis and the Euler-Bernoulli‟s beam theory 

(EBT), Newmark et al. (1951) initially introduced mathematical model for composite beams with 

partial interaction, which is still being widely used today and is further improved by many 

researchers. For example, Erkmen and Attard (2011) and Dall‟Asta and Zona (2002), incorporated 
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material nonlinearity and nonlinear connectors into Newmark‟s model; Kroflič et al. (2010) even 

took into account the uplift (deflection discrepancy of each sub-member), though they still 

conformed to Newmark‟s geometrically linear Euler-Bernoulli beam theory. Further, Ranzi et al. 

(2010), Battini et al. (2009) improved Newmark‟s model by considering the geometric 

nonlinearity, and presented corresponding FE formulations; Kroflič et al. (2011) derived FE 

formulations for a two-layer composite beams considering material nonlinearity as well as 

geometric nonlinearity. When it comes to the theoretical study, Newmark‟s governing differential 

equations have become the prototype again for improving, e.g., Faella et al. (2002) proposed exact 

FEM for static analysis, using the general solutions. Ouyang et al. (2012) built a mathematical 

model taking into account the large deflection of two-layer composite beams based on Newmark‟s 

model, and subsequently analytical solutions was provided for the case of linearly reduced. 

Shear effects of composite beams tend to be significant, when their span-to-depth ratio gets 

smaller, as a result, Timoshenko composite beams may fit better. Ranzi and Zona (2007), Schnabl 

et al. (2007a, b), Nguyen et al. (2011), Grognec et al. (2012) modeled sub-elements of two-layer 

partial interaction composite beams with Timoshenko beams or Euler-Bernoulli coupling with 

Timoshenko beam, where the static and buckling problems are solved analytically or numerically. 

Furthermore, Hjiaj et al. (2012), Čas et al. (2004), Zona and Ranzi (2011) described each 

sub-element of composite beams with Timoshenko beam theory (TBT) taking into account the 

material or geometric nonlinearity, and static analysis was committed by FEM as well. 

Unfortunately, it‟s a tough problem (Whitney 1973) to obtain Timoshenko‟s shear correction factor 

for composite beams with partial interaction, due to the fact that the factor is attributed to each 

sub-element cross section‟s geometry as well as the shear stress around the section (Chakrabarti et 

al. 2012), unlike the case of single beam‟s cross section with free stress boundary. To overcome 

this drawback, it‟s an alternative to use higher order shear deformable beam theory. Hence, 

Chakrabarti et al. (2012) used Reddy‟s higher order beam theory (Reddy 1984), assuming that 

shear stresses over beam depth vary as quadratic polynomial and vanishes at the top and bottom of 

beam, as a result, the introduction of shear correction factor was avoided. Similarly, Li et al. 

(2013) assumed that shear stresses distributed along the beam depth hyperbolically. Vo and Thai 

(2012) used various of refined shear deformation theories in the static analysis for composite 

beams. 

Obviously, FEM has become the mainstream engineers prefer to deal with composite beams 

problem, however, to the best knowledge of the authors, there‟s no literature on exact analytical 

solutions for higher order composite beams subjected to static load, which motivates us to do this 

study. In this study, we replace Euler-Bernoulli‟s hypothesis with Reddy‟s theory (Reddy 1984), as 

an improvement of Newmark‟s model. According to the principle of minimum potential energy, 

the governing differential equations and boundary conditions are formulated for composite beams 

subjected to uniform load, and the solutions are obtained by Laplace transform technique. More 

than that, a new finite element with 3 nodes and 18 degrees of freedom (dof) is derived. Compared 

with the work of Chakrabarti et al. (2012), who proposed a finite element with 3 nodes and 24 

dofs, the present study optimizes the configuration of dofs of the finite element (Chakrabarti et al. 

2012) and avoids the introduction of penalty factors (Cook et al. 2007) used by Chakrabarti et al. 

(2012), which may cause numerical problems (Cook et al. 2007). Two examples of two-layer 

composite beam structures, including a cantilever and a simply supported two-layer composite 

beams subjected to uniform load, are presented. The results indicate that exact solutions are in 

good agreement with those of FEM. Finally, parameters, including the interfacial slip stiffness, the 

ratio of shear modulus and the span-to-depth ratio, are studied in the parametric analysis. 

626



 

 

 

 

 

 

Analysis of higher order composite beams by exact and finite element methods 

c0u

s0u

csu

s

c

x

x

yc

ys

o

o

1h

2h

3h

4h

q
L

part c

part s

 

Fig. 1 Axial displacement fields of Reddy‟s composite beams 

 

 

2. Formulation 
 

Let us consider a two-layer composite beam (see Fig. 1), subjected to uniform load q on top of 

layer c, whose overall span is L, and they consist of upper layer c and lower layer s. Two 

coordinate systems are set up at the centroid of each layer at the left end, and geometric 

information is shown in Fig. 1, i.e., two centroid axes and the shear connectors divide the whole 

depth of composite beams into four sub-depths, which are h1, h2, h3 and h4. uc0 and us0 denote axial 

displacements at centroid for part c and s respectively; ucs means the interfacial slip between part c 

and s. Generalized rotation of upper section c and lower section s represent the tangent slope at 

the centroid of part c and s respectively. 

For the completeness of the paper, herein the kinematics of two-layer composite beams is 

repeated (Yang and He 2014). According to Reddy‟s higher order beam hypothesis (Reddy 1984) 

on axial displacement of the „fibers‟ over the beam depth for layer c and s can be expressed as 

 sciyxyxyxxuyxu iiiiiiiii ,   ,)()()()(),( 32
0                   (1) 

where ui is the axial displacement of layer i; αi(x) and δi(x) are the coefficients for higher order 

terms. 

The interfacial slip can simply be formulated from the discrepancy between the axial 

displacement at the bottom surface of the upper layer and that at the top surface of the lower layer, 

thus 

 cs c 2 s 3( ) ( , ) ( , )u x u x h u x h= - -                           (2) 

Neglecting the vertical separation between layers, the transverse displacement for both layers 

can be expressed as 

 c s( ) ( ) ( )w x w x w x= =                             (3) 

Shearing strain γi and stress Ti over the cross section can be obtained according to the theory of 

elasticity, which assumes that the displacement and strain of structure are both small, thus we have 
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where Gi is the shear modulus of layer i (i=c, s), and hereafter the superscript „′‟ denotes the 

derivative with respect to x, i.e., (•)′=d(•)/dx. 

Two stress boundary conditions can be obtained from free shearing stress conditions on the top 

of layer c or at the bottom of layer s, that is 

  0)(   ,0)( 41  hThT sc                             (5) 

The other two conditions can be obtained from the interfacial shear flow. Assuming that shear 

flow of shear connectors uniformly smears over the interface, yields 

 cscssscscscc ukbhTukbhT  )(   ,)( 32                        (6) 

where bc is the bottom edge‟s width of section c; bs is the top edge‟s width of section s; kcs is the 

rigidity of shear connectors. 

Higher order coefficients i and i can be determined by Eqs. (5) and (6), and written as follows 

 ]      [ sscc  [A1e  A2e  A3e  A4e]                     (7) 

where 

e=[uc0  θc  us0  θs  w′]
T                                         

(8) 

Matrix A is composed of four row vectors A1, A2, A3 and A4, that is 
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Thus, higher order terms of axial displacement are eliminated by substituting Eq. (7) into Eq. 

(1), and an eliminated form of axial displacement are derived as 

 cu = me , su = ne  (12) 

where row vectors m=λc+yc
2
A1+yc

3
A2, n=λs+ys

2
A3+ys

3
A4, λc=[1  −yc  0  0  0] and λs=[0  0  1  

−ys  0]. 
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With the help of Eq. (12) and small strain assumption of structure, normal strains of each layer 

over the cross section can be formulated as 

enem 










x

u

x

u s
s

c
c     ,                         (13) 

The cross-sectional normal stresses of isotropic linear elastic layers can be obtained as 

enem  sscc EE     ,                            (14) 

For the simplicity of notation of the following formulation, a strain vector storing the normal 

and shearing strains of each layer is introduced as 

  sci
TTT

ii ,   ,    eeTε                            (15) 

where εi is a vector composed of normal strain εi and shear strain γi at cross section, that is,   

εi=[εi γi]
T
; matrices Tc and Ts can be constructed as 
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in which, Ξ=[0  0  0  0  1]. Using Eqs. (4) and (14), a matrix form of isotropic linear elastic 

constitutive can be derived as 

ζi=Di εi                                   (17) 

where ζi is stress vector for layer i (i=c, s), composed of normal stress ζi and shear stress Ti, i.e., 

ζi=[ζi   Ti]
T
; Di is elastic parameters matrix with expression 


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Substituting Eq. (15) into Eq. (17), yields 

TTT
iii ]    [ eeTDζ                                (19) 

Using Eq. (15) and Eq. (19), the strain energy of the two layers can be expanded as 
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                       (21) 

and Ai (i=c, s) is the integral domain of layer i. 

After simplifying Eq. (21), D can be blocked into a form of 
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where D11 and D22 are matrices of dimensions 5 by 5, and 0 denotes zero matrix of dimensions 5 

by 5. 

Ecs is the strain energy of the shear connectors at the interface, which can be written as 

dxukE cscs

L

cs

2

02

1
                            (23) 

where ucs can be expressed by Eqs. (24) and (25) 

csu = be                                  (24) 

and 

c 2 s 4y h y h= =-
= -b m n                             (25) 

The work done by the external force herein is indicated by Wex. In the case of a uniform 

transversely distributed pressure q (see Fig. 1) acting on the upper surface of the composite beams, 

we have 

qwdxW
L

cx  0
                              (26) 

Subsequently, the total potential energy ∏is obtained with respect to uc0, us0,c, s and w. 

  excsscsc WEEwuu   ,,,, 00                       (27) 

Principle of minimum potential energy can be expressed as δ∏=0, by which the following set 

of differential equations is obtained 

 4,3,2,1   ,021  iii eVeV                           (28) 

q eVeV 5251                               (29) 

where coefficient vectors Vi1 and Vi2 have definitions as 
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in which bi is the ith component of vector b; 
11

i
D is a vector composed of the ith row of D11. 

Boundary conditions can also be derived as 

  5,4,3,2,1   ,0
011  i
L

i
i

eeD                           (31) 

   0
05251 
L

weVeV                            (32) 

where ei (i = 1, 2, …, 5) denotes the ith component of vector e. 

 

 

3. Exact method 
 

Eqs. (28)-(29) compose a differential algebraic system, which can be transformed into a system  
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of ODEs. A matrix form of ODE system can be formulated below by virtue of Eq. (28) 

    0αBA  wuuwuu
T

sscc

T

sscc                001000                (33) 

where coefficient matrices A0 and B1 are defined as 

     αBVVVVVVVVA             ,      1423222120413121110 
TTTTTTTTTT B             (34) 

in which B1 is a block of matrix B0 with dimensions of 4 by 4;  is the rest column of B0. 

By solving the system of Eq. (33), the second order derivative terms can be obtained as 

    T

sscc

T

sscc wuuwuu                 000
1

100  AαB               (35) 

A cantilever composed of composite beams (see Fig. 2), which is subjected to uniform 

transverse load q, is to be studied by the proposed Laplace transform technique.  

The Laplace transform technique is a helpful mathematical tool for ordinary differential 

equations solving, and this transform has definition 

dxexfsf sx


 )()(
0

                            (36) 

which describes that function in real domain f(x) is transformed into complex domain ( )f s . 

Hereafter superscript short dash denotes function in Laplace domain. Conversely, the inverse 

Laplace transform is defined as 
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                     (37) 

According to the cantilever boundary conditions (see Fig. 2), we have 

0    ,
00 

 xx w0e                             (38) 

By Laplace transform (36) and boundary conditions (38), governing differential equations (28) 

can be transformed into 
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where 

[c1  c2  c3  c4  c5  c6]=   000                
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Applying boundary conditions (38) to Eq. (35), it reduces to 
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With the help of Eq. (38) and (41), Eq. (29) can be transformed into Eq. (42) by Eq. (36) 
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Straightforward, Eq. (39) can be rewritten as 
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in which I is a 4th order identity matrix, and Ω=[1  0]. 

Thus, Eq. (42) can be rewritten as 
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where [ ][ ]
T

2 1 2 3 4 1 0 0 0 0 1g g g g=T . 

Combining Eqs. (43) and (45), we have equation 
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(48) 

and 

R=[0   0   0   0   0   q/s]
T                                    

(49) 

By inverse Laplace transform, Eq. (46) can be inversed into the following set of equations 

[uc0  θc   us0  θs  w]=[Φ1C+r1  Φ2C+r2  Φ3C+r3  Φ4C+r4  Φ5C+r5]      (50) 

where 55
11

1
1 )/(  .,4 ,3 ,2 ,1 ,)(  ,)( rsLlLrL sllsls    ΦQ  and 55

1 )/( ΦQ  sLs . 

The coefficient vector C can be determined from six boundary conditions at x=L, where uc0, c, 

us0, s, w and w′ are free. There are five boundary conditions from Eq. (31) can be expressed in 

terms of vector C as 

K3C=Γ1                                                    (51) 

where  TTTTTT
54321113             ΦΦΦΦΦDK  and  54321111             rrrrr  D . 

Similarly, by Eqs. (32) and (50), the sixth boundary condition is determined as 

4 2=K C Γ                                 (52) 

where 

   TTTTTTTTTTTT
543215254321514                         ΦΦΦΦΦVΦΦΦΦΦVK        (53) 

and 

   TT
rrrrrrrrrr 543215254321512                          VV                 (54) 

By merging Eqs. (51) and (52), C can be solved as 

Lx 



















   ,
2

1

1

4

3

Γ

Γ

K

K
C                            (55) 

Consequently, the exact analytical solutions are obtained as Eq. (50) and (55). Although the 

above formulation is based on the clamped-free boundary conditions of the composite beams, the 

present solving method is general and can be applied to composite beams with arbitrary 

combinations of boundary conditions. When analyzing composite beams with other boundary 

conditions, due to the boundary conditions derived by variational principle (see Eq. (31) and (32)), 

there are always six boundary conditions can be obtained at x=0, and the other six boundary 

conditions at the point x=L. 

 

 

4. Finite element method 
 

Eq. (27) indicates that w has the highest derivative order of two, and that of the rest basic 

unknowns is one. In order to make sure that all the elements in vector e has interpolation order at 

least two, a finite element of length L (see Fig. 3) with three nodes is formulated, using Lagrange 

mixed with Hermite interpolation bases. 
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Fig. 3 Finite element of higher-order shear deformable composite beams 

 

 

For uc0, c, us0 and s, Lagrange bases of node x=0, L/2 and L are constructed as 

1 2 32 2 2

( 2 )( ) 4( ) (2 )
, ,N N N

L L
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= =
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where c0iu , s0iu , θci and θsi denote the value of c0u , s0u , θc and θs at node i (see Fig. 3). 

For w and w′, Hermite bases are formulated as 
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kkkkkkkk wHwHwwHwHw              (59) 

where wk and w′k (k=1, 2, 3) are the nodal values of w and w′ respectively, as is shown in Fig. 3. 

Thus, a higher order finite element with three nodes is derived. And the vector of dofs for the 

entire element is defined as 

δe=[Ψ1  Ψ2  Ψ3]
T                                              

(60) 

in which the nodal dof vector is  

With the help of Eq. (57) and (59), the basic unknowns can be approximated as 

uc0≈Nuc0δe,  θc≈Nθcδe,  us0≈Nus0δe,  θs≈Nθsδe,  w≈Nwδe              (61) 

where Nuc0, Nθc, Nus0, Nθs and Nw denote row vectors of shape functions. 

Using Eq. (61), the total potential energy of the structure formulated in Eq. (27) can be written 

as 

dxqdxkdx e

L

ecs
T
cs

T
ecs

L

e
TT

e

L

δNδNNδδDNNδ
T
w

000 2

1

2

1
               (62) 

where 
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                     (64) 

According to the principle of minimum potential energy, we have 

 0NδNNδDNN 
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which can be expressed in form of standard finite element discrete equations 

e e e=K δ F                                 (66) 

where 

     
xqxkx

L

cs

LL

d   ,dd T
w

0
ecs

T
cs

0

T

0
e NFNNDNNK   

 
(67) 

After assembly of matrices Ke and Fe, the global finite element equations can be described as 

      =Kδ F  (68) 

where K and F are the global stiffness matrix and global load vector. 

As it can be seen from Fig. 2(a), the essential boundary conditions of a cantilever can be 

imposed on Eq. (68), and subsequently solved by the numerical method. 

In the structural analyses and design, the internal force analyses of composite beams have been 

paid much attention, which will also be took into account in the following sections of this paper. 

The internal forces are defined herein as 

     sss
A

sccc
A

c AyMAyM
sc

d   ,d     (69) 

     
ss

A
scc

A
c AFAF

sc

d   ,d   
 

(70) 

where Mc and Ms denote the bending moments of layer c and s, respectively; Fc and Fs denote the 

axial forces of layer c and s, respectively. 

 

 

5. Numerical results and analyses 
 

5.1 Verification 
 

To verify the solutions obtained by the exact and finite element methods in this paper, two 

examples for comparison have been conducted with the help of solutions of Xu and Wang (2012), 

Xu and Wu (2007), Schnabl et al. (2007b). In their models, each sub-element of the two-layer 

composite beams was described by Timoshenko or Euler-Bernoulli beam theory. 

 
5.1.1 Numerical example 1 
For the sake of comparison, the geometric and material properties herein used are the same as 
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those of Xu and Wang (2012) (see Fig. 4), where the Young‟s moduli are Ec=12 GPa and Es=8 

GPa; the Poisson's ratios are c =0.3 and s=0.2 for layer c and s respectively; the stiffness of shear 

connectors is kcs=50 MPa; the overall length of the beam is L=4 m; the uniformly distributed load 

is q=1 kN/m. With the aim of examining the reliability of the proposed FEM, we mesh the entire 

span of cantilever composite beams into three groups: FEM (1), FEM (2) and FEM (3) which are 

meshed by one, two, or ten even length elements respectively. According to the present exact 

solving procedure and the aforementioned structural parameters, the exact solution for deflection is 

obtained in Eq. (71), from which the exact solutions in Table 1 are evaluated. Table 1 apparently 

shows that the analytical deflections of cantilever composite beams based on the present beam 

theory are stably larger than those based on the theory of Xu and Wang (2012) who imposed an 

extra constraint that each sub-element has the same shearing strain, though the Timoshenko 

kinematics was still applied to each layer of the composite beams. This may be explained by the 

fact that the extra constraint stiffens the cantilever, as a result, some smaller deflections may be 

observed. Furthermore, in this table, the rapid convergence of finite element solutions to the exact 

solutions can be observed as the meshing refines from FEM (1) to (3), which, to some extent, 

verifies the correctness and reliability of the proposed FE formulation and the program 

implemented. 

xxxxw 10162.20232.233676.2114 e14120.2e1073655.2e1033642.214423.2()(    

3423210162.25 10)1094444.611111.109012.661233.4e1067984.5   xxxxx  (71) 

In order to investigate the shear effects, the evolution of the maximum deflection of a cantilever 

with a variation of beam length from 0.8 m to 4.0 m is shown in Table 2, where Xu and Wu (2007) 

(TBT), Xu and Wu (2007) (EBT) denote the solutions of Xu and Wu (2007) based on the 

Timoshenko and Euler-Bernoulli beam theories respectively. Similar to the case of Table 1, the 

 

 
Table 1 Comparison among numerical results of literature and the present [mm] 

References 
x [m] 

1.00 2.00 3.00 4.00 

Present exact solutions 7.778804 23.69896 42.16388 60.66850 

Present FEM (1) — 21.30830 — 59.87460 

Present FEM (2) 7.402415 23.60789 41.90751 60.49662 

Present FEM (3) 7.776838 23.69717 42.16194 60.66666 

Xu and Wang (2012) 7.619002 23.54768 42.06997 60.35714 

 
Table 2 Maximum deflection of cantilever with different L/H [mm] 

References 
L/H 

20 10 5 4 

Present exact solution 60.6685 4.8150 0.4580 0.2173 

Present FEM (1) 59.8746 4.7190 0.4512 0.2147 

Present FEM (2) 60.4966 4.8025 0.4571 0.2169 

Present FEM (3) 60.6666 4.8148 0.4579 0.2172 

Xu and Wu (2007) (TBT) 60.5534 4.7876 0.4516 0.2133 

Xu and Wu (2007) (EBT) 60.4514 4.7621 0.4452 0.2092 
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Fig. 4 Geometric parameters used in Xu and Wu 

(2007), Xu and Wang (2012) and the present 

Fig. 5 Relative errors of Xu and Wu (2007) to 

the present HBT model 
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(a) A simply supported composite beam profile (b) Cross section dimensions 

Fig. 6 Computational model used in Schnabl et al. (2007b) and the present model 

 

 

deflections computed based on the HBT are again larger than those based on Timoshenko or 

Euler-Bernoulli beam theories. Further on, Fig. 5 is given to visualize the relative errors of Xu and 

Wu (2007) to the present higher order composite beams. The relative error of the results based on 

TBT to those based on HBT is defined as (wHBT−wTBT)/wHBT and that for EBT is defined as 

(wHBT−wEBT)/wHBT, where wHBT , wTBT and wEBT indicate the deflection resulting from the present 

HBT, TBT and EBT respectively. It clearly illustrates that shear effects intensify with the decrease 

of slenderness ratio L/H; the errors due to the higher order shear deformation in conjunction with 

the extra constraint aforementioned are almost half the errors of Euler-Bernoulli beam theory. 

Moreover, the fact that the solutions of FEM (1), FEM (2) and FEM (3) in Table 2 converge 

rapidly toward the exact analytical solutions proves the reliability of the proposed FEM again. 

 
5.1.2 Numerical example 2 
As is observed in the last section that the extra constraint imposed by Xu and Wu (2007) on the 

shearing strain may cause an extra error, this numerical example aims to examine the 

performances of the Timoshenko composite beams without such extra constraint. The results of 

the present finite element program are compared with those of Schnabl et al. (2007b) who had 

proposed the exact analytical solutions for the problem this paper deals with, based on the TBT 

without the extra constraint Xu and Wu (2007) imposed. 

Fig. 6(a) shows a simply supported composite beam structure with uniform pressure q=50 
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kN/m acting on the top surface of the upper layer. The Young‟s moduli of layer c and s are both 12 

GPa; the shear moduli of layer c and s are both 750 MPa. The cross section, as is shown in Fig. 6 

(b), is composed of two rectangles, where they share the same width bc=bs=0.3 m, and hc=0.2 m, 

hs=0.3 m; the span of composite beams is L=5 m. The proposed FEM is used in this example, and 

the results are tabulated in Table 3. The relative errors between these models are also visualized in 

Fig. 7. In order to obtain the reliable FE solutions, there are 100 elements used in the FE model, 

which can be regarded as a well enough meshing compared with the case of FEM (3) used in the 

last section. It is suggested by Table 3 and Fig. 7 that the results of models based on TBT and HBT 

are quite close to each other, which reveals that the constraint of assuming equal shearing strain of 

layers has a crucial influence on the static mechanical behavior of composite beams. However, a 

serious relative error of the EBT model is observed, due to the complete neglect of the shear strain 

throughout each layer. And the errors basically increase with the increase of the interfacial 

stiffness. 

 

 
Table 3 Deflection at the mid-span of the two-layer composite beams for different values of interfacial 

spring stiffness 

kcs [MPa] 
Present Schnabl et al. 2007b 

HBT* [mm] HBT [mm] EBT* [mm] EBT [mm] TBT* [mm] TBT [mm] 

0.01 

12.56 

40.62 

10.85 

38.75 

12.52 

40.62 

0.1 40.57 38.69 40.57 

1 40.06 38.18 40.05 

10 35.74 33.91 35.73 

100 21.56 19.82 21.54 

500 14.95 13.25 14.94 

1000 13.81 12.3 13.79 

10000 12.69 10.98 12.67 

Note: columns titled with * denote that the models are with rigid connection between the layers. 
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Fig. 7 Relative errors of Schnabl et al. (2007b) to the present higher order beam theory (herein Inf 

indicate the case of full composite beams) 
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Fig. 8 Shear effects on deflection vs L/H for 

different kcs 
Fig. 9 Influence of L/H on c/s for different kcs 

 
 
5.2 Parametric study 
 

In this section, the proposed finite element model is used to conduct a parametric study in order 

to investigate the influence of material and geometric parameters including stiffness of the 

connectors, span-to-depth ratios and shear modulus factors, on the global structural behavior and 

stress distribution of the two-layer cantilever discussed in section 5.1.1. Hereafter the basic 

parameters shown in Fig. 4 are still in use, i.e., the Young‟s moduli of layer c and s are Ec=12 GPa 

and Es=8 GPa, respectively; the shear moduli of layer c and s are Gc=4.6154 GPa and Gs=3.3333 

GPa, respectively; the dimensions of the cross section is assigned throughout this section as bc=0.3 

m, bs=0.05 m, hc=0.05 m and hs=0.15 m. The stiffness of the shear connectors is kcs=50 MPa, if the 

exact value of kcs isn‟t assigned in the following analyses; the span of the cantilever is determined 

by the span-to depth ratio L/H, which will be stated in the analyses. 

The shear effects of the two-layer composite beams have received much attention. As is 

observed in the Timoshenko composite beams by Schnabl et al. (2007a, b), the slenderness ratio 

L/H and the shear connectors‟ stiffness have a major influence on the shear effects. The main 

interest of Fig. 8 is also focused on the shear effects due to span-to-depth ratio L/H and stiffness of 

shear connectors kcs, where wPresent represents the deflection based on the present HBT; wEuler is 

approximated by amplifying the shear moduli by 10,000 times. Thus, the ratio of wPresent to wEuler 

indirectly indicates the shear effects on deflection. As it can be seen in Fig. 7, the ratio of 

wPresent/wEuler decreases and approaches to one with the increase of span-to-depth ratio L/H, which 

indicates that the shear effects decrease on the deflection as the composite beams get more slender. 

Moreover, shear effects are to intensify as the shear connectors become stiffer until it reaches some 

large value, for example, when kcs approaches to 1.6×10
6
 MPa shear effects approach to the 

maximum. 

Fig. 9 is to illustrate the evolution of cross-sectional rotation ratio c/s with the variation of 

L/H for different kcs. It can be seen from both Fig. 9(a) and (b) that c/s converges to 1 as the L/H 

increases, which illustrates that c and s approach to each other when the cantilever get more 

slender. This also imply that the constraint of assuming c=s may not fit well when the beams are 

deep. Not only the slenderness ratio L/H affects the c/s, stiffness of shear connectors kcs also  
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Fig. 10 c-to-s ratio vs. n for different kcs, with 

q = 1 kN/m and L/H = 3 

Fig. 11 Influence of stiffness of shear connectors 

on deflection, with q = 1 kN/m and L/H = 3 
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Fig. 12 Influence of stiffness of shear 

connectors on interfacial slip, with q=1 

kN/m and L/H=3 

Fig. 13 Influence of stiffness of shear connectors 

on bending moment of each layer, with q=1 kN/m 

and L/H=3 

 

 

sways the ratio of c/s. Fig. 9(a) and (b) show that the rigidity of shear connectors tends to make 

c/s increase as the kcs increases when kcs is small (e.g., kcs<90 MPa in this example), on the 

contrary, c/s tends to decrease if kcs is large (e.g., kcs>400 MPa in this example). 

Fig. 10 (a) and (b) are devoted to studying the influence of shear modulus factor n and stiffness  

of shear connectors on c/s. Herein n is defined as sscc GGGGn /
~

/
~

 , where cG
~

 and sG
~

 

are  

shear moduli used in Fig. 10 for layer c and s, respectively; the values of Gc and Gs are shown 

in Fig. 4. It can be observed that c/s converges to 1 with the increase of n, and the stiffness of 

shear connectors has similar effects to those shown in Fig. 9 (a) and (b). These phenomena again 

demonstrate that it may not be suitable to assume c=s, when n has small value and shear 

connectors are rigid. 

The effects of shear connectors on the deflections are presented in Fig. 11. As expected, the 

deflections decrease with an increasing stiffness of connectors kcs. Exactly, when kcs increases from 

0 MPa to 1.57×10
7
 MPa, the deflections drop by 256% at the free end of the cantilever. Likewise,  
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Fig. 14 Influence of stiffness of shear connectors on 

axial force of each layer, with q=1 kN/m and L/H=3 

Fig. 15 Normal stresses for different kcs, with 

q=1 kN/m and L/H=3 
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Fig. 16 Shearing stress along the beam length for different kcs, with q=1 kN/m and L/H=3 

 

 

Fig. 12 illustrates that the interfacial slip decreases from maximum value to the vicinity of zero as 

kcs increases from 0 MPa to 1.5×10
7
 MPa. 

Fig. 13 depicts the distribution of bending moments of each sub-element along the beam axial. 

It is observed that with the decrease of kcs, bending moment Mc and Ms are increasing at the fixed 

end of composite beams, until kcs reaches the relative large value 1.5×10
7
 MPa. Similarly, Fig. 14 

illustrates the distribution of axial force along the x axis. It is suggested that axial force of part c 

and s are symmetric along the x axis, thus the total axial force of the cross-section is zero, which 

meets the balance condition of the whole structure. It is noted that the axial force of each 

sub-element increases with an increasing kcs at fixed end of cantilever as kcs stiffens, until it 

reaches some large value (e.g., 1.5×10
7
 MPa in this case). Moreover, axial force will vanish if kcs 

drops to zero, which just proves that there is no axial force of single cantilever subjected to the 

uniform distributed load. 
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Fig. 15 shows that normal stress over beam depth distributes nonlinearly, unlike the case of 

beams formulated by traditional EBT or TBT. It should be noted that normal stress based on 

Euler-Bernoulli or Timoshenko beam theory will distribute linearly over the section, as they 

conform to planar section hypothesis. In addition, Fig. 15 represents that the normal stress in the 

vicinity of the interface decreases with the increase of kcs, until kcs achieves some large value, i.e.  

it approaches to the case of full composite beams. Consequently, it may be inferred that stiff 

connectors could probably lower the peak normal stress of the whole cross section. 

As a supplement to stress analysis, Fig. 16 aims to investigate the interfacial shear stress at the 

top edge of section s. It is clear to see that the peak shear stresses along the axial direction are 

increasing as shear connectors get stiffer. As a result, the phenomenon on stress distribution may 

be utilized in the design of composite beams. 

 

 

6. Conclusions 
 

In this paper, a new mathematical model for two-layer partial interaction composite beams has 

been built, where higher order shear deformation of each sub-element is incorporated in the range 

of linear elastic and small deformation. And the governing differential equations and boundary 

conditions are formulated according to the principle of minimum potential energy. 

The Laplace transform technique is first applied to the static analysis of a cantilever composite 

beam subjected to uniformly distributed load, and exact solutions are obtained. Besides, the finite 

element for the analyses is also formulated and implemented. As a result, the solutions of these 

two methods are in good agreement with each other, which verifies the effectiveness and reliability 

of the presented methods. More than that, comparison with composite beams based on the classical 

beam theories is also presented in Tables 1-3, and a brief error analysis has also been carried out in 

Figs. 5 and 7. 

At the end of the paper, the influences of the stiffness of interfacial connectors, span-to-depth 

ratio and shear modulus factor n, on the deflection, stress distribution and internal force of a 

composite cantilever are examined using the finite element program implemented. Based on the 

numerical examples and parametric analyses undertaken, the following main conclusions can be 

drawn: 

• A novel exact analytical method based on the Laplace transform is proposed and verified 

through the comparisons with the results based on classical beam theories. 

• The proposed two-layer composite beam finite element converges at a very high rate to the 

results from the proposed exact method. 

• The slip stiffness and span-to-depth ratio may bring about remarkable shear effects on 

deflection of cantilever composite beams using the present HBT, especially when L/H is small or 

kcs is large. 

• The assumption of equal shearing strain of each composite layer may not hold well in a case 

of thick composite beams. 

• The nonlinear distribution of normal stresses over the beam depth observed in the composite 

beams is different from the one based on the traditional beam theories. Peak normal stresses tend 

to decrease with the increase of kcs, while an increase of the maximum shear stress on top edge of 

section s along longitudinal direction of cantilever can be achieved with an increasing kcs. 
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