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Abstract.  Two dimensional numerical models and physical models have been developed to study the 
highly nonlinear interactions between waves and breakwaters, but several of these models consider the 
effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In 
this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the 
nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, 
and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical 
breakwater model. The wave impact is validated computationally using a breakwater - flume coupling 
model that replicates the physical model. The computational results, including those for the wave pressure 
and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is 
used to discuss the effects of the structural dynamic response and different design parameters of the 
breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater 
model is used to numerically study the large-scale wave impact problem and the horizontal distribution of 
the wave pressures on the seawalls. 
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1. Introduction 
 

Breakwaters are important coastal defense structures for harbor and shore protection. 

Breakwaters are vulnerable to harsh weather and extremely violent waves. Breakwaters may suffer 

direct damage from tsunami waves that are triggered by ocean trench earthquakes, such as the 

Indian Ocean earthquake that was reported in 2004. The interaction between solitary waves and 

breakwaters has been studied for decades to develop countermeasures to breakwater damage. 

The stability of breakwaters in coastal regions has been studied extensively by many researchers 

using various methods. Cuomo et al. (2010) conducted experiments using physical model tests that 

provided a simple and intuitive set of prediction formulae to calculate quasi-static impact forces and 

overturning moments. Sakakiyama and Liu (2001) experimentally studied the free surface 

displacements and velocity field in front of a caisson breakwater with wave-dissipating blocks, 

where both nonbreaking and breaking waves acted on the caisson breakwater. Hajivalie and 
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Yeganeh-Bakhtiary (2011) developed a two-dimensional Reynolds Averaged Navier-Stokes 

(RANS) model to numerically simulate the shoaling, breaking and overtopping of a solitary wave 

over a vertical breakwater. A COBRAS-UC model was used to study the overtopping and stability of 

the breakwater under a wave impact (Losada et al. 2008, Guanche et al. 2009, Hsiao et al. 2010). 

In most studies on wave-structure interactions, the structure is assumed to be rigid and elasticity 

effects are neglected. However, the elasticity of structures should be considered in some situations, 

such as large floating structures (VLFS) (Zhao and Hu 2012), structures subjected to large wave 

impacts (e.g., breaking wave impacts on ship hulls and sloshing impacts on tank walls) (Sriram and 

Ma 2012), etc. „Hydroelasticity‟ has been recognized as an important factor in these cases. Thus, 

both the wave and structural dynamics must be simultaneously accounted for. Alternative methods, 

such as the particle finite element method (PFEM) (Pin et al. 2007) and smoothed particle 

hydrodynamics (SPH) (Antoci et al. 2007), have been well developed for the numerical simulation 

of the interaction between an incompressible fluid and an elastic structure. 

Note that strongly nonlinear and large deformations in a fluid-structure interaction (FSI) creates 

difficulties in defining the structure and the fluid domain in a unified coordinate system, making it 

very complicated to study nonlinear FSI and large deformations using Lagrangian or Eulerian 

descriptions separately. The two media are usually coupled using an Arbitrary-Lagrangian Eulerian 

(ALE) formulation for the fluid (Tallec and Mouro 2000). 

Hirt et al. (1997) introduced the ALE method, which has been used in FSI analysis 

(Nitikitpaiboon and Bathe 1993, Souli et al. 2000) and successfully applied to a wide range of 

problems. Bathe et al. (1999) studied the interaction between a fluid and a structure that undergoes a 

large deformation. The ALE formulation was used to solve for the fluid response for a structural 

interface and free surface conditions. Pal et al. (2003) using a mixed Eulerian-Lagrangian approach 

to study the free surface oscillation of the liquid in elastic containers. ALE was successfully applied 

to study the development and dissolution of a non-linear second-order Stokes wave (Zhu et al. 

2012). The ALE method has only recently been applied to highly nonlinear wave-breakwater 

interactions simulations: Yang et al. (2010) used a weakly compressible ALE method to simulate 

fluid flow. Although the ALE method has proved to be an effective solution for FSI problems, some 

researchers have argued that the efficiency of this method may be compromised its intensive 

computational requirements (Anghileri et al. 2005). With the advent of high-performance computers 

and parallel computing technology (Kalro and Tezduyar 2000, Paik et al. 2006), solutions have been 

generated, and the application of ALE has been promoted. 

In the present study, the ALE method is applied to investigate the interaction between a solitary 

wave and elastic structures. The penalty method is used to address the coupling between waves and 

structural dynamics. A damping coefficient is used in this method, yielding a relatively smoother 

time history for the pressure that is shown to be crucial for successfully simulating problems on 

wave-structure interactions. We exploit this high computational efficiency in a simulation using an 

explicit integration scheme in LS-DYNA on the Shanghai Supercomputing Center Computing 

platform. The paper is organized as follows: in Section 2, the ALE method and the penalty method 

for the FSI are briefly described; in Section 3, the physical model tests are presented, and the 

numerical models are introduced in Section 4. In Section 5, the results obtained from the numerical 

simulations are compared with the experimental data to validate the ALE method. The method is 

then applied to a practical project and analyzed. The principal conclusions of the study are presented 

in Section 6. 
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2. Numerical method 
 

2.1 Arbitrary Lagrangian Eulerian approach (ALE) 
 

The ALE description allows for an arbitrary motion of the reference domain, thereby offering an 

advantage over a material or spatial description. Therefore, a large deformation can be conveniently 

described together with a moving fluid boundary. 

In the ALE formulation, the conservation of momentum and mass for incompressible Newtonian 

fluids are represented by the Navier–Stokes equations and the continuity equation, as follows 
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where bi represents the body force. vi=vi(xi,t) is the material velocity field in the space coordinate 

system x, χ denotes the ALE coordinate system, and ρ is the partial derivative of the density in the 

ALE coordinate system. The ALE convective velocity 
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is the difference between the material velocity v and the mesh velocity v . 

The constitutive equation for a Newtonian fluid can be written as 

 ijijij p    (3) 

where the deviatoric stress is given by ijkkijij ss  2 , ))/()/((2/1 ijjiij xvxvs  . 

The first term on the right-hand side of Eq. (3) is defined by an equation of state (EOS) in the 

simulation. In this study, we consider a weakly compressible Newtonian fluid for which the viscous 

stress λδijskk is approximately zero and is thus neglected. The second term on the right-hand side of 

Eq. (3) only includes the shear stress 2μsij. Thus, Eq. (3) can be rewritten as 

 ijijij sp  2   (4) 

where μ is the kinematic viscosity which is a constant value for a Newtonian fluid. 

The constitutive equation for the fluid flow is composed of the EOS and the material model. The 

EOS defines the volumetric compression (or expansion) behavior of the fluid, and the material 

model defines the relationship between the shear stress and the shear strain rate. The Gruneisen 

equation and a polynomial equation of state are chosen as the EOSs for water and air, respectively. 

 

2.2 Explicit dynamic analysis 
 

The equation of motion for the nonlinear case at time tn is given by 

 nnnnn PUFUCUM  )(int   (5) 

395



 

 

 

 

 

 

Yun-Feng Lou, Chuan Luo and Xian-Long Jin 

where M is the mass matrix; C is the damping coefficient matrix; Pn accounts for the external and  

body force vector; int
nF is the internal force vector; and nU , nU ,and nU are the acceleration,  

velocity and displacement vectors, respectively. Eq. (5) can be integrated using an explicit central 

difference integration rule and is rewritten as follows 

   nnnnn UFUCPMU int1     (6) 

The velocities and displacements are updated in each time step as follows 

 nnnn UtUU    2/12/1   (7) 

 2/12/11   nnnn UtUU   (8) 

where Δtn=(Δtn+Δtn+1)/2 

The explicit integration scheme improves the computational efficiency by using a diagonal mass 

matrix because it is trivial to invert the mass matrix in Eq. (6). One of the disadvantages of this 

explicit integration procedure is that the stability of the scheme depends on the time step size. For 

numerical stability, the calculation time step size must be smaller than the critical time step Δtcr, 

which is determined by the characteristic length of the element and its material properties. For 

constant strain and rate-independent materials, the critical time step can be calculated using

)/(min ee
e

ct clt  , where le is the characteristic length of the element and ce is the wave speed in the 

element. 

The destabilizing effects of nonlinearities are accounted for by introducing a reduction factor Ts, 

where Δtn=TsΔtct. This reduction factor should satisfy 0.67≤Ts≤0.90. In this study, we choose 

Ts=0.80 to account for the high contact nonlinearities in the wave impaction simulation. 

The set of ALE equations is usually solved for using an operator-split procedure. Each time 

increment from t to t+Δt is divided into two successive steps. 

The procedure over the first time increment is performed exactly as in the classical Lagrangian 

case. In the Lagrangian step, the mesh follows the material ( i
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equilibrated Lagrangian configuration is obtained. 

The second step, which is called an Eulerian step, is divided into two substeps: an appropriate 

mesh velocity is defined by relocating each node of the mesh to a more suitable position, followed 

by transferring the data from the old mesh configuration to the new configuration. This new 

configuration of the nodes is called an Eulerian configuration. 

 

2.3 Fluid structure interaction 
 

In this study, we account for the dynamic response of the structure to the wave impact. Thus, the 

deformation of the breakwater structure is described by Eq. (9) using a constitutive equation for St. 

Venant‟s elastic bodies 
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Fig. 1 Wave-structure coupling algorithm 

 

 

where X denotes the Lagrangian coordinate, ρs is the density of the structure, fi is the body force, and 

u is the displacement of the structure. 

The FSI problems in this study are solved using a penalty-based finite element method in 

conjunction with ALE. Eqs. (1), (2) and (9) are coupled under the following conditions to obtain 

geometric compatibility and mechanical equilibrium on the FSI interfaces 
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 0 sf FF  (11) 

where Ff and Fs are the interaction forces acting on the FSI interfaces. 

In this study, the penalty method is chosen to calculate the interaction forces because it is known 

to be the simplest and most efficient method for solving this problem. Moreover, the penalty method 

guarantees energy conservation. 

The penalty-based coupling system is shown in Fig. 1. The underlying concept of the penalty 

method is to track the relative displacements between the corresponding coupling nodes on the 

structure surface and inside the ALE fluid elements. In the penalty method, a coupling force is 

introduced between the fluid and the structure. The coupling force is defined to be proportional to 

the penetration depth and the contact rigidity. 

To reduce numerical oscillations, a viscous damper system is included to damp out high 

frequencies. The coupling force can be calculated using the Eq. (12) 

 Z
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                            (12) 

where ξ is the damping coefficient; )()( fsfs mmmmk  ; k is the contact rigidity; and Z 

represents the penetration for which an iterative solution is obtained using the following equation 

 2/12/12/11 )(   n
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where c
nV 2/1

and s
nV 2/1

are the velocities of the coupling points in the ALE and the Lagrangian 

body, respectively. 

The primary difficulty associated with this coupling involves the evaluation of the stiffness 
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coefficient k. In an explicit contact algorithm, this coefficient can be calculated as 
iii VAKk 2 . 

Here, Ki is the bulk modulus of the element; Ai is the element area; Vi is the element volume; and α is 

the scale factor. For numerical stability, the scalar factor should satisfy 0≤α≤1. In this study, we 

choose α=0.5 to ensure the dynamic coupling stability and prevent leakage. At the same time, we 

adjust the number of coupled integral points and the minimum fluid volume fraction in an ALE 

element to activate coupling. 

 

 

3. Physical tests 
 

The experimental studies are conducted on an irregular wave flume at the Zhejiang Institute of 

Hydraulics and Estuary. The wave flume is 70 m long, 1.2 m wide and 1.2 m deep and is equipped 

with a push plate-type wave generator at one end. The Froude number MM gLV and the Strouhal 

number VMTM/LM are used to scale the physical model to the actual model. Considering the height of 

the breakwater, the wave characteristics, the water depth, the flume size, etc., a model scaling of 25 

is used. A schematic of the experimental breakwater cross section is shown in Fig. 2, and a 

photograph of the experimental breakwater is shown in Fig. 3. Eight pressure gauges are placed on 

the seawalls to record the time history of the water impact pressure. The sampling frequency is set to 

1000 Hz, and the gauge locations are indicated by circular symbols in Fig. 2. The experiments are 

recorded by a high-speed video camera to obtain a qualitative understanding of the 

water-on-breakwater event. 

 

 

 

Fig. 2 Schematic of the breakwater cross section 

 

 

Fig. 3 Photograph of breakwater model used in this study 
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Numerical simulations of interactions between solitary waves and elastic seawalls... 

In the experiment, a push plate wave maker is used for wave generation. The wave maker motion 

must first be obtained. The theoretical solution for a solitary wave of finite amplitude that 

propagates without a change in shape is given by 

)](43[sec 32 CtxdHhH   

 )( dHgC 
                              

(14) 

The following equations are satisfied at the wave maker surface 

 ),( txudtdS  ， Sx   (15) 

 )],([),(),( txdtxCtxu    (16) 

where, S is the displacement of the wave maker, and ū(x,t) is the average speed in the x-direction. 

The equation of the actual wave maker motion can be obtained by integrating Eq. (15) 
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In the equations above, H is the height of the wave with respect to the unperturbed surface, d is 

the depth from the bottom to the unperturbed surface, g is the acceleration due to gravity, ρ is the 

density of water, and η is the elevation of the free surface. This quasi-analytical solution will be 

compared with the numerical results. 

 

 

4. Model description 
 

The experimental results are used to develop a three-dimensional simulation model of the 

breakwater-flume coupling system. The breakwater is constructed using an eight-node hexahedron 

solid element. The minimum grid spacing of the structure is 5 mm. The friction between the 

structures is modeled using the Coulomb friction law. The static and dynamic friction coefficients 

are 0.3 and 0.25, respectively. Table 1 presents the material parameters of the coupling model. In the 

ALE formulation, the fluid domain (i.e., water and air) is discretized using eight-node hexahedron 

elements. The ALE elements around the breakwater and the free surface are intensively meshed. The 

total numbers of nodes and elements are 592,645 and 544272, respectively. 

 

 
Table 1 Model material parameters 

Part Density (kg/m
3
) Elastic modulus (Pa) Poisson ratio 

Seawall 2.40×10
3
 2.00×10

10
 0.15 

Surface protection structure 2.40×10
3
 2.00×10

10
 0.15 

Rubble mound 2.00×10
3
 5.00×10

10
 0.30 

 Initial destiny 
Coefficient of kinematic 

viscosity 

Sound speed 

in water 

Water 1.00×10
3
 kg/m

3
 8.68×10

-4
Pa·s 1.48×10

3
 m/s 
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Fig. 4 Experimental model of breakwater - flume coupling system 

 
Table 2 Solution times 

Test series Ts

 
α 

Minimum grid spacing 

of ALE/Structure[m] 

Number 

of CPUs 

Time 

step [s] 

Termination 

time [s] 

Solution CPU 

time [h] 

Experimental 

Model 
0.8 0.5 

0.004/0.005 32 1.07e-6 4 93.33 

0.004/0.005 48 1.07e-6 4 76.67 

Local Model 0.8 0.5 
0.1/0.125 32 3.33e-5 20 24.67 

0.1/0.125 48 3.33e-5 20 20.89 

Large-scale 

Model 
0.8 0.5 0.1/0.125 48 3.33e-5 60 108.38 

 

 

To conserve CPU time, a numerical tank is used that is smaller than the physical wave tank. The 

resulting 10 m×1.2 m×1.2 m numerical wave flume model is shown in Fig. 4. The boundary 

conditions are also shown in Fig. 4. Table 2 summarizes the solution times required for various mesh 

sizes (de) and calculation parameters. 

The interaction between a solitary wave and a whole coastal breakwater is numerically 

simulated using a large-scale breakwater. The configuration of the whole coastal breakwater is 

illustrated in Fig. 5, and the corresponding geometric model is shown in Fig. 6(a). The finite element 

models for the large-scale breakwater-wave coupling are shown in Figs. 6 (b) and (c). The grid sizes 

of the breakwater and the ALE of the coupling region in the axial direction are 0.375 m and 0.3 m, 

respectively. The ratio of the element length to the width does not exceed 4. Other regions in the 

model are carefully meshed in this study. Most of the elements are brick elements, and the angles of 

these elements are controlled between 45° and
 
135°. The number of nodes and elements are 

1635994 and 1530024, respectively. The calculation costs approximately 108.38 h with 48 CPUs on 

a Dawning 5000A supercomputer, as shown in Table 2. 
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Fig. 5 Scheme of large-scale breakwater - wave coupling model 

 

 

Fig. 6 Large-scale model of breakwater - wave coupling system 

 

 

5. Results and discussions 
 

The developed simulation model yields the interactions between solitary waves and the 

breakwater. Herein, we focus on analyzing the breakwater dynamic responses and the wave impact 

pressure. The numerical results are first compared with the experimental measurements to validate 

the effectiveness of the simulation model. Then, the ALE method is applied to a practical 

engineering problem. A local breakwater - wave coupling model, which is proportional to the 

prototype of the physical model, and a large-scale breakwater - wave coupling model are used for 

this analysis. The coupling model is used to study the pressure distribution on the wall and the 

effects of the seawall stiffness and the structural configurations on the wave loads. Table 3 

summarizes the different conditions for the applications, which include the water depth Hw, the 

breakwater width D, the front seawall elevation relative to the breakwater top Hf, the rear seawall 

elevation relative to the breakwater top Hr, and the wave height Hm. 
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Table 3 Test conditions 

Test series Configuration Wave height Hm [m] 

Experimental model 
Hf=0.048 m, Hr=0.1 m, 

Hw=0.4 m, D=0.56 m 
0.144 

Local model 

Stiffness discussion 
Hf=1.2 m, Hr=2.5 m, 

Hw=10 m, D=14 m 
3.6 

Elevation discussion 

Hf=1.2 m; 0.8 m; 0.4 m; 0 m, 

Hr=2.5 m; 2.75 m; 3.0 m, 

D=14 m, Hw=10 m 

3.6 

Width discussion 
Hf=1.2 m, Hr=2.5 m, 

D=10 m; 14 m; 18 m, Hw=10 m 
3.6 

Large-scale model 
Hf=1.2 m, Hr=2.5 m, 

Hw=10 m, D=14 m 
3.6 

 

 

Fig. 7 Comparison between numerical and analytical solutions for solitary wave propagation 

 

 

5.1 Method validation 
 

In this section, the numerical simulation is validated by comparing the numerical results with 

those from the analytical solution and the physical tests under the same wave conditions (i.e., 

Hm=0.144 m and Hw=0.4 m). This wave condition is chosen to simulate the response of the 

breakwater when subjected to extreme waves under realistic conditions. 

In the following section, the results for the wave free surface elevation, the wave evolutionary 

courses, and the impact pressure acting on the pressure gauges which faces the incoming waves are 

presented and discussed. 

Before the breakwater simulations are conducted, simulations are performed without the 

structure to compare the undisturbed wave elevation with the theoretical solution. The wave profiles 

at the same time instant are compared in Fig. 7. The simulation results are in good agreement with 

the analytical solutions for the range of values over which the analytical solutions are valid. The 

compared simulation results include the height and shape of the wave. 

Fig. 8 shows spatial snapshots of the waves during the evolutionary courses. It includes four 

wave evolutionary stages: a wave on a sloping beach; water impacting the front wall; water 

impacting the rear wall and the overtopping of the breakwater. The images obtained from the 

laboratory experiments and the numerical results are also plotted on the figure for comparison. The  
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Fig. 8 Qualitative comparison of wave evolution between simulation data (left column) and 

laboratory images (right column) 

 

 

Fig. 9 Comparison of impact pressure for different mesh sizes and coupling coefficients 

 

 

figures show that the wave approaching the breakwater does not break. The front vertical seawall 

deflects the wave upward, and the wave evolves into an overtopping flow. Then, the upper fluids 

directly cross the rear wall. This motion generates a transient splash-up for the reflected jet that is 

not fully developed. Finally, the fluid violently impacts the rear wall, and then the overtopping of the 

breakwater. Despite this extremely violent phenomenon, the simulation results are in good 

agreement with the experiment results. 
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Fig. 10 Comparison between numerical results and experimental results for time history of impact 

pressure along windward seawall surface 

 

 

Fig. 9 shows the impact pressure at point a2 for various mesh sizes (de). The figure shows that the 

pressure time history produced by the present method with coupling-damping factor is quite 

smooth. The large elements used near the coupling region favorably affect the time step required for 

the explicit time integration. Nevertheless, these large elements are unsuitable for calculating wave 

impact pressures. The agreement between the results may be improved by increasing the ALE mesh 

density near the breakwater. The coupling-damping factor that is introduced in this procedure results 

in a relatively smooth pressure time history, which is crucial for successfully simulating the 

wave-structure interaction. 

Fig. 10 compares the time histories obtained from the simulations and experiments for the impact 

pressure along the weatherside seawall surface. The numerical results agree well with the laboratory 

data. The hydrostatic pressure values at points a3 and a4 are 380 Pa and 785 Pa, respectively. These 

values are very close to the theoretical results. 

 

5.2 Application to local breakwaters and discussion 
 

5.2.1 Structural response effects 
Fig. 11 shows the pressure time history on the seawall at points a2 and b4. The figure also shows 

the corresponding results for a rigid breakwater with the same size and configuration. The time 

history indicates that for an elastic seawall, the pressure at b4 reaches a maximum value of 

approximately 126.25 kN/m
2
 at 13.05 s, whereas the impact pressure for a rigid wall is 

approximately 160.33 kN/m
2
 at 13.05 s. Thus, the ratio of the maximum pressure of the rigid plate to 

that of the elastic plate is approximately 1.27. This phenomenon is observed both in our simulation 

and with a MLPG_R model, as has been reported by (Sriram and Ma 2012). 

To analyze the wave pressure distribution, pressure impulses are non-dimensionalized as Pmax/ 

ρgHm, where Pmax is the maximum wave pressure. 

The maximum dimensionless pressure impulses on the front seawall for different elastic modulus 

values are plotted in Fig. 12(a) (Zf is the position relative to point F up the front seawall). The graph 

shows that the pressure impulses on the front seawalls attain their maximum values at the still water 

level (SWL). As anticipated, the impact load on the wall is inversely proportional to the elasticity of 

baffle; the impact load of the fluid on the wall increases as the elastic modulus of the baffle  
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Fig. 11 Pressure time history at a2 and b4 

 

 

Fig. 12 Comparison between numerical results for pressure impulse distribution up the seawalls 

 

 

decreases. This result is obtained because a less flexible baffle can absorb a greater amount of fluid 

momentum (Rafiee and Thiagarajan 2009). 

The maximum pressure impulses on the rear seawall for different elastic modulus values are 

plotted in Fig. 12(b) (Zr is the position relative to the top of the breakwater up the rear seawall). The 

graph shows that the structural response weakens the impact pressure on the rear wall relative to the 

front wall. One possible explanation is that the structural response affects the wave pressure 

differently for a spill-way impact than for a violent impact. 

 

5.2.2 Seawall elevation effects 
In this section, the effect of the seawall elevation on the wave pressure is numerically 

investigated by varying the elevations of the front and rear seawalls. 

The results shown in Figs. 13(a) and (b) include the wave pressure on both the front and rear 

seawalls, respectively, and the horizontal force on the rear seawall (see Fig. 13(c)). The calculations 

are performed for the same wave condition with various elevations of the front seawall: Hf=1.2, 0.8, 

0.4, and 0. Fig. 13(a) shows the maximum dimensionless pressure impulses on the front seawall. 

The impact pressures at the SWL increase when the elevation of the front seawall is decreased. In 

contrast, the impact pressures at the bottom decrease as the elevation of the front seawall decreases.  
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Fig. 13 Pressure impulse and thrust distribution up the front and rear walls 

 

 

Fig. 13(b) shows the maximum pressure impulses on the rear seawall. The results show that the 

pressure at the bottom is more sensitive to the change in the elevation of the front wall than the 

pressure at the top of the rear seawall. 

Fig. 13(c) represents the horizontal force on the seawalls for different seawall elevations. In this 

study, the total horizontal forces (Fh) on the wall are computed as follows 

 



4

1k
kh ZPF                               (18) 

where Pk 
are the numerical pressures at the key points (a1, a2, a3, a4, b1, b2, b3, and b4), and ΔZ is 

the distance up the wall between two key points 

It is obvious that decreasing the elevation of the front seawall decreases the maximum horizontal 

forces on the front seawall from 480.86 kN to 334.37 kN. However, the maximum horizontal forces 

on the rear seawall increase from 251.08 kN to 326.41 kN. For the same elevation of the front 

seawall, the maximum horizontal forces of the rear seawall increase as the elevation of the rear 

seawall increases from 2.5 m to 3.0 m. In general, the front seawall protects the rear seawall. 

Additionally, on the premise of the wave overtopping satisfaying the design requirements, the 

elevation of rear seawall should be as low as possible. 

 

5.2.3 Breakwater width effects 
In this section, the effect of the breakwater width on the wave pressure is investigated 

numerically. 
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Fig. 14 Stress response of rear wall structure 

 

 

Fig. 15 Snapshots of wave-breakwater interactions 

 

 

The maximum pressure impulses on the rear seawall for various breakwater widths are plotted in 

Fig. 13(d). The plot shows that increasing the breakwater width by 4 m based on the design width, 

decreases the maximum impact pressure on the rear wall by approximately ten percent. However, if 

the breakwater width decreases by 4 m based on the design width, the maximum impact pressure on 

the rear wall increases by approximately sixty-four percent. 

Fig. 14 shows the maximum stress curves of the breakwater structure for different breakwater 

widths. The graph shows that the maximum stress for the structures is reached at different times. The 

figure clearly shows that the structures quiver from the impact of the fluid, and the stress of the 

structure decreases when the breakwater width increases. 

 

5.3 Application to large-scale breakwaters 
 

Fig. 15 shows three-dimensional snapshots of the wave-breakwater interactions. The figure 

clearly shows the generation of a solitary wave and that the position of the maximum stress moves  
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Fig. 16 Maximum wave pressure and structural stress 

 

 

along with the propagating wave. The maximum impact stress is located at the bottom of the rear 

wall, and its horizontal distribution is shown in Fig. 16(a). 

The horizontal distributions of the maximum wave pressure on the seawalls are shown in Figs. 16 

(b) and (c). In Fig. 16(b), two peaks appear on the pressure curve of the front wall at A4 and A11. 

The peaks are located just at the junctions of the curved and straight segments where the structure 

axis directions change suddenly. In the computational results, a peak in the pressure curve of the rear 

wall appears at B6, as shown in Fig. 16(c). The wave overtopping and wave flow along the 

breakwater axial direction upon the breakwater top cause the wave pressures to undergo a sharp drop 

after the first curved segment. Finally, the wave impacts the breakwater vertically. The wave 

pressure at the recorded points (B14-B17) increases monotonically to 120 KPa and remains constant 

at this level. 

 

 

6. Conclusions 
 

The ALE method is applied to numerically simulate the interaction between waves and elastic 

breakwaters. In this method, the fluid and structure are described using a multi-material ALE 

scheme and a Lagrangian scheme, respectively. The ALE method is combined with an explicit 

integration scheme, and the Newtonian fluid is assumed to be weakly compressible. The penalty 

method is used to investigate the interaction between the fluid and the breakwater and the dynamic 

contact between the structures. 

A numerical breakwater-flume coupling model, which replicates the physical model, and a 

large-scale breakwater - wave coupling model are developed in Hypermesh. The propagation of the 
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solitary wave and its interaction with the breakwater are reproduced using LS-DYNA MPP on the 

Dawning supercomputer. The numerical approaches and the model are validated using experimental 

and theoretical data. The following conclusions are drawn from this study. 

• The approaches and models employed in this paper provide an effective way of predicting the 

wave pressure and the dynamic responses of the breakwater. 

• A local breakwater - wave coupling FE model is used to determine the vertical distribution of 

the maximum wave pressure on both the front and rear seawalls. The structural response effect 

increases the spill-way impact load of the fluid on the front seawall. In contrast, the structural 

response decreases the pressure from the violent impact at the rear seawall.  

• The effects of the seawall elevation and breakwater width are studied. The front seawall and 

the embankment top protect the rear seawall. Especially when the breakwater width decreases, the 

wave pressure and the structural stress of the rear wall are increased significantly. Additionally, on 

the premise of the wave overtopping satisfaying the design requirements, the elevation of rear 

seawall should be as low as possible. 

• The horizontal distributions of the wave pressures and the structural stress exhibit two primary 

peaks at the curved segments. The maximum pressure appears at the junctions of the curved and 

straight segments similarly to the breakwater stress. The numerical simulation shows that the 

position of the maximum stress moves along with the propagating wave. 
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