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Abstract.  This paper presents a numerical analysis of reinforced concrete slabs under missile impact 
loading. The specimen used for the numerical simulation was tested by the Technical Research Center of 
Finland. LS-DYNA, commercial available software, is used to analyze the model. The structural 
components of the reinforced concrete slab, missile, and their contacts are fully modeled. Included in the 
analysis is material nonlinearity considering damage and failure. The results of analysis are then verified 
with other research results. Parametric studies with different longitudinal rebar ratios, shear bar ratios, and 
concrete strengths are conducted to investigate their influences on the punching behavior of slabs under the 
impact of a missile. Finally, efficient designs are recommended. 
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1. Introduction 
 

The ability of reinforced concrete structures to protect against severe impact has become 

increasingly important to ensure public safety. For a better understanding of the behavior of 

reinforced concrete structures subjected to impact loading, several experimental studies have been 

carried out. Recent researches have focused on predicting the punching resistance of structures by 

measuring the local effects on the structures, such as the penetration depth, scabbing area, and 

perforation. 

A series of studies on reinforced concrete slabs with the dimensions of 2.1 m×2.1 m×0.25 m 

under missile impact loading have carried out. A medium-scaled impact test was designed by 

Lastunen et al. (2007). Several experiments on slabs with and without shear bars were performed 

by Saarenheimo et al. (2009), Vepsä et al. (2011) to investigate the punching resistance of the 

reinforced concrete slabs by missiles. 

Although the experimental approach can provide reliable results of slab behavior, it is 

expensive and time consuming. As finite element analysis has been a useful alternative, a number 

of numerical studies were carried out by Saarenheimo et al. (2009), Tuomala et al. (2010),  

Martin et al. (2012). The objective of their numerical simulation is to capture the response and  
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Table 4 Longitudinal rebar ratios for specimens in the first parameter study 

Specimen Diameter of rebar (mm) Area (m2) Ratio (%) 

LR-1 8 0.0000502 0.45 
LR-2 10 0.0000785 0.70 
LR-3 12 0.0001130 1.00 
LR-4 14 0.0001539 1.37 
LR-5 16 0.0002010 1.79 
LR-6 18 0.0002543 2.26 
LR-7 20 0.0003140 2.79 
LR-8 22 0.0003799 3.38 

 
Table 5 Shear bar ratios for specimens in the second parameter study 

Specimen Diameter of rebar (mm) Area (m2) Ratio (%) 

SR-1 8 0.0000502 0.62 
SR-2 10 0.0000785 0.97 
SR-3 12 0.0001130 1.40 
SR-4 14 0.0001539 1.90 
SR-5 16 0.0002010 2.48 

 
Table 6 Concrete compressive strengths for specimens in the third parameter study 

Specimen 
Compressive strength 

f’c (MPa) 

Tensile strength 
f’t (MPa) 

Elastic modulus 
E (MPa) 

CCS-1 40 2.50 22857 
CCS-2 50 2.90 28571 
CCS-3 60 3.10 31579 
CCS-4 70 3.20 35000 
CCS-5 80 3.40 36364 
CCS-6 90 3.50 39130 

 
Table 7 Concrete tensile strengths for specimens in the third parameter study 

Specimen 
Compressive strength 

f’c (MPa) 
Approximate equation 

Tensile strength 
f’t (MPa) 

CTS-1 

60 

'3 cf  1.93 

CTS-2 '4 cf  2.57 

CTS-3 '5 cf  3.22 

CTS-4 '6 cf  3.86 

CTS-5 '7 cf  4.50 

CTS-6 '8 cf  5.15 

 
 
The eight impact test specimens, as listed in Table 4, were investigated in the first parametric 

study. The specimens had different longitudinal rebar ratios of 0.45% to 3.38% as each direction. 
The material properties of slab, rebar, frame, and missile are listed in Table 1. Table 5 shows a list 
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of five test specimens with the different shear bar ratios of 0.62% to 2.48%. These test specimens 
were investigated in the second parametric study. The third parametric study investigated six 
specimens with different concrete compressive strengths of 40 MPa to 90 MPa as listed in Table 6. 
In the Table 7, the typical tensile strength ranges of concrete were calculated by f ’t=3(f ’c)

1/2 to 
f ’t=8(f ’c)

1/2 as presented by Nilson et al. (2010), where f ’c is expressed in psi units. The LR-2 
reinforcement of 10 mm diameter with 90 mm spacing was used in the slabs of Tables 5, 6, and 7. 

The analysis results of the distance travelled (the term “distance travelled” used in this study 
means the distance travelled by the missile head from 0 ms to 20 ms), scabbing area, and failure 
mode are summarized in Tables 8-11. The observed damage of the reinforced concrete slab is 
classified into the following five modes: 

- Fully Perforated (FP) Mode: The missile passed through the slab completely. 
- Partially Perforated (PP) Mode: The missile stopped at the back layer of the longitudinal 

rebar. 
 
 

Table 8 Analysis results of parameter studies of longitudinal rebar ratios 

Initial velocity of 
the missile 

Specimen 
Dis. travelled 

(m) 
Scabbing area 

(m2) 
Failure 
mode * 

70 m/s 

LR-1 0.138 0.000 PS 
LR-2 0.108 0.000 PS 
LR-3 0.104 0.000 PS 
LR-4 0.103 0.000 PS 
LR-5 0.094 0.000 P 
LR-6 0.093 0.000 P 
LR-7 0.088 0.000 P 
LR-8 0.086 0.000 P 

136 m/s 

LR-1 1.208 1.020 FP 
LR-2 1.052 1.246 FP 
LR-3 0.780 1.766 FP 
LR-4 0.420 2.834 PP 
LR-5 0.383 2.543 PP 
LR-6 0.362 2.111 PP 
LR-7 0.326 1.452 PP 
LR-8 0.312 0.916 PP 

190 m/s 

LR-1 2.280 0.785 FP 
LR-2 2.208 0.950 FP 
LR-3 2.131 1.246 FP 
LR-4 1.990 1.410 FP 
LR-5 1.836 1.910 FP 
LR-6 1.554 2.377 FP 
LR-7 1.140 2.716 FP 
LR-8 0.863 2.954 FP 

* FP= Fully Perforated Mode, PP = Partially Perforated Mode,  
 PS= Partially Scabbed Mode, P= Penetration Mode. 
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Table 9 Analysis results of parameter studies of shear bar ratios 

Initial velocity of 
the missile 

Specimen 
Dis. travelled 

(m) 
Scabbing area 

(m2) 
Failure 
mode * 

70 m/s 

SR-1 0.113 0.000 PS 

SR-2 0.116 0.126 FS 

SR-3 0.106 0.011 FS 
SR-4 0.102 0.126 FS 

SR-5 0.213 0.113 FS 

136 m/s 

SR-1 1.289 0.166 FP 

SR-2 1.306 0.152 FP 
SR-3 1.340 0.152 FP 

SR-4 1.394 0.138 FP 

SR-5 1.404 0.132 FP 

190 m/s 

SR-1 2.426 0.212 FP 

SR-2 2.432 0.166 FP 

SR-3 2.460 0.166 FP 

SR-4 2.423 0.181 FP 
SR-5 2.455 0.166 FP 

* FP= Fully Perforated Mode, FS= Fully Scabbed Mode, PS= Partially Scabbed Mode. 
 
Table 10 Analysis results of parameter studies of concrete compressive strength 

Initial velocity of 
the missile 

Specimen 
Dis. travelled 

(m) 
Scabbing area 

(m2) 
Failure 
mode * 

70 m/s 

CCS-1 0.122 0.000 PS 

CCS-2 0.123 0.000 PS 
CCS-3 0.109 0.000 PS 

CCS-4 0.107 0.000 PS 

CCS-5 0.108 0.000 PS 
CCS-6 0.105 0.000 PS 

136 m/s 

CCS-1 1.137 1.168 FP 

CCS-2 1.160 1.056 FP 

CCS-3 1.124 1.056 FP 
CCS-4 1.126 0.985 FP 

CCS-5 1.089 1.168 FP 

CCS-6 1.035 1.130 FP 

190 m/s 

CCS-1 2.319 0.817 FP 

CCS-2 2.243 0.849 FP 

CCS-3 2.172 0.849 FP 

CCS-4 2.146 0.849 FP 
CCS-5 2.127 0.882 FP 

CCS-6 2.089 1.056 FP 
* FP= Fully Perforated Mode, PS= Partially Scabbed Mode. 
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Table 11 Analysis results of parameter studies of concrete tensile strength 

Initial velocity of 
the missile 

Specimen 
Dis. travelled 

(m) 
Scabbing area 

(m2) 
Failure 
mode * 

70 m/s 

CTS-1 0.179 0.000 PS 
CTS-2 0.119 0.000 PS 
CTS-3 0.112 0.000 PS 
CTS-4 0.105 0.000 PS 
CTS-5 0.096 0.000 PS 
CTS-6 0.091 0.000 PS 

136 m/s 

CTS-1 1.340 0.817 FP 
CTS-2 1.210 1.020 FP 
CTS-3 1.121 1.020 FP 
CTS-4 1.053 1.056 FP 
CTS-5 0.960 1.056 FP 
CTS-6 0.880 1.168 FP 

190 m/s 

CTS-1 2.361 0.636 FP 
CTS-2 2.271 0.694 FP 
CTS-3 2.150 0.849 FP 
CTS-4 2.102 0.916 FP 
CTS-5 2.050 1.020 FP 
CTS-6 1.993 1.020 FP 

* FP= Fully Perforated Mode, PS= Partially Scabbed Mode. 
 
 
- Fully Scabbed (FS) Mode: The missile stuck into the slab and the shear cone failure occurred 

at back of the slab. 
- Partially Scabbed (PS) Mode: The missile stuck into the slab and shear cone cracks formed at 

back of the slab, but scabbing mode was prevented. 
- Penetration (P) Mode: A crater formed at the front face of the slab, but shear cone cracks 

except only few small cracks did not form at the back face of the slab. 
 
5.1 Longitudinal rebar ratios 
 
The behavior of model AM-1 with eight different longitudinal rebar (LR) ratios applied with 

different missile velocity impacts was investigated. The ratios of 0.45% to 3.38% were used by 
utilizing the eight different diameters of rebar elements from 8 mm to 22 mm, as listed in Table 4. 

 
5.1.1 Distance travelled 
Fig. 14 shows the distance travelled corresponding to the different longitudinal rebar ratios. As 

the longitudinal rebar ratios increased, the distance travelled decreased. In case of the missile 
initial velocity of 70 m/s, the distance travelled slightly decreased from 0.138 m to 0.086 m when 
the longitudinal rebar ratios increased from 0.45% to 3.38%. In case of the missile initial velocity 
of 136 m/s, the distance travelled rapidly decreased from 1.208 m to 0.420 m when the 
longitudinal rebar ratios increased from 0.45% to 1.37%. However, the distance travelled 
decreased slightly from 0.420 m to 0.312 m when the longitudinal rebar ratios increased from  
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7. Conclusions 
 

A reliable nonlinear finite element model of reinforced concrete slabs under impact loading 
was developed. The structural components and their contacts were fully modeled. The erosion 
option of concrete and reinforcement steel was considered in the analysis. The finite element 
model was verified against the experiment. Three different parameter studies of the longitudinal 
rebar, shear bar, and concrete strengths were carried out to investigate their influence on the 
punching behavior of RC slabs. Different missile initial velocities of 70 m/s, 136 m/s, and 190 m/s 
were applied in order to consider its influence on the response of the RC slabs. The parameter 
studies with different combinations of reinforcement were also performed to determine the optimal 
design in the case of missile velocity of 136 m/s. The following conclusions have been obtained: 

(1) The influence of the longitudinal rebar ratio: 
In case of the missile initial velocity was 70 m/s, the longitudinal rebar ratio did not show any 

significant influence on punching resistance of RC slabs. In case of the missile initial velocity was 
136 m/s, the longitudinal rebar ratio had a significant influence on resisting the perforation of the 
slabs. However, when the longitudinal rebar ratio increased from 0.45% to 1.37%, the scabbing 
area increased, whereas when the longitudinal rebar ratio increased from 1.37% to 3.38%, the 
scabbing area decreased. In case of the missile initial velocity was 190 m/s, the longitudinal rebar 
ratio had a significant influence on resisting the perforation of the slabs, whereas it did not show 
any significant influence on reducing the scabbing area. 

(2) The influence of the shear rebar ratio: 
In case of the missile initial velocity was 70 m/s, the shear bar ratio did not show any 

significant influence on punching resistance of RC slabs. In case of the missile initial velocity 
were 136 m/s and 190 m/s, shear bar ratio played a minimal role in resisting the perforation of the 
slabs, whereas it had a strong influence on reducing the scabbing area. However, when shear bar 
ratio increased from 0.97% to 2.48%, there was no significant effect on the scabbing resistance. 

(3) The influence of concrete strength: 
In case of the missile initial velocity was 70 m/s, the concrete strength did not show any 

significant influence on punching resistance of RC slabs. In case of the missile initial velocity 
were 136 m/s and 190 m/s, the concrete compressive strength did not show any significant 
influence on punching resistance of RC slabs, whereas the concrete tensile strength played a very 
important role in resisting the perforation of the RC slab. It is recommended that the concrete with 
high tensile strength should be used for the slab that protects against high velocity impact. 

(4) For optimal design in such case of missile velocity of 136 m/s, Design-3 is recommended 
for resisting the perforation of the slab, while Design-5 is recommended for reducing the scabbing 
area. 
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