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Abstract.  The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic 
thermoelastic medium subjected to gravity field.  The theory of generalized surface waves has firstly 
developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, 
Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and 
temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave 
velocity equations have been obtained in different cases. The numerical results are given and presented 
graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the 
results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibre-
reinforced  of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times 
and parameters for fibre-reinforced  of the material medium are very pronounced. 
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1. Introduction 
 

The dynamical problem of propagation of surface waves in a homogeneous and non-

homogeneous elastic and thermoplastic media are of considerable importance in earthquake, 

engineering and seismology on account of the occurrence of non-homogeneities in the earth's 

crust, as the earth is made up of different layers. Abd-Alla et al. (2011) investigated the 

propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under 

initial stress and gravity field. Stoneley and Rayleigh waves in a non-homogeneous orthotropic 

elastic medium under the influence of gravity has been investigated by Abd-Alla and Ahmed 

(2003). Abd-Alla (1999) studied the propagation of Rayleigh waves in an elastic half-space of 

orthotropic material. Abd-Alla and Ahmed (1999) investigated propagation of Love waves in a 

non-homogeneous orthotropic elastic layer under initial stress overlying semi-infinite medium.  

Rayleigh waves in a magnetoelastic half-space of orthotropic material under the influence of initial 
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stress and gravity field investigated by Abd-Alla, et al. (2004). Elnaggar and Abd-Alla (1989) 

studied Rayleigh waves in magneto-thermo-microelastic half-space under initial stress. Abd-Alla 

and Ahmed (1996) discussed Rayleigh waves in an orthotropic thermoelastic medium under 

gravity field and initial stress. Propagation of Rayleigh waves in a rotating orthotropic material 

elastic half-space under initial stress and gravity investigated by Abd-Alla et al. (2012). Wu and 

Chai (1994) studied the propagation of surface waves in anisotropic solids: theoretical calculation 

and experiment. Wu and Liu (1999) investigated the measurement of anisotropic elastic constants 

of fiber-reinforced composite plate using ultrasonic bulk wave and laser generated Lamb wave. 

The group velocity variation of Lamb wave in fiber reinforced composite plate studied by Rhee et 

al. (2007). Fu and Zhang (2006) investigated the continuum-mechanical modelling of kink-band 

formation in fibre-reinforced composites. Espinosa et al. (2000) discussed the  modeling impact 

induced delamination of woven fiber reinforced composites with contact/cohesive laws. Wave 

propagation in materials reinforced with bi-directional fibers presented by Weitsman and 

Benveniste (1974). Weitsman (1972) introduced the wave propagation and energy scattering in 

materials reinforced by inextensible fibers. Dai and Wang (2006) considered the stress wave 

propagation in piezoelectric fiber reinforced laminated composites subjected to thermal shock. 

Ohyoshi (2000) studied the propagation of Rayleigh waves along an obliquely cut surface in a 

directional fiber-reinforced composite. Rogerson (1992) investigated the Penetration of impact 

waves in a six-ply fibre composite laminate. Weitsrian (1992) studied the  reflection of harmonic 

waves in fiber-reinforced materials. Huang, et al. (1995) investigated the  effect of fibre-matrix 

interphase on wave propagation along, and scattering from, multilayered fibres in composites. 

Transfer matrix approach. Fu and Zhang (2006) discussed the continuum-mechanical modelling of 

kink-band formation in fibre-reinforced composites. Singh and Singh (2004) investigated the 

reflection of plane waves at the free surface of a fibre-reinforced elastic half-space. Sengupta and  

Nath (2001) studied the surface waves in fibre-reinforced anisotropic elastic media. Samal and 

Chattaraj (2011) studied the surface wave propagation in fiber-reinforced anisotropic elastic layer 

between liquid saturated porous half space and uniform liquid layer. Abd-Alla and Bayones (2011) 

studied the effect of rotation and initial stress on generalized thermoelastic problem in an infinite 

circular cylinder. Abd-Alla et al. (2011) investigated the effect of rotation and magnetic field on 

generalized thermo-viscoelastic in an infinite circular cylinder.  Chattopadhyay (2002) investigated 

the reflection of quasi-P and quasi-SV waves at the free and rigid boundaries of a fibre-reinforced 

medium. Singh (2007) discussed the wave propagation in an incompressible transversely isotropic 

fibre-reinforced elastic media. Singh (2005) studied the  wave propagation in thermally conducting 

linear fibre-reinforced composite materials. Abd-Alla et al. (2000) studied the thermal stresses in a 

non-homogeneous orthotropic elastic multilayered cylinder.  
Recently, Abd-Alla and Abo-Dahab (2012) investigated the rotation and initial stress effects on 

an infinite generalized magneto-thermoplastic diffusing body with a spherical cavity. Abouelregal 
and Abo-Dahab (2012) discusses the dual phase lag model on magneto-thermoelasticity infinite 
non-homogeneous solid having a spherical cavity. 

The aim of this paper is to study  the propagation of surface waves in fibre-reinforced 
anisotropic thermoelastic medium subjected to gravity field leading to particular cases such as 
Rayleigh waves, Love waves and Stoneley waves. The temperature, displacement and stress are 
obtained in the physical domain by using the harmonic vibrations.The effects of the gravity, 
relaxation time, anisotropy and parameters for fibre-reinforced  of the material medium on surface 
waves are studied simultaneously. The numerical result displayed by figures and the physical 
meaning are  explained.The results and discussions presented in this study may be helpful to 
further understand fibre-reinforced anisotropic thermoelastic medium. 
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Fig. 1 Schem atic of the problem 

 

 

2. Formulation of the problem 
 

Let us consider a system of anisotropic Cartesian axes Oxyz, M1 and M2 be two fibre-reinforced 

elastic anisotropic semi-infinite solid media. Let O be the any point of the plane boundary and Oz 

points vertically downward to the medium M1. They are perfectly welded in contact to prevent any 

relative motion or sliding before and after the disturbances and that the continuity of displacement, 

stress etc. hold good across the common boundary surface. Further the mechanical properties of 

M1 being different from those of M2. These media extend to an infinite great distance from the 

origin and are separated by a plane horizontal boundary and M2 is to be taken above M1. We 

consider the possibility of a type of wave travelling in the direction Ox, in such a manner that the 

disturbance is largely confined to the neighborhood of the boundary and at any instant, all particles 

in any line parallel to y-axis have equal displacements. These two assumptions conclude that the 

wave is a surface wave and all partial derivatives with respect to y are a zero. Further, let us 

assume that u,v,w are the components of displacements at any point (x,y,z) at any time t. It is also 

assumed that gravitational field produces a hydrostatic initial stress is produced by a slow process 

of creep where the shearing stresses tend to become smaller or vanish after a long period of time as 

shown in Fig. 1. 

The equilibrium conditions of the initial stress field (Ohyoshi 2000) 

0, 0.g
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The stress-temperature equation is given by Rogerson (1992) 
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The dynamical equations of motion for three dimensional elastic solid medium under the 

influence of initial stress and gravity (Weitsrian 1992) 
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The constitutive equations for a fibre-reinforced linearly thermoelastic anisotropic medium 

with respect to a preferred direction a


 are Huang et al. (1995) 
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where, τ is a function of depth, ρ is density of the material, K is thermal conductivity, cv is specific 

heat of the material per unit mass, τ1, τ2 are the thermal relaxation parameter, γ=αt(3λ+2μT), αt is 

the coefficient of linear thermal expansion, λ, μT are elastic parameters, θ is the absolute 

temperature, T0 is the reference temperature solid, T is the temperature difference (θ−T0), g be the 

acceleration due to gravity and τij= τji ,  i,j are the stress components, eij=1/2(ui,j+uj,i) are 

components of strain; α, β, (μL−μT) are reinforced anisotropic elastic parameters; a


=(a1, a2, a3), 

12
3

2
2

2
1  aaa . If a


has components that are (1, 0, 0) so that the preferred direction is the x-axis, 

(6) can be written as follows 
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Introducing Eq. (7) into Eqs. (3)-(5), we have 
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    By Helmholtz's theorem (Fu and Zhang 2006), the displacement vector u


 can be written in the 

displacement potentials ϕ and ψ form, as 

  curlgradu   ,  )0,,0(                                            (11) 

280



 

 

 

 

 

 

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field 

  

which reduces to 

, .u w
x z z x

      
   
   

                                                    (12) 

The component v is associated with purely distortional movement. We note that ϕ, ψand are 

respectively associated with P waves. SV waves and SH waves. The symbols have their usual 

significances. 

Now using Eq. (12) in Eqs. (8)-(9) we obtain the following wave equation in M1 satisfied by ϕ 

and ψas 

,)1()2()242(
2

2

12

2

2

2

t
T

tx
g

zx
LTL




































         (13) 

,)(
2

2

2

2

2

2

2

2

t

v
v

zxx

v
TTL



























                                            (14) 

.)23(
2

2

2

2

2

2

tx
g

zx
LTL































                                  (15) 

         Substituting from Eq. (12) into Eq. (2), we obtain  
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3. Solution of the problem 
 

Since we consider the propagation of surface waves in the direction of x only, we restrict our 

attention only to Eqs. (13)-(16), which their solutions take the form  
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Using Eqs. (17) in (13-16), we get a set of differential equations for medium M1 as follows 
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and those of the medium M2 are given by 
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Eliminating the temperature Θ from Eqs. (22) and (25), we obtain 
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Using Eq. (19) and Eq. (26), we get 
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where, the constants Dj and Ej are related to the constants Bj and Cj in the form 
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From Eqs. (28) and (29) in Eq. (18), we get 

][)(
1 2

2

222

1

3

1
2

3

zi

j

zi

jjj
j

jj eCeBNmm
m








  .                          (32) 

where, λ1, λ2 and λ3 are taken to be the complex roots of the equation  
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Since the solutions in order Φ, Ψ, V and Θ will describe surface waves, they must become 

vanishing as z→∞, hence for medium M1 
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and for medium M2 
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Finally from Eq. (17), and substituting from Eqs. (35)-(38), we have 
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4. Boundary conditions 
 

The boundary conditions for the  problem are 

(i) The displacement components at the boundary surface between the media M
1
 and M

2 must 

be continued at all times and positions. 

i.e.,  [u, , w] M1
  = [u, , w] M2

                 at z=0  

(ii) The stress components 
31

, 
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 and 
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 must be continuous at the boundary z=0. 

i.e.,       [
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] M1
= [

31
, 

32
, 

33
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,      at z=0   

(iii) The thermal boundary conditions must be continuous at the boundary z=0. 

i.e.,         
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Applying the boundary conditions (i)-(iii), we have 
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From Eqs. (50) and (53), we have G=G′=0. Thus, there is no propagation of displacement v. 

Hence SH-waves are decoupled in this case. The constants Cj and C′j we can determinate where 

j=1,2,3  

Finally, eliminating the constants Cj and C′j from Eqs. (49), (51), (52), (54), (55) and (56), we 

get 

       
6,5,4,3,2,1,,0)det(  jia

ij  
(57) 

From Eq. (57), we get the velocity of surface waves in common boundary between two fibre-

reinforced anisotropic semi-infinite thermoelasticity solid media under the influence of gravity. 

Since the wave velocity c obtained from (57) depends on the particular value of ω which indicates 

the dispersion of the general wave form and in the gravity field, imposing a certain changes in the 

waveform.  

We discuss this case and special cases in two models as the following: 

(I)  Lord-Shulman (1967)-model (τ1=0, τ2>0, δ=1)  

(II) Green-Lindsay (1972)-model (τ1≥τ2>0, δ=0). 

The discussion is clear up from Figs. 1- 4. 

 

 

5. Special cases of surface waves 
 

5.1 Anisotropic generalized thermoelastic medium with gravity  
 

Stoneley Waves:  It is the generalized form of Rayleigh waves in which we assume that the 

waves are propagated along the common boundary of two semi-infinite media M1 and M2. 

Therefore, Eq. (57) determines the wave velocity equation for Stoneley waves in anisotropic 
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Fig. (2) Variation of surface wave velocity with respect to the wave number under effect of g 
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Fig. 3 Variation of surface wave velocity with respect to the wave number under effect of τ2 
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(I) LS-model (τ1=0, τ2>0, δ=1) (II) GL-model (τ1≥τ2>0, δ=0) 

Fig. 4 Variation of Rayleigh waves velocity with respect to the wave number under effect of g 

 

 
fibre- reinforced solid thermoelastic media under the influence of gravity. 

Rayleigh waves: To investigate the possibility of Rayleigh waves in anisotropic fiber-

reinforced elastic media, we replace the medium M2 by vacuum, in the preceding problem. Since 

the boundary z=0 is adjacent to vacuum, it is free from surface traction. So the stress boundary 

condition in this case may be expressed as τ31=0, τ33=0 and T=0 on z=0, i.e., the boundary 

conditions as 
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(I) LS-model (τ1=0, τ2>0, δ=1) (II) GL-model (τ1≥τ2>0, δ=0) 

Fig. 5 Variation of Rayleigh waves velocity with respect to the wave number under effect of τ2 
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Fig. 6 Variation of Love wave velocity with respect to the wave number under effect of g 
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(I) LS-model (τ1=0, τ2>0, δ=1) (II) GL-model (τ1≥τ2>0, δ=0) 

Fig. 7 Variation of Love wave velocity with respect to the wave number under effect of τ2 
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(I) LS-model (τ1=0, τ2>0, δ=1) (II) GL-model (τ1≥τ2>0, δ=0) 

Fig. 8 Variation of surface wave velocity with respect to the wave  number under effect of g 

 

 

In this case , the velocity of Rayleigh waves can be determined from 

3,2,1,,0)det(  jia
ij

                                                     (61) 

Love waves:  

For the existence of Love waves, we consider a layered semi-infinite medium, in which M1 is 

obtained by two horizontal plane surfaces, a finite distance H apart, in this case we can put the 

stress boundary condition equal zero on z=H. 
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(I) LS-model (τ1=0, τ2>0, δ=1) (II) GL-model (τ1≥τ2>0, δ=0) 

Fig. 9 Variation of surface wave velocity with respect to the wave number under effect of τ2 

 

 

5.2 Isotropic generalized thermoelastic medium with gravity 
 

In this case, substituting μL=μT=μ, γ=αt(3λ+2μ) and β=0 in Eq. (57), we obtain the surface 

waves in fibre-reinforced isotropic solid thermoelastic medium with gravity. 

 

 

6. Numerical results and discussions 
 

The following values of elastic constants are considered Singh (2005) and Chattopadhyay et al. 

(2002), for mediums M1 and M2 respectively. 
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The numerical technique outlined above was used to obtain surface wave velocity and with 

respect to wave number under the effects of gravity and thermal relaxation time parameter  in two 

models. For the sake of brevity,some computational results are being presented here. 

The variations are shown in Figs. 2-9 respectively. 

Fig. (2): shows the variations in the value of velocity of surface waves u with respect to wave 

number, which it has oscillatory behavior  with gravity  in the whole range of the wave number.  

Both figures indicate that the medium along wave number ξ in two models Lord-Shulman and 
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Green-Lindsay undergoes expansion deformation because of thermal shock while the other 

compressive deformation. The effect of gravity g on surface wave velocity, which it shifts from the 

positive into the negative gradually. At a given instant, the velocity of surface waves is finite, 

which is due to the effect of gravity. It is noticeable that the velocity of surface  wave in LS-model  

increases with increasing the values of g, while it decreases with increasing the values of g, as well 

it decreases with increasing of the value of  wave number ξ until approaching to zero. 

Fig. (3): shows the variations in the value of velocity of surface waves u with respect to wave 

number, which it has oscillatory behavior  with relaxation time τ2 in the whole range of the wave 

number. Both figures indicate that the medium along wave number ξ in two models Lord-Shulman 

and Green-Lindsay undergoes expansion deformation because of thermal shock while the other 

compressive deformation. The effect of relaxation time τ2 on the velocity of Surface waves 

becomes large while the effect of the relaxation time on surface wave velocity, which it shifts from 

the positive into the negative gradually. At a given instant, the velocity of Surface waves is finite, 

which is due to the effect of  relaxation time. It is noticeable that the velocity of surface  wave in 

LS-model increases  with increasing the values of τ2, while it decreases in the GL-model, as well it 

decreases with increasing of the value of  wave number ξ until approaching to zero. A high 

velocity variation of surface waves was found to exist within the LS-model and GL-model. 

Fig. (4): shows that the  variation of Rayleigh wave velocity with respect to wave number 

under the effects of  gravity in two models Lord-Shulman model and Green-Lindsay model. The 

value of the velocity of Rayleigh waves u  has oscillatory behavior with gravity in the whole range 

of the wave number. Both figures indicate that the medium along wave number ξ in two models 

Lord-Shulman and Green- Lindsay undergoes expansion deformation because of thermal shock 

while the other compressive deformation. The effect of gravity g on Rayleigh wave velocity, 

which it shifts from the positive into the negative gradually. At a given instant, the velocity of 

Rayleigh waves is finite, which is due to the effect of gravity. It is noticeable that the velocity of 

Rayleigh  waves in two models  decreases with increasing the values of g, as well it decreases with 

increasing  of the value of  wave number ξ until  approaching to zero. It is found that in LS- model 

the values of Rayleigh wave velocity are a semi-stable with increasing  values of g. 

Fig. (5): shows that the variation of Rayleigh wave velocity with respect to wave number  

under the effects of  relaxation time τ2 in two models Lord-Shulman model and Green-Lindsay 

model. The value of the velocity of Rayleigh waves u  has oscillatory behavior with relaxation 

time in the whole range of the wave number. Both figures indicate that the medium along wave 

number ξ in two models Lord-Shulman and Green-Lindsay undergoes expansion deformation 

because of thermal shock while the other compressive deformation. The effect of relaxation time 

on Rayleigh wave velocity, which it shifts from the positive into the negative gradually. At a given 

instant, the velocity of Rayleigh waves is finite, which is due to the effect of  relaxation time. It is 

noticeable that the velocity of surface  wave in LS-model increases  with increasing the values of 

τ2 , while it decreases in the GL-model, as well it decreases with increasing of the value of  wave 

number ξ until approaching to zero. A high velocity variation of Rayleigh waves was found to 

exist within the LS-model and GL-model. 

Fig. (6): shows that the variation of Love waves velocity with respect to wave number under 

the effects of  gravity  in two models Lord-Shulman model and Green-Lindsay model. The values 

of the velocity of Love waves u have an oscillatory behavior  with gravity  in the whole range of 

the wave number. Both figures indicate that the medium along wave number ξ in two models 

Lord-Shulman and Green-Lindsay undergoes expansion deformation because of thermal shock 

while the other compressive deformation. The effect of gravity g on Love wave velocity, which it 
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shifts from the positive into the negative gradually. At a given instant, the velocity of Love waves 

is finite, which is due to the effect of gravity . It is noticeable that the velocity of Love  waves in 

two models  increases with increasing the values of g, while it  decreases with increasing  of the 

values of  the wave number ξ until approaching to zero.  

Fig. (7): presents the variation of Love waves velocity with respect to wave number under the 

effects of  relaxation time τ2 in two models Lord-Shulman model and Green-Lindsay model.  The 

value of the velocity of Love waves u has oscillatory behavior  with  relaxation time in the whole 

range of the wave number. Both figures indicate that the medium along wave number ξ in two 

models Lord-Shulman and Green-Lindsay undergoes expansion deformation because of thermal 

shock while the other compressive deformation. The effect of relaxation time on Love wave 

velocity, which it shifts from the positive into the negative gradually. At a given instant, the 

velocity of Love  waves is finite, which is due to the effect of  relaxation time. It is noticeable that 

the velocity of Love waves in LS-models  coincides with increasing the values of τ2, while it 

increases with increasing of the value of wave number ξ, as well the values of Love wave velocity 

in GL-model increases with increasing of relaxation time until  approaching to zero with the wave 

number. A high velocity variation of Love waves was found to exist within the GL-model. 

Fig. (8): shows  that the variation of the value of the velocity of surface waves u with respect to 

wave number, which it has an oscillatory behavior with gravity in the whole range of the wave 

number in an isotropic case. Both figures indicate that the medium along wave number ξ in two 

models Lord-Shulman and Green-Lindsay undergoes expansion deformation because of thermal 

shock while the other compressive deformation. The effect of gravity g on surface wave velocity, 

which it shifts from the positive into the negative gradually. At a given instant, the velocity of 

Surface waves is finite, which is due to the effect of gravity. It is noticeable that the velocity of 

surface wave in two models increases with increasing the values of g, while it decreases and 

increases with increasing of the value of  wave number ξ until approaching to zero. 

Fig. (9): illustrates the value of the variation of surface waves u with respect to wave number, 

which it has an oscillatory behavior with relaxation time τ2 in the whole range of the wave number 

in isotropic case. Both figures indicate that the medium along wave number ξ in two models Lord-

Shulman and Green-Lindsay undergoes expansion deformation because of thermal shock while the 

other compressive deformation. The effect of relaxation time τ2 on the velocity of Surface waves 

becomes large while the effect of the relaxation time on surface wave velocity, which it shifts from 

the negative into the positive gradually. At a given instant, the velocity of Surface waves is finite, 

which is due to the effect of  relaxation time. It is noticeable that the velocity of surface  wave in 

LS-models increases with increasing the values of τ2, while it decreases with increasing the values 

of τ2 in the GL-model, as well the values of surface wave velocity approaching to zero with 

increasing of the wave number. A high velocity variation of surface waves was found to exist 

within the LS-model and GL-model. 

Comparing with previous studies, we find that our results (shown in Figs. 1-9) without gravity, 

anisotropy, relaxation times and parameters for fibre-reinforced with the results obtained by Fu 

and Zhang (2006). Also, these results agree with those of Weitsman and Benveniste (1974), 

Sengupta (2001) when the gravity, anisotropy, relaxation times and parameters for fibre-reinforced 

almost equal zero. In case of a gravity g=0, our results are in agreement with that of  Singh (2005) 

The analytical results obtained by Singh (2007) can be considered as a limiting case (by taking 

g=0 and τ2=0), which are in agreement with earlier results obtained by Huang and Rokhlin (1995). 
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7. Conclusions 
        

Due to the complicated nature of the governing equations of the generalized thermo elasticity  

fiber-reinforced theory, the work done in this field is unfortunately limited in number. The method 

used in this study provides a quite successful in dealing with such problems. This method gives 

exact solutions in the elastic medium without any assumed restrictions on the actual physical 

quantities that appear in the governing equations of the problem considered. Important phenomena 

are observed in all these computations: 

• It was found that for large values of time the coupled and the generalized give  close results. 

The case is quite different when we consider small value of relaxation time. The coupled theory 

predicts infinite speeds of wave propagation. The solutions obtained in the context of generalized 

thermoelasticity theory, however, exhibit the behavior of finite speeds of wave propagation. 

• By comparing Figs. 2-9 for Lord-Shulman theory with Figures for Green-Lindsay, it was 

found that  wave velocity has the same behavior in both media.  But with the passage of relaxation 

time and gravity, numerical values of wave velocity in the generalized thermoplastic medium are 

large in comparison with those in thermoplastic medium due to the influences of relaxation time 

and gravity.  

• Special cases are considered as Rayleigh waves, Love wave and surface waves in anisotropic 

generalized thermoelastic medium, as well in the isotropic case. 

• The results presented in this paper should prove useful for researchers in material science, 

designers of new materials, low-temperature physicists, as well as for those working on the 

development of a theory of hyperbolic propagation of hyperbolic thermoelastic. Relaxation time 

and gravity exchange with the environment arising from and inside nuclear reactors influence their 

and operations. Study of the phenomenon of relaxation time and gravity is also used to improve 

the conditions of oil extractions.  
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