
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 53, No. 3 (2015) 497-517 

DOI: http://dx.doi.org/10.12989/sem.2015.53.3.497                                                                                       497 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Temperature-dependent nonlocal nonlinear buckling analysis 
of functionally graded SWCNT-reinforced microplates 

embedded in an orthotropic elastomeric medium 
 

Ali Akbar Mosallaie Barzoki

, Abbas Loghman and Ali Ghorbanpour Arani 

 
Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran 

 
(Received July 30, 2014, Revised October 15, 2014, Accepted October 29, 2014) 

 
Abstract.  In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-
dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric 
medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in 
which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the 
carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and 
functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size 
effects of microplate are considered based on Eringen’s nonlocal theory. Based on orthotropic Mindlin plate 
theory along with von Kármán geometric nonlinearity and Hamilton's principle, the governing equations are 
derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of 
system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, 
distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation 
of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the 
microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those 
distributed nearby the mid-plane for increasing the buckling load. 
 

Keywords:  nonlinear buckling; temperature-dependent; nanocomposite microplates; orthotropic 

elastomeric medium; FG materials 

 
 
1. Introduction 
 

Recently, due to the advantageous mechanical, physical and electronic properties of CNTs 

(Salvetat-Delmotte and Rubio 2002), these advanced materials are considered to be excellent 

candidates for the reinforcement of polymer composites (Esawi and Farag 2007, Fiedler et al. 

2006). In actual structural applications, CNTRC, as a type of advanced material, have a wide 

variety of applications in microelectromechanical systems (MEMS) and nanoelectromechanical 

systems (NEMS). Hence, knowledge of the buckling characteristics of these structures is 

important. The traditional approach to fabricating nanocomposites implies that the nanotube is 

distributed either uniformly or randomly such that the resulting mechanical, thermal, or physical 

properties do not vary spatially at the macroscopic level. Functionally graded materials (FGMs) 
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are a new generation of composite materials in which the microstructural details are spatially 

varied through nonuniform distribution of the reinforcement phase. The concept of FGM can be 

utilized for the management of a material’s microstructure so that the bending behavior of a plate 

structure made of such material can be improved. These materials have found a wide range of 

applications in many industries (Shahba and Rajasekaran 2012, Wattanasakulpong et al. 2012). 

The problem of buckling of thick plates has attracted considerable attention in recent years. 

Akhavan et al. (2009a, b) introduced exact solutions for the buckling analysis of rectangular 

Mindlin plates subjected to uniformly and linearly distributed in-plane loading on two opposite 

edges simply supported resting on elastic foundation. Flexural stability of a homogeneous plate 

compressed in its plane and lying on an elastic foundation was studied by Morozov and Tovstik 

(2010). Kim (2004) investigated the stability and dynamic displacement response of an infinite 

thin plate resting on a Winkler-type or a two-parameter elastic foundation when the system is 

subjected to in-plane static compressive forces. Postbuckling, nonlinear bending and nonlinear 

vibration analyses for SWCNTs resting on a two-parameter elastomeric foundation in thermal 

environments were presented by Shen and Zhang (2011).  

None of the above researchers have considered nanocomposite structures. Reddy (1984) 

studied the effect of transverse shear deformation on deflection and stresses of laminated 

composite plates subjected to uniformly distributed load using finite element analyses. Analysis of 

composite plates using higher-order shear deformation theory and a finite point formulation based 

on the multiquadric radial basis function method was presented by Ferreira et al. (2003). 

Swaminathan and Ragounadin (2004) applied an analytical solution for static analyses of 

antisymmetric angle-ply composite and sandwich plates. An investigation on the nonlinear 

bending of simply supported, functionally graded nanocomposite plates reinforced by SWCNTs 

subjected to a transverse uniform or sinusoidal load in thermal environments was investigated by 

Shen (2009). Baltacıoğlu et al. (2011) presented the nonlinear static analysis of a rectangular 

laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic 

nonlinearity. They used the first-order shear deformation theory for plate formulation and 

investigated the effects of foundation and geometric parameters of plates on nonlinear deflections. 

The mechanical buckling of a functionally graded nanocomposite rectangular plate reinforced by 

aligned and straight single-walled carbon nanotubes (SWCNTs) subjected to uniaxial and biaxial 

in-plane loadings was investigated by Jafari Mehrabadi et al. (2012). 

None of the above studies have considered microplate nanocomposites. In micro scale, small 

size effects are important. Nonlocal elasticity theory was initiated in the papers of Eringen (1972). 

He regarded the stress state at a given point as a function of the strain states of all points in the 

body, while the local continuum mechanics assumes that the stress state at a given point depends 

uniquely on the strain state at the same point. Thermal buckling characteristics of rectangular 

flexural microplates subjected to uniform temperature were investigated by Farahmand et al. 

(2011) using higher continuity P-version finite element framework. Ahmadi et al. (2012) 

investigated elastic buckling of rectangular flexural micro plates using a higher continuity P-

version finite-element framework based on Galerkin formulation.  

In the present study, nonlocal nonlinear buckling behavior of polymeric temperature-dependent 

microplates reinforced by SWCNTs resting on orthotropic temperature-dependent elastomeric 

medium is investigated. For CNTRC plate, UD and three types of FG distribution patterns of 

SWCNT reinforcements are assumed. In order to obtain the equivalent material properties of FG-

CNTRC plate, the rule of mixture is used. The nonlinear governing equations are obtained based 

on Hamilton's principal along with orthotropic Mindlin plate theory. GDQM is applied for 
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nonlinear buckling load of the FG-CNTRC polymeric microplate. The effects of the volume 

fractions of carbon nanotubes, elastomeric medium, aspect ratio, temperature, boundary 

conditions, orientation of foundation orthtotropy direction and applied force on the buckling load 

of the FG-CNTRC polymeric plate are discussed in detail. 

 

 

2. Formulation 
 

2.1 CNT-reinforced composite polymeric microplate 
 

As shown in Fig. 1, a CNTRC microplate with length Lx, width Ly and thickness h is 

considered. The CNTRC plate is surrounded by an orthotropic elastomeric temperature-dependent 

medium which is simulated by KW, Gξ and Gη correspond Winkler foundation parameter, shear 

foundation parameters in ξ and η directions, respectively. Four types of CNTRC plates namely as 

uniform distribution (UD) along with three types of FG distributions (FGA, FGO, FGX) of CNTs 

along the thickness direction of a CNTRC plate is considered. In order to obtain the equivalent 

material properties two-phase Nanocomposites (i.e., polymer as matrix and CNT as reinforcer), the 

rule of mixture (Esawi and Farag 2007) is applied. According to mixture rule, the effective Young 

and shear moduli of CNTRC plate can be written as 
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where Er11, Er22 and Gr12 indicate the Young’s moduli and shear modulus of SWCNTs, 

respectively, and Em, Gm represent the corresponding properties of the isotropic matrix. The scale-

dependent material properties, ηj (j=1, 2, 3), can be calculated by matching the effective properties 

of CNTRC obtained from the MD simulations with those from the rule of mixture. VCNT and Vm are 

the volume fractions of the CNTs and matrix, respectively, which the sum of them equals to unity.  

The uniform and three types of FG distributions of the CNTs along the thickness direction of 

the CNTRC plates take the following forms 
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Fig. 1 Configurations of the SWCNT distribution in a CNTRC plates. (a) UD CNTRC plate; (b) FG-A 

CNTRC plate; (c) FG-O CNTRC plate; (d) FG-X CNTRC plate 
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where wCNT, ρm and ρCNT are the mass fraction of the CNT, the densities of the matrix and CNT, 

respectively. Similarly, the thermal expansion coefficients in the longitudinal and transverse 

directions respectively (α11 and α22), Poisson’s ratio (v11) and the density (ρ) of the CNTRC plates 

can be determined as 

     ,,12
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      ,,,
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where vr12 and vm are Poisson’s ratios of the CNT and matrix, respectively. In addition, αr11, αr22 

and αm are the thermal expansion coefficients of the CNT and matrix, respectively. It should be 

noted that v12 is assumed as constant over the thickness of the FG-CNTRC plates. 

 

2.2 Orthotropic stress-strain relations 
 

In the Eringen's nonlocal elasticity model, the stress state at a reference point in the body is 

regarded to be dependent not only on the strain state at this point but also on the strain states at all 

of the points throughout the body. The basic equations for homogeneous, isotropic and nonlocal 

elastic solid with zero body forces are given by Eringen (1972) 
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where, Cijkl is the elastic module tensor of classical (local) isotropic elasticity; σij and εij are stress 

and strain tensors, respectively, and ui is displacement vector. α(|x−x′|, τ) is the nonlocal modulus. 

|x−x′| is the Euclidean distance, and τ=e0a/l is defined that l is the external characteristic length, e0 

denotes a constant appropriate to each material, and a is an internal characteristic length of the 

material (e.g., length of C-C bond, lattice spacing, granular distance). Consequently, e0a is a 

constant parameter which is obtained with molecular dynamics, experimental results, experimental 

studies and molecular structure mechanics. The constitutive equation of the nonlocal elasticity can 

be written as 
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where the parameter e0a denotes the small scale effect on the response of structures in nanosize,  

and 2  is the Laplace operator in the above equation. 

The constitutive equation for stresses σ and strains ε matrix in thermal environment may be 

written as follows  
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where Cij(i,j=1,2,...,6) denotes temperature-dependent elastic coefficients which can be expressed 

as 

)1/( ),1/( 211212121221121111 vvEvCvvEC   

)1/( 21122222 vvEC   

126613552344  , , GCGCGC   

(11) 

Noted that Cij and α11, α22 may be obtained using rule of mixture (i.e., Eqs. (1)-(7)). 

 

2.3 Nonlinear Mindlin plate theory 
 

Based on Mindlin plate theory, the displacement field can be expressed as (Reddy 1984) 

     
),,,(),,(),,,( tyxztyxutzyxu xx   

(12) 
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where (ux, ux, uz) denote the displacement components at an arbitrary point (x,y,z) in the plate, and 

(u,v,w) are the displacement of a material point at (x,y) on the mid-plane (i.e., z=0) of the plate 

along the x-, y-, and z-directions, respectively; ψx(x,y)
 
and ψy(x,y)are the rotations of the normal to 

the mid-plane about x- and y- directions, respectively.  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 
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where (εxx, εyy)
 
are the normal strain components and (γyz, γxz, γxy) are the shear strain components. 
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2.4 Energy method 
 

The total potential energy, V, of the CNTRC plate is the sum of strain energy, U and the work 

done by the elasomeric medium, W. 

 

2.4.1 Potential energy 
The strain energy can be written as 
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Combining of Eqs. (10)- (17) yields 
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where the stress resultant-displacement relations can be written as 
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In which K is shear correction coefficient.  

 

2.4.2 External work 
The external work due to orthotropic temperature-dependent elastomeric medium and a 

uniform load on upper surface of the CNTRC plate can be written as 
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where P and q are related to orthotropic elastomeric medium and distributed load on upper surface 

of the plate, respectively. Orthotropic elastomeric foundation can be expressed as (Shen 2009, 

Kutlu and Omurtag 2012) 
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where angle θ describes the local ξ direction of orthotropic foundation with respect to the global x-
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axis of the plate. Since the elastomeric medium is relatively soft, the foundation stiffness k may be 

expressed by 

         ,2exp5625
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where Es, vs, Hs are Young’s modulus, Poisson’s ratio and depth of the foundation, respectively. In 

this paper, Es is assumed to be temperature-dependent while vs is assumed to be a constant 

(Swaminathan and Ragounadin 2004). 

 

2.5 Governing equations 
 

The governing equations can be derived by Hamilton's principal as follows 
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Substituting Eqs. (10) and (13)-(17) into Eqs. (20) and (21), the stress resultant-displacement 

relations can be obtained as follow 
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where  
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Furthermore,  T
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T

xx MM ,  are thermal force and thermal moment resultants, 

respectively, and are given by 
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Substituting Eqs. (35)-(41) into Eqs. (30)-(34), the governing equations can be written as 

follow 
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(46) 

The CNTRC micro-plates are considered with three kinds of boundary conditions: all edges 

simply supported (SSSS) or clamped (CCCC), and two opposite edges simply supported and the 

other two clamped (SCSC). The boundary conditions are given as follows: 

SSSS 

     

,0,0  yx wvLx 

 

(47) 

     

.0,0  xy wuLy 

 

(48) 

CCCC 
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(49) 
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(50) 

SCSC 
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(52) 
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3. GDQM 
 

There is a lot of numerical method to solve the initial-and/or boundary value problems which 

occur in engineering domain. Some of the common numerical methods are FEM, Galerkin 

method, finite difference method (FDM), GDQM and etc. FEM and FDM for higher-order modes 

require to a great number of grid points. Therefore these solution methods for all these points need 

to more CPU time, while the GDQM has several benefits that are listed as below (Chen 1996, Shu 

1999, Civalek 2004): 

1. GDQM is a powerful method which can be used to solve numerical problems in the analysis 

of structural and dynamical systems. 

2. The accuracy and convergence of the GDQM is higher than FEM. 

3. GDQM is an accurate method for solution of nonlinear differential equations in 

approximation of the derivatives. 

4. This method can easily and exactly satisfy a variety of boundary conditions and require 

much less formulation and programming effort. 

5. Recently, GDQM has been extended to handle irregular shaped. 

Due to the above striking merits of the GDQM, in recent years the method has become 

increasingly popular in the numerical solution of problems in engineering and physical science. In 

this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 

special problem and only depend on the grid spacing. In other words, the partial derivatives of a 

function (say w here) are approximated with respect to specific variables (say x and y), at a 

discontinuous point in a defined domain (0<x<Lx and 0<y<Ly) as a set of linear weighting 

coefficients and the amount represented by the function itself at that point and other points 

throughout the domain. The approximation of the n
th
 and m

th 
derivatives function with respect to x 

and y, respectively may be expressed in general form as (Civalek 2004) 
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(53) 

where Nx and Ny, denotes the number of points in x and y directions, f(x,y) is the function and Aik, 

Bjl are the weighting coefficients defined as Civalek (2004) 
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and fourth derivatives are determined via 

matrix multiplication 
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(56) 

Using the following rule, the distribution of grid points in domain is calculated as (Civalek 

2004) 
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(57) 

Substituting Eq. (53) into the governing equations turns it into a set of algebraic equations 

expressed as 
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Finally, the governing equations (i.e., Eqs. (58)-(62)) in matrix form can be expressed as  
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where [KL] and [KNL] are respectively, linear and nonlinear coefficients which can be defined as 
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The above nonlinear equation can now be solved using a direct iterative process as follows: 

- First, nonlinearity is ignored by taking KNL=0 to solve Eq. (63). This yields the linear 

buckling load and deflection. The deflection is then scaled up. 

- Using linear deflection, [KNL] could be evaluated. The problem is then solved by substituting 

[KNL] into Eq. (63). This would give the nonlinear deflection and buckling load.  

- The new nonlinear deflection is scaled up again and the above procedure is repeated 

iteratively until the difference between deflection values from the two subsequent iterations 

becomes less than 0.01%. 

 

 

4. Numerical results and discussion 
 

A computer program is prepared for the numerical solution of nonlinear buckling of CNTRC 

plates resting on an orthotropic elastomeric temperature-dependent foundation. Here, Poly methyl 

methacrylate (PMMA) is selected for the matrix which have constant Poisson’s ratios of vm=0.34, 

temperature-dependent thermal coefficient of αm=(1+0.0005∆T)×10
-6

/K, and temperature-

dependent Young moduli of Em=(3.52−0.0034T)GPa in which T=T0+∆T and T0=300K (room 

temperature). In addition, (10, 10) SWCNTs are selected as reinforcements with the 
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Table 1 Temperature-dependent material properties of (10, 10) SWCNT (L=9.26 nm, R=0.68 nm, h=0.067  

nm, CNT
12 =0.175) 

Temperature (K) )(11 TPaECNT  )(22 TPaECNT  )(12 TPaGCNT  )/10( 6

12 KCNT   )/10( 6

22 KCNT   

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 

 
Table 2 Dimensionless buckling load parameter for various types of CNTRC plates and different loading type 

Mode Loading type 
Type of CNTRC, Lei et al. (2013) Type of CNTRC, Present work 

UD FGO FGX UD FGO FGX 

1 

χ1=−1, χ2=0 30.9076 18.7534 40.8005 30.9075 18.7531 40.8003 

χ1=−1, χ2=−1 9.3805 6.9161 11.4231 9.3804 6.9157 11.4229 

χ1=−1, χ2=1 89.9909 63.4215 104.9802 89.9906 63.4208 104.9800 

2 

χ1=−1, χ2=0 46.9779 34.4733 57.3978 46.9768 34.4727 57.3969 

χ1=−1, χ2=−1 10.3981 8.9197 11.6524 10.3977 8.9189 11.6519 

χ1=−1, χ2=1 101.0670 81.0655 108.9411 101.0661 81.0644 108.9402 

3 

χ1=−1, χ2=0 69.3855 48.4971 82.0077 69.3846 48.4961 82.0066 

χ1=−1, χ2=−1 14.0470 9.3380 15.0540 14.0468 9.3375 15.0534 

χ1=−1, χ2=1 107.7075 92.2314 113.8593 107.7066 92.2301 113.8581 

 

 

material properties listed in Table 1. The elastomeric medium is made of Poly dimethylsiloxane 

(PDMS) which the temperature-dependent material properties of which are assumed to be vs=0.48 

and Es=(3.22−0.0034T)GPa in which T=T0+∆T and T0=300K (room temperature) (Shen 2009).  

 

4.1 Validation 
 

To demonstrate the validity of this work, present results are compared with those reported by 

Lei et al. (2013). For this purpose, ignoring the nonlinear terms in governing equations, nonlocal 

parameter and elastomeric medium, the non-dimensional buckling load parameter (i.e. ,  
32 / hELNN mycrcr  ) of the CNTRC plate with simply supported boundary condition is shown in  

Table 2 considering material properties the same as Lei et al. (2013). Three loading types are 

considered namely as uniaxial compression (i.e., χ1=−1, χ2=0), biaxial compression (i.e., χ1=−1, 

χ2=−1) and biaxial compression and tension (i.e., χ1=−1, χ2=1). As can be seen, present results 

obtained by GDQM are in good agreement with those reported by Lei et al. (2013) based on the 

element-free kp-Ritz method. It is noted that a little difference between the results of Lei et al. 

(2013) and present work is due to the different methods for solution. 

 

4.2 Nonlinear buckling of CNTRC microplate 
 

In the following figures, dimensionless buckling load of CNT RC microplate (i.e., 

),(/ yxihENN m
M
ii  ) in the case of biaxial compression is plotted against nonlocal parameter  

for different parameters. 

The convergence and accuracy of the DQM in evaluating the nonlinear buckling load of the 

CNTRC micro plates is shown in Fig. 2. The results are prepared for different values of the DQM  
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Fig. 2 Convergence and accuracy of DQM 
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Fig. 3 Effects of CNT volume fraction on the nonlinear buckling behavior of CNTRC plates 

 

 

grid points. Fast rate of convergence of the method are quite evident and it is found that fifteen DQ 

grid points can yield accurate results.  

Fig. 3 illustrates the effect of the SWCNT volume fraction on the buckling load of the CNTRC 

microplate versus nonlocal parameter. As can be seen increasing the nonlocal parameter decreases 

the buckling load. This is due to the fact that the increase of nonlocal parameter decreases the 

interaction force between microplate atoms, and that leads to a softer structure. It is also found that 

increasing the CNT volume fraction increases the buckling load of the CNTRC microplate. This is 

due to the fact that the increase of CNT volume fraction leads to a harder structure. Meanwhile, 

the effect of CNT volume fraction becomes more considerable at lower nonlocal parameters.  
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Fig. 4 Effects of elastomeric medium on the nonlinear buckling behavior of CNTRC plates 
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Fig. 5 Effects of orientation of foundation orthtotropy direction on the nonlinear buckling 

behavior of CNTRC plates 

 

 

The buckling load of the CNTRC microplate versus nonlocal parameter is demonstrated in Fig. 

4 for different elastomeric temperature-dependent mediums. In this figure, four cases are 

considered as follows 

Case 1: KW=0 N/m
3
, Gξ=0 N/m, Gη=0 N/m→indicating without elastomeric medium. 

Case 2: KW=41.4 N/m
3
, Gξ=0 N/m, Gη=0 N/m→indicating elastomeric Winkler medium. 

Case 3: KW=41.4 N/m
3
, Gξ=4.14 N/m, Gη=4.14 N/m→indicating elastomeric Pasternak 

medium. 

Case 4: KW=41.4 N/m
3
, Gξ=41.4 N/m, Gη=4.14 N/m, θ=45°→indicating elastomeric orthotropic 

Pasternak medium. 

513



 

 

 

 

 

 

Ali Akbar Mosallaie Barzoki, Abbas Loghman and Ali Ghorbanpour Arani 

0 0.5 1 1.5 2 2.5
1

2

3

4

5

6

7

8

9

10

Nonlocal Parameter, e
0
a (nm)

D
im

en
si

o
n

le
ss

 B
u

ck
li

n
g

 L
o

ad

 

 

FGX

UD

FGA

FGO

 

Fig. 6 Effects of CNT distribution on the nonlinear buckling behavior of CNTRC plates 

 

 

As can be seen, considering elastomeric medium increases buckling load of the CNTRC 

microplate. It is due to the fact that considering elastomeric medium leads to stiffer structure. 

Furthermore, the effect of the elastomeric Pasternak-type is higher than the elastomeric Winkler-

type on the buckling load of the CNTRC microplate. It is perhaps due to the fact that the 

elastomeric Winkler-type is capable to describe just normal load of the elastomeric medium while 

the elastomeric Pasternak-type describes both transverse shear and normal loads of the elastomeric 

medium.  

The effect of the orientation of foundation orthtotropy direction on the buckling load of the 

CNTRC microplate versus nonlocal parameter is depicted in Fig. 5. Noted that in this figure, the 

foundation parameters are chosen as KW=41.4 N/m
3
, Gξ=41.4 N/m, and Gη=4.14 N/m. As can be 

seen, the buckling load of the CNTRC microplate decreases with increasing orientation of 

foundation orthtotropy direction. Meanwhile, the effect of orientation of foundation orthtotropy 

direction on the buckling of the CNTRC microplate becomes more prominent at lower nonlocal 

parameters.  

Fig. 6 illustrates the effect of SWCNT distribution in microplate on the buckling load of the 

CNTRC microplate versus nonlocal parameter. For the CNTRC microplate, UD and three types of 

FG distribution patterns of SWCNT reinforcements are assumed. It should be noted that the mass 

fraction (wCNT) of the UD and FG distribution of CNTs in polymer are considered equal for the 

purpose of comparisons. As can be seen, the buckling load of FGA- and FGO- CNTRC 

microplates are lower than the buckling load of UD-CNTRC plates while the FGX- CNTRC 

microplate have higher buckling load with respect to three other cases. It is due to the fact that the 

stiffness of CNTRC microplates changes with the form of CNT distribution in matrix. However, it 

can be concluded that SWCNT distribution close to top and bottom are more efficient than those 

distributed nearby the mid-plane for increasing the stiffness of plates.  

Fig. 7 shows the buckling load of the CNTRC microplate versus nonlocal parameter for 

different temperature gradients. The same as other figures, increasing the nonlocal parameter 

decreases the buckling load of the CNTRC microplate. It can be also found that the buckling load 

of the CNTRC microplate decreases with increasing temperature which is due to the higher 
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Fig. 7 Effects of temperature on the nonlinear buckling behavior of CNTRC plates 
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Fig. 8 Effects of slenderness ratio on the nonlinear buckling of CNTRC plates 

 

 

stiffness CNTRC microplate with lower temperature. 

The effect of the slenderness ratio on buckling load of the CNTRC microplate versus nonlocal 

parameter is depicted in Fig. 8. As can be seen, the buckling load of the CNTRC microplate 

decreases with increasing slenderness ratio. It is because that increasing slenderness ratio leads 

softer structure. Meanwhile, the effect of slenderness ratio on the buckling of the CNTRC 

microplate becomes more prominent at lower nonlocal parameters.  

    Fig. 9 shows the buckling load of the CNTRC microplate versus nonlocal parameter for 

different boundary conditions. It can be observed that the buckling load of microplate with CCCC 

boundary condition is greater than those of plates with SSSS boundary condition and also the 

buckling load of SCSC microplate is between the buckling load of microplate with the two other 
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Fig. 9 Effects of different boundary condition on the nonlinear buckling of CNTRC plates 

 

 

boundary conditions. This is due to the fact that the CNTRC microplate with CCCC boundary 

condition has higher stiffness with respect to other boundary conditions.   

  

 

5. Conclusions 
 

Nonlocal nonlinear buckling analysis of an embedded CNTRC microplate was studied in this 

paper based on orthotropic temperature-dependent Mindlin polymeric microplate and Eringen’s 

theories. CNT distributions in polymer were considered as UD, FGA, FGX and FGO. The rule of 

mixture was used for obtaining the material properties of FG-CNTRC plate. The FG-CNTRC was 

surrounded in an orthotropic temperature-dependent elastomeric medium. Using strain-

displacement relation, energy method and Hamilton's principle, the governing equations were 

derived in which the small scale effects are incorporated. In order to obtain the buckling load of 

the FG-CNTRC plate plate, GDQM was performed. The effects of the volume fractions of carbon 

nanotubes, elastomeric medium, aspect ratio, orientation of foundation orthtotropy direction, 

temperature and boundary conditions were considered. Results indicate that considering 

elastomeric medium increases buckling load of the FG-CNTRC microplate. Furthermore, the 

lowest and highest buckling load was respectively obtained for FGX- and FGO-CNTRC 

microplates in the case of constant slenderness ratio and SWCNT volume fraction.  
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