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Abstract.  Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal 
beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. 
Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly 
established from the general solution of quasicrystals and the Lur’e symbolic method. In the case of 
homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which 
consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary 
conditions, the exact governing differential equations and solutions under normal loadings only and shear 
loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of 
quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the 
refined theory. 
 

Keywords:   deep beams; two-dimensional quasicrystals; the refined theory; general solution 

 
 
1. Introduction 
 

Quasicrystals (QCs) have become the focus of theoretical and experimental studies in the 

physics of condensed matter since the first discovery of the icosahedral QC in Al-Mn alloys 

(Shechtman et al. 1984). The discovery of QCs reveals a new symmetry in solids: quasiperiodic 

symmetry. This changes the traditional concept of classifying solids into two classes: crystals and 

non-crystals. The electronic structure and the optic, magnetic, thermal and mechanical properties 

of the material have been extensively investigated in experimental and theoretical analyses 

(Socolar et al. 1986, Ronchetti 1987, Ovidko 1992, Wollgarten et al. 1993), which show their 

complex structure and unusual properties. Elasticity is one of the interesting properties of QCs. 

Within the framework of the Landau-Lifshitz phenomenological theory, the elastic energies of QCs 

were formulated (Bak 1985, Levine and Steinhardt 1986). In particular, the field of linear elastic 

theory of QCs has been formulated for many years (Ding et al. 1993, Hu et al. 1996). It provides 

us with a fundamental theory based on the notion of a continuum model to describe the elastic 

behavior of QCs. Great progress has been made in the fields of the mechanic involving the 

elasticity and defects, see review article for detail (Hu et al. 2000, Fan and Mai 2004). 
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Among approximately 200 individual QCs observed to date, two-dimensional (2D) QCs with 

fine thermal stability play an important role in this kind of matter (Fan 2011). A 2D QC refers not 

to a real plane but to a three-dimensional (3D) solid with 2D quasiperiodic and one-dimensional 

periodic structure (Stadnik 1999). There are ten systems, i.e., triclinic, monoclinic, orthorhombic, 

tetragonal, trigonal, hexagonal, pentagonal, decagonal, octagonal systems and 57 point groups (Hu 

et al. 1996). Among them, six systems and 31 point groups are of crystal rotational symmetry, four 

systems and 26 point groups are of non-crystal rotational symmetry. According to Janssen's 

treatment (Janssen1992), Hu et al. (1996) have discussed the point groups of all 2D QCs in detail. 

Slender and thin bodies are one of the most well known structures of vital significance in the 

structural design and therefore received extensive study from scientific workers. Various theories 

are proposed by many authors with the help of some ad hoc assumptions. Additionally some 

observations are made on the formulation of the theories of beams due to Timoshenko (1921), 

Levinson (1981), Wang et al. (2000) and the original work of Bernoulli and Euler. Efforts have 

been made to the exact solutions of beams without ad hoc assumption. Cheng (1979) presented a 

method for the solution of 3D elasticity equations. With this method refined theories of several 

plates were explicitly established (Barrett and Ellis 1988, Wang 1990, Gao and Ricoeur 2011, 

Zhao et al. 2013). Moreover, Gao and coauthors indicated that applications of Cheng's method are 

quite successful in various beams (Gao and Wang 2004, 2005, Gao et al. 2007). 

In order to study the deformation and mechanical/physical behavior of the new solid phase, the 

general framework of QC beam theories should be set up explicitly. In the present paper, from 

linear elastic theory of 2D QCs, the refined theory of deep beams is derived by using the general 

solution of 2D hexagonal QCs (Gao and Zhao 2009) and the Lur’e symbolic method (Lur’e 1964) 

without ad hoc assumptions. The exact governing equations for the beams without transverse 

surface loadings and under transverse loadings are derived directly from the beam theory. Finally, 

two examples are examined to illustrate the application of the refined theory of QC beams. 
 

 

2. Basic equations and the general solution 
 

2D QCs can be described as a 3D cut of a five-dimensional (5D) hypercubic crystal (Stadnik,  

1999). The 5D hyperspace may be divided into two subspaces, the parallel or physical space E   

and the perpendicular or mathematical space E
⊥
. In a fixed rectangular coordinate system (x1, x2, 

x3), let 2D QCs be quasi-periodic in x1−x2 plane and periodic in x3-direction. We consider a straight 

QC beam of narrow rectangular cross-section as a plane stress problem and assume that the beam 

length in x1-direction is denoted by l, the beam width in x2-direction is set to be unit, and the beam 

height in x3-direction is h.  

For the plane stress problem, the displacement field in 2D QCs consists of two components, uα  

(α=1, 3) and w1. The phonon-type displacement field uα E is analogous to the field in  

conventional crystals. The elementary excitation associated with the phonon mode is propagating. 

The introduction of the phason gives a macro-description of the quasiperiodicity of the new solid 

phase. The phason-type displacement field w1∈E
⊥
 is peculiar to QCs. The phason phase 

characterizes the degree of freedom associated with relative translation of incommensurate 

sub-lattices, or equivalently, with special atomic rearrangements. Within the framework of the 

elastic theory of QCs (Lubensky et al. 1985), both phonon and phason fields are considered as 

continuous averaged field variables. Corresponding to the phonon and phason parameters, there 

are two stress fields ζαβ (β=1, 3) and H1β associated with two strain fields αβ and w1β, respectively, 
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the latter being a new parameter in QC elasticity which is also asymmetric for most classes of QCs 

except the cubic QCs. 

According to 2D QCs elastic theory (Hu et al. 1996), the strain-displacement relations for the 

plane stress state of 2D QCs are given by 

1 1

1
( ),   .

2
u u w w                                    (1) 

In the absence of body forces, the static equilibrium equations are 

10,   0.H                      (2) 

For 2D hexagonal QCs, the point groups 6mm, 622, 6 m2 and 6/mmm belong to Laue class 10, 

whose constitutive relations read 

  

11 11 11 13 33 1 11 33 13 11 33 33 3 11

13 31 44 13 4 13

11 1 11 3 33 1 11 13 4 13 4 13

,   ,

2 ,

,   2 .

C C R w C C R w

C R w

H R R K w H R K w

     

  

  

     

  

    

              (3) 

There are 9 independent constants Cmn, Km and Rm in Eq. (3) 
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which are expressed by 5 elastic constants mnC  of phonon fields, 3 constants mK  of phason 

fields and 4 constants mR  of phonon-phason coupling fields. In the absence of body forces,  

elimination of the stresses in terms of the displacements from the equilibrium equations (3) yields 

the simultaneous equations 

2 2 2 2

11 1 44 3 1 13 44 1 3 3 1 1 4 3 1

2 2

13 44 1 3 1 44 1 33 3 3 3 4 1 3 1

2 2 2 2

1 1 4 3 1 3 4 1 3 3 1 1 4 3 1

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

C C u C C u R R w

C C u C C u R R w

R R u R R u K K w

           

           

           

             (4) 
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According to the general solution of plane elasticity of 2D hexagonal QCs with distinct 

eigenvalues (Gao and Zhao 2009), the components of displacements are expressed in terms of 

three potential functions ψi 

1 1 3 1 3 1 2 1,   ,   ,Ii i i i i iu u k w k                               (5) 

where i=1, 2, 3. δij is the Kronecker delta symbol, and the following summation convention has 

been used throughout this paper: the Einstein summation over repeated lower case indices from 1 

to 3 is applied, while upper case indices take on the same numbers as the corresponding lower case 

ones but are not summed. The constants k1i and k2i are 

   2

4 13 44 44 3 4 11 3 4 1 13 44

1 4 2

33 4 13 3 13 4 44 3 33 1 44 1

4 2 2
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.
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







      


    

    


    

 

Besides, the potential functions ψi satisfy the equations 

2 2 2

1 32

1
0,I i i i

Is
                   (6) 

where si
2
 are three eigenvalues of the cubic algebra equation of s

2
. The values of k1i, k2i and si

2
 are 

related by the following expressions 

44 13 44 1 4 2 33 1

11 1 2 13 44 44 1 3 4 2

4 3 4 1 4 2

2

1 1 2

( )

( ) ( )

( ) 1
.

Ii i i i

Ii i Ii i i

Ii i i

Ii i i
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
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

  


    

  
 



          (7) 

For the sake of conciseness, the refined theory of 2D QC beams will be given only to the case 

of distinct eigenvalues si
2
 in the following context. For the cases of equal eigenvalues, the 

corresponding derivations can be obtained in use of a similar analysis technique, although the 

general solution will take a more complicated form for these cases (Gao and Zhao 2009). 

 

 

3. The refined theory 

 

The problem of QC beams may be decomposed into two fundamental problems: the extension 

of a beam and the bending of a beam. In the case of bending of a beam, the beam is subjected only 

to a set of anti-symmetrical loadings and edge conditions, thus only odd functions of x3 are 

required for u1 and w1, and even functions of x3 for u3. For the Lur’e symbolic method (Lur’e 

1964), treating Eq. (6) as an ordinary differential equation in x3 with constant coefficients, one 

obtains the following symbolic solution of Eq. (6) 

3 1
1 3 1

1

sin( )
( , ) ( ),i

i i

I

s x
x x g x

s






          (8) 
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where gi are unknown functions of x1 which can be determined from the remaining boundary 

conditions; and the trigonometric differential operators sin (six3∂1)∕(si∂1) and cos (six3∂1) must be 

interpreted as representing series in powers of (six3∂1)
2
, i.e. 

2 2 2 4 4 43 1
3 3 1 3 1

1

2 2 2 4 4 4

3 1 3 1 3 1

sin( ) 1 1
,

3! 5!

1 1
cos( ) .

2! 4!

i
Ii i i

i

i Ii i i

s x
x s x s x

s

s x s x s x





  
      

  

 
       

 

        (9) 

Substituting Eq. (8) into Eq. (5), one obtains 

3 1 3 1
1 3 1 3 1 1 2

sin( ) sin( )
,  cos( ) ,   .i i

i i i i i i

I I

s x s x
u g u k s x g w k g

s s

 
               (10) 

Since the functions gi are not defined, all results expressed by them have no explicit physical 

sense. Now we introduce the angles of rotation ψ, φ and the deflection w of the mid-plane, which 

are widely used in other beam theories 

3 3 33 1 0 1 3 0 1 3 1 0 2 1,   ,   .x Ii i x i i x i iu g w u k g w k g                      (11) 

From Eq. (11), one obtains 

1 2 3

1 1

1
,i i i ig l l w l

A

  
   

  
          (12) 

where the parameters lij and A are defined by 

1 2 1 2 2 3 1 1 2,   ,   ,   .i ijk j k i ijk Kk j i ijk Jj k ijk Ii j kl k k l k l k A k k           

From Eqs. (10) and (12), the final expressions for the displacements are 
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     (13) 

By using the generalized Hooke’s law in Eq. (3), expressions (13) can be used to determine the 

stress components as 
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where the parameters mij are available 

1 2 44 1 4 2 3 4 1 4 2( ) ,   ( ) .i i Ii i i i Ii i im m C k R k m R k K k          

In the following two sections, discussion will be given to the refined theory in the cases of 

homogeneous boundary conditions and non-homogeneous boundary conditions, respectively. 

 

 

4. Homogeneous boundary conditions 
 

The classical bending problems consider only homogeneous boundary conditions, there are 

13 33 13 30,   0,  0  ( 2).H x h                           (15) 

which lead to the following linear differential matrix equation for the angles of rotation and the 

deflection of the mid-plane 

1 1 1 2 1 1 3

2 1 2 2 1 2 3

3 1 3 2 1 3 3

0

0 ,

0

i i I i i I i i I

I I I
i i i i i i

I I I
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m l CS m l CS m l CS
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

 
    
     
    
        

  

               (16) 

where the differential operators SNi and CSi are defined by 

1 1sin ,   cos .
2 2

i i
i i

s h s h
SN CS

    
    

   
 

Let Lij and L0 be the elements and the determinant of the 3×3 matrix of the Eq. (16), 

respectively, there is 

2 4

0 2 3 1 13

1

,I J K
ijk i j k

I

SN CS CS
L A m m m

s
 


         (17) 

where εijk is the Levi-Civita permutation symbol, and the relationship εijkm2im3jm1k=0 comes into 

existence. In virtue of the Lur’e symbolic method (Lur’e 1964), the solution of Eq. (16) is 

22 33 23 32 13 32 12 33 12 23 13 22 1

23 31 21 33 11 33 13 31 13 21 11 23 2

21 32 22 31 12 31 11 32 11 22 12 21 3

,

L L L L L L L L L L L L

w L L L L L L L L L L L L

L L L L L L L L L L L L

 



 

       
     

   
     
            

         (18) 

and ξp (p=1, 2, 3) satisfy 

0 0.pL               (19) 

According to Appendix B of Gao and Wang (2004), it is proved that the solutions of Eq. (19) 

can be decomposed into two parts which are governed by a fourth-order equation and a 

transcendental equation, respectively. That is, ξp can be rewritten as 

(1) (2) ,p p p                                  (20) 
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where the superscripts “(1)” and “(2)” indicate the fourth-order part and the transcendental part, 

respectively, and ξp
(1)

 and ξp
(2)

 have to satisfy the following governing differential equations of the 

beam problem, respectively 

4 (1) (2) (2)

1 0 2 3 1 3

1

0,   0,I J K
p p ijk i j k p

I

SN CS CS
T m m m

s
      


               (21) 

where T0 is the transcendental differential operator. The angles of rotation and the deflection of the 

mid-plane of beams can be also decomposed into two parts, respectively 

(1) (2) (1) (2) (1) (2),   ,   .w w w                       (22) 

In the following two subsections, the solutions of Eq. (22) will be investigated in detail to show 

how the refined theory could be established based on them. 

 

4.1 The fourth-order equation and fourth-order solution 
 

ξp
(1)

 satisfy the following fourth-order equation 

4 (1)

1 0,p                                   (23) 

and the solutions of ψ
(1)

, w
(1)

 and φ
(1)

 become 

(1) (1)

22 33 23 32 13 32 12 33 12 23 13 22 1

(1) (1)
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(1) (1)
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.
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 



 
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    

       
          

          (24) 

By using Eqs. (23) and (24), the result turns out to be 

4 (1)

1 0.w                                (25) 

After tedious manipulation from Eq. (16), one obtains 

(1) (1)

1 1 2 1 2 1

(1) (1)

1 1 2 2 1 2 1

,

.

J K J K
ijk i j k ijk Ii j k

J J
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s s
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s s
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  

  
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             (26) 

Taking account of Taylor series of the trigonometric differential operators (9) and with the help 

of Eq. (25), Eq. (26) can be simplified as 

2 2 2 2
(1) (1)1 1

1

2 2 2 2
(1) (1)1 1

1

1 1 ,
40 40

1 1 ,
40 40

h hB C C
w

B B C

h hB E E
w

B B E





    
      

   

    
      

   

                   (27) 

where the parameters , , , , ,B B C C E E  in Eq. (27) read 
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2 4

1 1 2 1 1 2

2 4

1 2 1 2

2 4

2 1 2 2 1 2

,   ,

,   ,

,   .

ijk i j k J ijk i j k J

ijk Ii j k J ijk Ii j k J

ijk i j k J ijk i j k J

B k m m s B k m m s

C m m s C m m s

E k m m s E k m m s

 

   

 

 

   

 

 

Taking the operator  2 2

11 40h B B 
 
on both sides of Eq. (27), there is 

    
2 2 2 2

( 1 ) ( 1 ) ( 1 ) ( 1 )1 1
1 11 ,   1 ,

40 40

h hC C B E E B
w w

B C B B E B
 

       
             

     
        (28) 

and from Eq. (13), the total displacements can be found to be 

2 2 2

3 3 1
1 1 2 3

2 2
(1)1

1 3 1

2 2 2

3 1
3 1 2 3

2 2

1
1

1
6

      ,
40

1
1

2

      
40

I
i i i

i i Ii

I
i i i

i i

x s x C E
u l l l

A B B

h C C B E E B
l l w

B C B B E B

s x C E
u l l l

A B B

h C C B
l l

B C B



   
     

  

     
        

    

   
     

  

 
   

 

(1)

3 1

2 2 2

3 3 1
1 1 2 3

2 2
(1)1

1 3 2 1

,

1
6

      .
40

i

I
i i i

i i i

E E B
k w

B E B

x s x C E
w l l l

A B B

h C C B E E B
l l k w

B C B B E B

   
   

   

   
     

  

     
        

    

               (29) 

The stress components can be found to be 

2 2 2

13 3 1 1 2 3

2 2
(1)1

1 3 1 1

2 2 (1) 2 (1)3 3
11 1 2 3 1 1 33 1 2 3 2 1

1 1
1

2

        ,
40

, ,

I i i i

i i i

i i i I i i i i i

C E
s x l l l

A B B

h C C B E E B
l l m w

B C B B E B

x xC E C E
l l l s m w l l l m w

A B B A B B



 

  
      

  

     
        

    

   
          

   

2 2 2

13 3 1 1 2 3

2 2
(1)1

1 3 3 1

2 2 (1)3
11 1 2 3 3 1

1 1
1

2

        ,
40

.

I i i i

i i i

i i i I i

C E
H s x l l l

A B B

h C C B E E B
l l m w

B C B B E B

x C E
H l l l s m w

A B B

  
      

  

     
        

    

 
    

 

      (30) 
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Eqs. (29) and (30) constitute the first-order theory of 2D QC beams with the differential 

governing Eq. (25), which can satisfy two edge conditions along the boundary of beams and 

coincide with the corresponding expressions of QC.  

 

4.2 The transcendental equation and transcendental solution 
 

ξp
(2) 

satisfy the following transcendental equation 

(2)

0 0,pT                                    (31) 

and the solutions of ψ
(2)

, w
(2)

 and φ
(2)

 become 

(2) (2)

22 33 23 32 13 32 12 33 12 23 13 22 1

(2) (2)

23 31 21 33 11 33 13 31 13 21 11 23 2

(2) (2)

21 32 22 31 12 31 11 32 11 22 12 21 3

.

L L L L L L L L L L L L

w L L L L L L L L L L L L

L L L L L L L L L L L L

 



 

      
    

       
          

           (32) 

By using Eqs. (31) and (32), the result turns out to be 

(2)

0 0.T w                                  (33) 

To reduce Eq. (33) to applicable differential equation, the transcendental differential operator 

T0 in Eq. (33) must be replaced by an infinite number of simply algebraic operators associated with 

the eigenvalues of T0. The eigenvalues of T0 can be found by solving the equation  

0 ( ) 0,T                                   (34) 

which is yielded by substituting ∂1
2
 by λ

2
 in T0. The differential operator corresponding to an 

individual eigenvalue λ then becomes ∂1
2
 – λ

2
. The differential equations associated with the 

eigenvalues λn are 

2 2 2 2 2 2

1 1 1,   ,   .n N n n N n n N nw w                               (35) 

From Eq. (26), the corresponding angles of rotation of the mid-plane of beams with respect to 

wn are expressed as 

1 2

1

1 1 2

2 1 2

1

1 1 2

sin cos
2 2 ,

sin cos
2 2

sin cos
2 2 .

sin cos
2 2

J n K N
ijk Ii j k J

n n
J n K N

ijk i j k J

J n K N
ijk i j k J

n n
J n K N

ijk i j k J

s h s h
m m s

w
s h s h

k m m s

s h s h
k m m s

w
s h s h

k m m s

 
 


 



 



 



  

 

               (36) 

Therefore, all the expressions of displacements and stresses for QC beams can be acquired in 

terms of the deflection of the mid-plane. By combining this transcendental solution with the 

fourth-order solution, a refined theory for 2D QC beams with free faces can be established, as 

shown in the two differential governing Eqs. (25) and (33). 
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5. Non-homogeneous boundary conditions 
 

For non-homogeneous boundary conditions, we discuss two special cases of boundary 

conditions, that is, normal surface loadings only and shear surface loadings only. 

 

5.1 Two surfaces subjected to normal loadings only 
 

Now let us consider the case where QC beams are subjected only to normal loadings, i.e. 

13 33 2 1 13 30,   ( ),  0  ( 2).q x H x h                        (37) 

Substituting the stress expressions in Eq. (14) into the boundary conditions (37) of beams, we 

get the following matrix equation 

1 1 1 2 1 1 3

2 1 2 2 1 2 3

3 1 3 2 1 3 3

0

.

0

i i I i i I i i I

I I I
i i i i i i

I I I

i i I i i I i i I

m l CS m l CS m l CS

SN SN SN
m l m l m l w Aq

s s s

m l CS m l CS m l CS





 
    
     
    
        

  

            (38) 

In virtue of the Lur’e symbolic method (Lur’e 1964), the solution of Eq. (38) is 

0 22 33 23 32 13 32 12 33 12 23 13 22

0 23 31 21 33 11 33 13 31 13 21 11 23

0 21 32 22 31 12 31 11 32 11 22 12 21

0

.

0

L L L L L L L L L L L L L

L w L L L L L L L L L L L L Aq

L L L L L L L L L L L L L





       
     

   
     
            

       (39) 

After tedious manipulation from Eq. (39), one obtains 

1

0
1 3 12

2 1

.

Ii

ijk i j k J K

i

L
w k m m CS CS q

A
k







  
  

   
       

                  (40) 

Eq. (40) is the exact governing equation for the angles of rotation ψ, φ and the deflection w of 

the mid-plane of beams subjected to the normal loadings. 

 

5.2 Two surfaces subjected to shear loadings only 
 

The other case is that QC beams are subjected only to shear surface loadings, i.e. 

13 1 1 33 13 2 1 3( ),   0,  ( )  ( 2).x H x x h                         (41) 

Substitution of Eq. (14) into the boundary conditions (41) leads to the following matrix 

equation 

1 1 1 2 1 1 3
1

2 1 2 2 1 2 3

2

3 1 3 2 1 3 3

0 .

i i I i i I i i I

I I I
i i i i i i

I I I

i i I i i I i i I

m l CS m l CS m l CS
A

SN SN SN
m l m l m l w

s s s
A

m l CS m l CS m l CS

 

 

 
    
     
    
        

  

               (42) 

420



 

 

 

 

 

 

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals 

After the same manipulation as in the preceding case, the exact governing equation for ψ, φ and 

w subjected to the shear loadings can be reached as follows 

1

0
1 2 3 1 1 2 22

2 1

( ).

Ii

J
ijk i K j k j k

J

i

L SN
w k CS m m m m

A s
k



  



  
  

    
       

             (43) 

Combining Eqs. (40) and (43), we obtain the exact governing equations for the angles of 

rotation ψ, φ and the deflection w of the mid-plane of beams subjected to the most general loadings 

at the top and bottom surfaces of QC beams. In the similar way, all the expressions of 

displacements and stresses for QC beams can be obtained in terms of the mid-plane displacement 

functions. 

 

 

6. Examples 

 

To illustrate the applications of the refined theory developed in the previous sections, we 

present the following two examples: simply supported beams with a sinusoidal distributed load 

and a constant distributed load, respectively. It should be noted that the same examples for 

transversely isotropic elastic beams (Gao and Zhao 2007) and elastic beams (Timoshenko and 

Goodier 1970, Gao and Wang 2005) have been discussed. 

 

6.1 The simply supported beam with a sinusoidal distributed load 

 

Considering a QC beam of uniform cross-section, which is simply supported at x1=0 and x1=l, 

and is subjected to a sinusoidal distributed load along the length of beams, namely, q=q0 sin ρx1, 

where ρ=nπ/l, n is an integer and q0 is a constant. For isotropic elastic beams, the same example 

was considered by utilizing the Airy stress function method (Timoshenko and Goodier 1970). 

Since the load q is sinusoidal distributed along the length of beams, from the exact governing 

differential Eq. (40) and the Taylor series of the trigonometric differential operators in Eq. (9), ψ, φ 

and w have the form as 

 

2
3 1 2

3 1 0 1 1 2 3 1

0 1 3 1

2
3 2

1 3 1 0 1 1 2 3 4

0

2
2 3 1

2 3 1 0 1 1

0 1 3 1

cos (3 2 ),

sin ,

cos (3

ijk Ii j k

ijk Ii j k J K

ijk i j k

ijk i j k J K

ijk i j k

ijk i j k J K

ijk i j k

m mA
m m CH CH q x A x A x A A

L k m m

A
w k m m CH CH q x A x A x A x A

L

k m mA
k m m CH CH q x A

L k m m

 
   



 



  



    


     


  


2

2 3 12 ),x A x A A  

    (44) 

where A1, A2, A3 and A4 are unknown constants, and A  and A  associate with A1 
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2 2 2 2

1 3 1 3 12 2

1

1 3 1 3 1

2 2 2 2

1 3 1 2 3 12 2

1

1 3 1 2 3 1

2

0 2 3 1

( ) ( )3
,

4

( ) ( )3
,

4

ijk i j k J K ijk Ii j k J K

ijk i j k ijk Ii j k

ijk i j k J K ijk i j k J K

ijk i j k ijk i j k

ijk i j

k m m s s m m s s
A h A

k m m m m

k m m s s k m m s s
A h A

k m m k m m

L A m m m

  


  

 


 



  
  

  

  
  

  

   ,   sinh ,   cosh .
2 2

I J K i i
k i i

I

SH CH CH s h s h
SH CH

s

    
    

   

 

Employing the Betti-Rayleigh reciprocal theorem, a set of edge conditions of 2D QC strip 

bodies was established by adopting the decay analysis technique (Gao 2009). Together with the 

boundary conditions of the simply supported beams on two ends 

2

3 11 3 1
2

d 0,   0  ( 0,  ),
h

h
x x w x l


                         (45) 

these unknown constants can be determined as 

1 2 3 4 0.A A A A                               (46) 

Substituting these expressions into Eqs. (13) and (14) leads to all the expressions of 

displacements and stresses for QC beams 

   

   

 

3 3

1 0 1 3 1 0 1

3

1 2 0 1

sinh cosh
cos ,   sin ,

sinh
cos ,

i I

i i i

I

I

i i

I

s x s x
u G q x u G k q x

s

s x
w G k q x

s

 
 

 






 



         (47) 

 
 

 

 
 

3 2

13 3 1 0 1 11 1 0 1

3

33 2 0 1

3 2

13 3 3 0 1 11 3 0 1

sinh
cosh cos ,   sin ,

sinh
sin ,

sinh
cosh cos ,   sin ,

I

i I i i I i

I

I

i i

I

I

i I i i I i

I

s x
G s x m q x G s m q x

s

s x
G m q x

s

s x
H G s x m q x H G s m q x

s


    


 


  

  

 

  

     (48) 

where 

 1 2 1 3 2 3 1

0

.i ijk I I I I I j k J K

A
G l l k l k m m CH CH

L
  


 

 

6.2 The simply supported beam with a constant distributed load 
 

The other example is a bending beam of uniform cross-section which is simply supported at 

x1=±l and which carries a uniformly distributed load of intensity q=q0. Substituting the Taylor 

series of the trigonometric differential operators in Eq. (9) into Eq. (40), by dropping all the terms 
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associated with h
2
 and the higher orders, the result turns out to be 

4 2 2 2 31 2
1 0 1 1 1,   1 ,   ,

8 8

D D
D w q h w h w 

 
         

 
         (49) 

where D is the flexural rigidity of the QC beam, 

 

   

 

3 2 2 2

2 3 1

1 3 1

2 2 2 2

3 1 1 3 1

1

3 1 1 3 1

2 2

2 3 1

2

1 3 1

3 3
,

48

,

.

ijk i j k I J K

ijk i j k

ijk Ii j k J K ijk i j k J K

ijk Ii j k ijk i j k

ijk i j k J K

ijk i j k

h m m m s s s
D

k m m

m m s s k m m s s
D

m m k m m

k m m s s
D

k m m





  

  





 


 
 




 

From Eqs. (14) and (49) the bending moment M(x1) of the beam can be found to be 

2
2 2 2

3 11 3 1 1
2

d 1 ,
h

h
M x x h w


 



 
      

 
                     (50) 

where 

     
3 3 3

2 2 4

1 1 2 1 1 1 2 2 1 1 3,   .
24 192 480

i I i i i I i i i I i i

h h h
m s l l m s D l D l m s l l         

The boundary conditions for the beam are 

                            0 ,   0 .M l w l                              (51) 

From Eqs. (49)-(51), the solution for the mid-plane deflection is 

4 2 24 2 2

0 01 1 1

4 2 2
6 5 1 .

24 2

q l q l hx x x
w

D l l D l





   
       

   
                 (52) 

Up to here, these examples show that the exact or accurate solutions may be obtained by 

applying the refined theory deduced herein. 

 

6.3 The degenerated form of QC beams 
 

Determination of the independent elastic constants Cij, Ki and Ri for different kinds of QCs 

depends on their symmetries with the group representation theory (Ding et al. 1993, Hu et al. 

1996, Hu et al. 2000). It is noted that, although Cij in QCs can be measured by some experimental 

methods, Ki are difficult to measure (Tanaka et al. 1996). Significant progress in this area has been 

made by Jeong and Steinhardt (Jeong and Steinhardt 1993), who evaluated Ki of decagonal QCs by 

Monte Carlo simulation. The values of Ki are of the same order of magnitude as Cij obtained by 

resonant ultrasound spectroscopy (Chernikov et al. 1998). There are no data available for Ri which, 

based on the estimation of some experts (Edagawa 2007, Takeuchi and Edagawa 2007) working in 
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the field of QCs, hold lower values than Ki. 

Unfortunately, material constants for 2D hexagonal QCs are not available presently, so 

numerical examples cannot be given here. Alternatively, we will discuss a degenerated form of QC 

beam to investigate its validity, i.e., a 2D QC beam reduces to a transversely isotropic elastic 

beam. In this case, no phonon-phason field coupling effect is taken into account, i.e., R1=R3=R4=0. 

Hence the governing equations (1)-(3) reduce to two groups of equations for uncoupled phonon  

and phason field problems, respectively. 
2

1s  and 
2

2s  relate only to elastic constants in the phonon 

field, while 2

3s  associates only with elastic constants in the phason field. The constants k1i and k2i  

degenerated from expressions (7) reduce to 

 

2

11 44 13 44
1 22 2

13 44 33 44

,   0,n
n n

n n

C C s C C
k k

C C s C s C

 
  

 
 

where n=1, 2. On the other hand, k13=0 and k23≠0, which associates with 
2

3s . Since the analysis in 

the following calculation does not involve k23 except the requirement k23≠0, it suffices to discuss 

only k1n and 
2

ns . For the transversely isotropic elastic beams, the flexural rigidity D and some  

parameters have the forms 

 
       

 

3 2 2 2 2
44 11 12 2 1 11 12 2 11 12 1

11 12 11 12

1 1 4 5 4 5
,   .

40

C h k k s s k k s k k s
D

k k k k





       
 

 
    (53) 

Noticeably, the solution of the mid-plane deflection in Eq. (52) described by Eq. (53) coincides 

with the corresponding one given by Gao et al. (2007). Therefore, the exact theory of 2D QC 

beams can be degenerated into that of transversely isotropic elastic beams by omitting the 

phonon-phason field coupling effect. For further simplification, the parameters of isotropic elastic 

beams have the forms 

3 8 5
,   .

12 40

Eh
D

 




                             (54) 

We recover the analytical solutions for isotropic elastic beams (Timoshenko and Goodier 1970, 

Gao and Wang 2005). 

In comparison with the theories of elastic beams (Timoshenko and Goodier 1970, Gao and 

Wang 2005, Gao et al. 2007), the existence of phason field influences strongly the deformation 

and mechanical behavior of QC materials. Owing to the introduction of the phason field, a 

theoretical description of the deformed state of QC beams requires a combined consideration of 

interrelated phonon and phason fields, so the beam theory of QCs is more complex than that of the 

conventional crystals. The refined theory provides important information for studying the 

mechanical behaviours of the new solid phase and understanding clearly the interplay of the 

interaction between the phonon and phason activity. 

Of course, the theoretical prediction needs to be verified by experimental observation. 

Experiments are very important to measure elastic constants, deformation, mechanical/physical 

behavior, etc. of the materials. In principle, experimental methods can also be used to determine 

the displacement and stress fields of the materials, but there are few such results to date. So there 

are difficulties in comparing theoretical solutions with test data apart from those obtained in the 

present paper. Therefore, the refined theory derived here by an analytical approach provides 
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theoretical models to gain insight into the physical nature of this class of materials and to study 

possible applications of QCs. 

 

 

7. Conclusions 

 

Without any ad hoc assumptions, a refined theory of 2D QC deep beams has been deduced 

systematically and directly from linear elastic theory of QC by using the general solution and the 

Lur’e symbolic method. For the homogeneous beams, the refined theory is exact in the sense that a 

solution of the theory satisfies all the equations in elastic theory and consists of two parts: the 

fourth-order part and the transcendental part. For the non-homogeneous beams, two special cases 

of boundary conditions are considered, that is, normal surface loadings only and shear surface 

loadings only, and the exact governing differential equations and solutions are derived directly 

from the beam theory. Meanwhile, as two illustrative examples, explicit expressions of analytical 

solutions are obtained for QC beams subjected to a sinusoidal distributed vertical load and a 

constant distributed load, respectively.  

By the refined theory, calculation of stresses or deformations can be carried out by two 

independent parts. Therefore, it can increase the possibility of solving complicated beam problems, 

simplify the calculation and improve the efficiency of the computation. In addition, because the 

refined theory is derived directly from linear elastic theory of QC without requirement of any ad 

hoc assumptions concerning the deformation or the stress state, results based on it are of high 

accuracy, appeal to application and help to describe problems in an incisive way. 
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