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Abstract.  In the present work, structural joints have been modeled as a pair of translational and rotational
springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is
shown that using first few natural frequencies of the system, one can obtain a set of over-determined system
of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied
to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been
developed first for a two parameter joint model and then for a three parameter model, in which cross
coupling terms are also included. Two cases of structural connections have been considered, first with a
cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of
the proposed method is demonstrated through numerical simulation and by experimentation.

Keywords: vibration; sub-structure synthesis; joint stiffness identification; linear parameters; multi-linear
regression; cantilever; single lap joint

1. Introduction

Many mechanical structures can be seen as an assembly of subsystems. These substructures or
subsystems usually are connected to each other by joints such as bolts, welds, rivets etc. Modeling
of composite structures has become a challenging task due to uncertainty in system parameters,
particularly those associated with structural joints. It is widely accepted that the behavior of the
whole structure can be significantly affected by the way joints are modeled. To conduct an
accurate dynamic analysis, it is first necessary to model the joints accurately and then identify their
structural parameters. Much work has been done to extract joint properties from measurement
data.

In an effort to model joints in a structure, various methods are suggested by the researchers.
Most of the methods are based on FRF (Frequency Response Function) measurements and modal
parameters. The most popular method of identifying joint structural parameters is to use modal
parameters which have been obtained experimentally. Joints have significant effects on the
dynamic response of the assembled structures due to existence of two non-linear mechanisms in
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their interface, namely slipping and slapping. These mechanisms affect the structural response by
adding considerable damping into the structure and lowering the natural frequencies due to the
stiffness softening (Ahmadian et al. 2007). Tsai and Chou (1988) proposed a formulation based on
receptance method to calculate the properties of a single bolt joint directly from the measured
FRFs of a structure. Yang and Park (1993) demonstrated a method of identifying joint structural
parameters using subset FRF measurements. Mottershed et al. (1996) applied updating of
geometric parameters in a cantilever plate. However parameterization of joints and boundary
conditions was not carried out. Hwang (1998) derived the identification method for stiffness
parameters of connections between structures from measured FRF data. The estimation is carried
out for continuous beam with only translational stiffness as the joint parameter. The linearised
joint structural parameters are then identified by minimizing the loss function derived from
measured and estimated FRFs. A method for joint stiffness determination has been developed by
Patricia et al. (1999), based upon rigid-body dynamics and FRF measurements. Stiffness
components in six coordinate directions were estimated.

A T-shaped structure was considered by Kim and Park (1997), for joint stiffness identification
from selected degrees of freedom. The natural frequencies estimated with identified joint
parameters were compared with exact values. The updated natural frequencies using identified
joint stiffness were close to the measured natural frequencies. Ratcliff and Lieven (2000) examine
a technique that calculates the properties of structural joints by minimizing the difference between
substructure FRFs and assembly FRFs. A technique which relies on the comparison of the overall
dynamics of the bolted structure to that of a similar but unbolted one was presented by Ma et al.
(2001).

A non parametric model for the joint dynamics was proposed by Wu and Li (2006), assuming
that the difference in the dynamics of the two systems is attributed to the joint. An
eigensensitivity-based FE (Finite Element) model updating was developed for identification of the
structural parameters, in which connection stiffness of semi-rigid joints was estimated through FE
model updating and in FE updating procedure it was assumed that the measured natural
frequencies are more reliable than measured mode shapes. Celic et al. (2008) presented a method
for establishing a theoretical model of a joint from the substructures and assembly FRF data. A
non parametric model was used in the joint identification. Sjovall and Thomas (2008) presented a
procedure for substructure identification using test data from larger system. The procedure was
applied to real test data. An accurate non-parametric model was identified. A Finite element based
analytical model has the advantage of being complete and precise. On the other hand, the
experimental data are generally considered to be more accurate given the availability of reliable
data acquisition and measuring equipment (Modak et al. 2002, Wang et al.2012). Dominguez and
Pérez-Mota (2014) studied how the quantity and distribution of the steel reinforcement array
inside the RC beam-column connection affects its structural response when a strong cyclic loading
is applied. Asgarian ef al. (2014) derived the equations which can be used in global analyses of
offshore structures to account for the Local Joint Flexibility (LJF) effects on overall behavior of
the structure.

In the present work, a simple and efficient method based on sub structure synthesis for
identification of boundary condition parameters is proposed, in which only first few measured
natural frequencies are used in the identification procedure. The method is demonstrated for a
cantilever beam with two parameter (2-P) and three parameter (3-P) joint model and then for a
single lap jointed (SLJ) beam, in which the joint is modeled with spring stiffness only. The
numerical simulation has been carried out with non-dimensional stiffness parameters so that the
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results are applicable for any size or dimension of the actual test specimen. An experimental
identification for real test structure is also presented using measured natural frequencies; the
estimated joint parameters are then incorporated in the FE model. The FE model updated with the
joint parameters gave natural frequencies in close agreement with the measured frequencies.

2. Sub-structure synthesis of assembled systems

Structural and machine systems are often assembled from several sub-systems. Although the
sub-structure dynamics may be well known, dynamics of the assembled system cannot be
predicted accurately unless the interface conditions are properly modeled and identified. The
concept of substructure synthesis (Bishop and Johnson 1960) provides a technique for obtaining
the dynamic behavior of the assembled system from the knowledge of Frequency Response
Functions (FRFs) of the sub-systems interfaced through one or more degrees of freedom. As
shown in Fig. 1(a), a composite system Z is assembled from two sub systems P and R connected
by two joint co-ordinates X and @ at the interface. The forcing functions corresponding to these
two co-ordinates are F' and M respectively.

Fig. 1(a) A composite system Z, with sub-systems P and R

Fé) X(S

F,, X,

—»
M,;,H,; M’I’ 0,,

—

Fig. 1(b) Force and displacements acting on the sub-systems P and R
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Fig. 1(b) shows the sub-systems separated with corresponding displacements and forcing
functions at the interface.

Let the direct receptance functions J; and #; and cross receptance functions J; and #; for the
two sub-systems be defined as

X 0 X 0
511:_6 5 522:_5; 512:_6 ; 521:_6 (la)
F(F MJ M(F Fz5
X 0 X 0
_n . _In . _ _n
Mm=— 5 N»=—7—> Me=>—> mr— (1b)
£, M, M, £,

Then, considering the dynamic equilibrium of the sub-systems P and R separately, one can
obtain

Xy=0Fs+0,Ms 5 X, =n,F,+n,M, (2a)
Oy =05 F5 +0,,M;5 0, =nyF, +n,,M, (2b)

Egs. (2a)-(2b) can be written in a matrix form as

X5 | 01 015 || Fs X F

B M LR AR
05 0y Oy || M 0], M,

{X”H”“ e HF”} or {X} =[] {F} @)
9;7 M1 M2 Mr, 0 " M "

For the assembled system Z, the direct and cross receptance functions can similarly be defined
as
0 X . %

VJIZF ; szzM; szzﬁ: V21:F (5

e ol e el

Now, compatibility requirement of forces and displacements at the joint co-ordinates gives

X=X;=X, and 0=05=0, (7a)

which gives

F=F,+F, and M=M;+M, (7b)

{; } ] {;}(, ’ {;} =L+l }{j} ®)

b]={ I+ | ©)

which gives
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Simplifying Eq. (9) with Eq. (3) and Eq. (4), FRF matrix [v] is obtained as

2 2
_ O11(My-M22 =12 )+ 115 (971-929 = 0157)
(017 4111 X022 +122)= (61 +1m12)°

Vi

_ 920011120 = N12°) +122(811-020 =157
(610411022 +122) =612 + 112

V22

_912(nyp M0 = N12:012° )+ 115311825 = 112615 _
(017 + 110 X022 +122) = (612 +1m12)°

The frequency equation for the assembled system is obtained by setting the denominator of the
receptance functions as zero, which gives

(017 +1m71)(025 +122)— (05 + ’712)2 =0 (10)

Thus if the FRFs at the interface co-ordinates are known for the individual sub-systems, then
the natural frequencies of the assembled system can be obtained by solving the frequency Eq. (10).
If sub-system P is a joint sub-system and sub-system R is a structural component, then Eq. (10)
provides a basis to study the effect of joint parameters on the system natural frequencies. However,
Eq. (10) is exploited for an inverse analysis, where one can estimate the joint parameters from the
over determined set of measured frequency data, using multi-linear regression technique (Draper
and Smith 1998).

In the following sections, two types of structural joint systems are demonstrated with numerical
simulation and experimentation. First, a cantilever beam with two models of the boundary
condition so called, 2-parameter and 3-parameter model,

Model 1: [P]:{If)t KO

Vi2 Var

} , 2-parameter model.
r

K, K
Model 2: [P]= {K t K”
rt

and then a single lap jointed structural system has been demonstrated.

} , 3-parameter model.
,

2.1 Two parameter joint model of cantilever beam

In a two parameter joint system, a cantilever beam is modeled with elastic constraint at the
fixed end represented by a translational spring (stiffness K;) and a rotational spring (stiftness K,) as
shown in Fig. 2, the beam is considered as a composite system consisting of elastic springs as sub-
system P and a free-free beam as sub-system R.

The FRF matrix for P is represented by a diagonal matrix

[5]{1/& 0 } (1)

0 1K,

and the FRF matrix for R can be obtained as (Bishop 1960)

['7]{'7“ "”} (12)

bl M
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Ky

e :

P
K:

Fig. 2 Cantilever beam modeled with elastic support at fixed end
Where,
(=2 (L] Fs) (Lj(ij Fy
M m \GNFE ) T ' )\ T,
(L)LY AL
M2 El /12 F3 .

Fy =sin(A).sinh(3) ; F; =cos(1).cosh(2)-1
Fy =cos(A).sinh(A) — sin(L).cosh(2) 5 Fg = cos(A).sinh() + sin(L).cosh(1)

Where,

Further defining the joint stiffness through non-dimensional parameters, the frequency Eq. (10)
for a composite system shown in Fig. 2 can be obtained as

F. F, F
KK, +KJ—2-K, 1’5 -)"2=0 (13)
T F F, F,
Where,
1/4
K 2 a4
Fy=l+cos(A)cosh(l) ; K, =—"— ; K,=—r— and i=|2 pAL” |
(EIL) (EI/L) EI

Now for each measured natural frequency, A=w;’, Eq. (13) presents a nonlinear relationship
between the unknowns K, K, and /. If we experimentally measure ‘n’ natural frequencies w;
(=1,2.....n), and 4;, 4, be the values corresponding to w; and wy (j, k =1,2....n; j#k), then, Eq. (13)

gives
F. F, F.
Kx.Ky+Kx./1j(—5J —Ky.xf(—ﬁ] —/1/4(—3J =0 (14)
£y a1, T4 £y 2=1,
F. F, F.
K, K, +Kx./1k[—5J —Ky.ik3[—6j —1k4[—3j =0 (15)
£y A=l £y J=ly £y =2y

Subtracting Eq. (15) from Eq. (14), one obtains
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N (16)

Which can written, using brief notation, as
T.K,+U.K, =V, (17)
Above equation is generated for each combination of (j, k), which gives total "C, equations and

thus a set of over determined system of linear equations is generated for estimation which can be
used for a least square error based estimation. Taking »="C,, Eq. (17) can be written as

T] U[ V[

S {K"}: o Uik = | (18)
_______ Ky —

_Tr UV . _Vr_

There can be different sources of error in the measured natural frequency values, mainly
spectral resolution error in the measuring FFT analyzer. Besides there would be harmonic
distortion error in case the stiffness is nonlinear and random noise. For weakly nonlinear stiffness
values, harmonic distortion in the measurement of first harmonic frequency will not be
significantly high. However random background noise and spectral resolution problem still
remain. Spectral resolution can be enhanced by selecting larger data block size and the same has
been discussed in later section 3.3. Random error is minimized using least square error estimation
method (Norman and Smith 1998). Eq. (18) including the error term can be written as

[rUli& J+ e} = 7}
Minimum error estimation gives
&)= pinv(u ) ¥ (19)
where, pinv (Gilot 2003) is the generalized inverse of a matrix.

2.2 Three-parameter joint model of cantilever beam

A cantilever beam with boundary condition (fixed end) modeled as an elastic support consisting
of a translational, rotational and cross coupled terms, thus designated as 3-parameter model is
shown in Fig. 3. The concept of substructure synthesis, discussed in previous section is used to
derive the frequency equation of the composite system consisting of a free-free beam interfaced
with a joint at one end. A 3-parameter model i.e., Model 2 of joint is represented by a (2x2) matrix
which include cross coupled terms K, and K,,
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Ky

Ko Xt

Fig. 3 Cantilever beam modeled with elastic support at fixed end (model 2)

. .. . " /K, 1/K
The FRF matrix for joint system P of Model 2 represented by a matrix [5] = L/K’ I/KW}'
rt r

Now, from FRF matrix [d]" and [#], frequency equation, Eq. (20), for 3-parameter joint model of
cantilever beam can be obtained from Eq. (10) as

b)) )
e

:—K3 ; K, = and K, = KZ: K2

(EI/I*) (EI/L) (EI/I*) (EI/I*)
parameters.

Following similar derivation as given for two parameter model, one obtains

HEIANE A A @1
K K K

x y z

Where,

r rt

are non-dimensional stiffness

X

Where the subscript i represents each combination of j and k. Eq. (21) is a linear equation in
three unknowns K., K, and K; T:, Ui*, V. and S;" are the coefficients which can be computed from
the measured natural frequencies. Eq. (21) can be processed through multi linear regression to get
a least square error estimate of the unknown joint stiffness parameters.

2.3 Numerical simulation: 2-parameter and 3-parameter model of cantilever beam

Characteristic equation for 2-parameter and 3-parameter model with unknown non-dimensional
stiffness parameters is given in Eq. (13) and Eq. (20) respectively and is used in numerical
simulation. A computer program for FE model of cantilever beam is developed in MATLAB, for
sample values of K, K, in case of Model 1 and K,, K, and K. in case of Model 2. FE modeling has
not been presented here for the sake of brevity. Further a ratio a=K./(K.. K,) was defined to
indicate the relative strength of the cross coupling terms in the joint matrix. Simulation results are
presented in Table 1(a)-(b). It can be observed from simulation results presented in Table 1a that, if
the system does not have the presence of cross coupling then both 2-parameter and 3-parameter
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Table 1a Simulation results with sample values of non-dimensional stiffness parameters (model 1)

Sample values of Non dimensional Estimated X, and K, Estimated X, , K, and K.
K,and K, natural frequency with 2-P with 3-P
£1=1.8066
K, =100 J2= 37678 K.=99.95 ~ 100
K =50 f3=5.8097 K. =50.03 =50.07 X
Y Jfra=8.6564 Y = —8 11.10
frs=11.7153
£1=1.8500
K, =500 Jr2~ 44368 K, = 500.154 P
K,=100 Jr3=6.8022 K,=100.270 = 100. 246
Y fra=9.0929 Y = —5 67.10
fs=11.915
f1=1.8679
K,= 1000 Jr2= 45755 K= 1018.64 K.~ 1000.82
K, = 500 S5~ 12837 K,=517.310 K,=510.06,
y £.4=9.5658 y ' K.=-2.22.10
fi5=12.146

Table 1b Simulation results with sample values of non-dimensional stiffness parameters (model 2)

Sample values Non dimensional Estimated K, & K, Estimated K, , K, & K.
of K, K, & K, natural freq. with 2-P with 3-P
1.8684
K, = 1000 Jri=
£ — 500 fi2=4.5798 K — 408,75 K, =999.85
K. = 10000 J3=17:2930 K, =223.47 K, =506.28
(za=0 02) fr4=9.5680 y : K. =10038.73
' fis=12.141
_ f.1=1.8510
K, =500 Jri— ~
K, =100 fr2=4.4443 K= 38027 K = 500.034
K.=5000 f= 6.8100 X —7773 K, =100.363
(Za=0 1 f.4=9.0876 y— K. =5021.04
' fis=11.9082
_ fo1=1.8669
K, =1000
£, =500 fi2=4.5751 K—098751 =1000.28
v fi3=1.2832 AN =506.96
K . ;:0?)000 1= 9.5658 Ky=3500.61 K 3.423.10°
fos=12.1463
_ f.1=1.8679
K, =1000 :
£ =500 fi2=4.5755 K 9759 =1000.4
K~1000000 Jrs=7.2838 K= 50047 =512.32
: (0=2) fr4=9.5658 Y ' K =1.22.10°
fos=12.1463

gives good estimates of K, and K,

confirms non presence of cross coupled parameter in the system

It can be concluded from simulation results presented in Table 1b, that as a increases, cross-
coupling stiffness value also increases and the natural frequencies of 3-parameter model shifts
towards the values of 2-parameter model, which means that the 3-parameter model with large o is

; however estimated K, gives unrealistic values which may
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almost same as the 2-parameter model. Stiffness parameters are estimated here from the so called
measured frequency data. Table 1b shows the estimates for different cross coupling ratios. It can
be seen that estimates for direct stiffness parameters are in general very good but that for the cross
coupling term is good only when « is less than 1. One can thus conclude that a 3-parameter model
would achieve good estimate only when cross coupling stiffness is small or for a<1, for a close to
or higher than 1, it is better to adopt 2-parameter model.

3. Experimental case: cantilever beam

A test set up for measuring the vibration response of a cantilever beam clamped with a bolt to a
structure is shown in Fig. 4. The beam was excited through impulse and free vibration response
was measured using B&K 4370 (sensitivity 100 pC/g; mass 24 gm) accelerometer and FFT
analyzer (DI-22, Diagnostic Instruments, UK). A data block size of 2048 samples with 800
spectral lines was used to measure the natural frequencies of beam. The geometrical and material
properties of beam are listed in Table 2.

Table 2 Dimensions and material properties of beam

Dimensions Material Properties
A4:(0.05%0.005) m* Elastic modulus, £ : 207 GPa
L:0423 m Density, p : 7850 Kg/m®

(b)
Fig. 4 (a) Experimental setup (b) Schematic diagram of beam with bolted joint
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Table 3 Comparison of natural frequency of beam under free-free condition

Natural frequencies S Jr 3 S
Measured 105 290.25 571.25 944
FEM 105.57 291.01 571.49 944.1

Table 4 Measured natural frequencies of cantilever beam clamped with bolt

Mode Measured natural frequency (Hz) Non-dimensional natural frequency
S 17 1.6067
|2 118 4.2335
|3 335.625 7.1398
S 628.75 9.7724
s 994.5 12.2904

The values of the material parameters are obtained by testing a beam under free-free condition
and updating the corresponding Finite Element model for measured natural frequencies. Two
dimensional beam elements were used in the FE modeling, a program was developed in MATLAB
to compute natural frequencies of free-free beam, density of the beam was obtained by measuring
its mass and modulus of elasticity was obtained by updating its value in FE model to validate the
measured natural frequencies.

Table 3 shows the measured and computed (FEM) natural frequencies of the beam with
updated material properties, under unconstrained (free-free) condition. The vibration response of
cantilever beam clamped with bolts is measured using FFT analyzer; to improve the accuracy in
measurement, different frequency bands were selected in FFT analyzer e.g., for measurement of
first two natural frequencies, a frequency band of 0-200 Hz and for higher frequencies a frequency
band of 0-1000 Hz was selected.

The measured natural frequencies at the resonance peaks of frequency spectrum are given in
Table 4. These measured natural frequencies are less by more than 5% as compared to ideal natural
frequencies of cantilever beam; so, one may predict the joint stiffness to fall in sensitive region
(i.e., non-stiff region).

3.1 Joint stiffness identification: 2-P model

The linear parameters of the joint, i.e., translational stiffness K; and rotational stiffness K, are
identified using first four measured frequencies only. The support parameters are most important
in lower modes and are less significant in higher modes (Ahmadian et al. 2001), for these reason
first four modes were chosen in the identification procedure. Linear equation in two unknowns K,
and K, is obtained from Eq. (13); Eq. (19) was then used for best estimate of non dimensional
stiffness parameters. The estimated non dimensional stiffness parameters and corresponding linear
joint parameters are given in Table 5. Next, the identified joint parameters are incorporated in FE
model and natural frequencies are computed; these frequencies are compared with experimentally
measured natural frequencies, Table 6 shows the comparison.

Considerable error in measured and computed natural frequencies is observed, the reasons for
error in natural frequencies, may be due to insufficient finite elements in FE modeling & over
simplification of joint model (Model 1, 2-P model) where cross coupling terms are neglected. The
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Table 5 The identified joint parameters (2-p)

Non-dimensional joint stiffness parameters Joint stiffness parameters
K.=969.8064 K,=1.381x10°(N.m™)
K,=12723 K, =324.28 (N.m.rad™)

Table 6 Comparison of natural frequencies measured experimentally and computed with updated FE model

Mode Experimentally Measured (Hz) Computed from FE Model (Hz) Percentage Error

Jri 17 11.276 33.67
Jr2 118 106.03 10.14
i3 335.625 315.44 6.01
Jra 628.75 599.07 4.72
Jrs 994.5 941.52 5.32

Table 7 The identified joint parameters (3-p)

Non-dimensional joint stiffness parameters Joint stiffness parameters
K,=1928.972 K,=2.75x10°(N.m™)

K,=4.6964 K,=1196.99 (N.m.rad™)

K.=876.731 K, =5.283x10° (N.rad™")

Table 8 Comparison of natural frequencies measured experimentally and computed with updated FE model

Mode Experimentally Measured (Hz) Computed from FE Model (Hz) Percentage Error

S 17 16.96 0.23
S 118 117.56 0.37
I 335.625 337.7 -0.618
Jfra 628.75 635.77 -1.11
fos 994.5 1011.3 -1.68

first reason could be excluded easily by increasing number of finite elements; the second reason
was studied by using joint Model 2 i.e., 3-P model.

3.2 Joint stiffness identification: 3-P model

The measured natural frequencies given in Table 4, are now used in Egs. (20)-(21) to estimate
three parameters of the joint. The identified joint parameters are presented in Table 7.

These identified joint parameters are again incorporated in FE model and computed natural
frequencies are compared with experimentally measured natural frequencies (see Table 8).The FE
model updated with identified joint parameters using 3-parameter model gives better estimate of
natural frequencies than 2-parameter model, the ratio a defined in previous section has the value
<1 for the joint demonstrated in this paper. Since a<l, 3-P gives better estimates of joint
parameters than 2-P, it is evident from simulation and experimentation results. Although only first
four measured natural frequencies are considered in regression analysis, the fifth measured natural
frequency is also close to natural frequency computed with FE model.
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Table 9a Estimation error in the identified joint parameters with +£0.05% frequency perturbation

Non-dimensional Joint Parameters K, K, K,
Identified Values 1928.972 4.6964 876.7310
Estimated with +0.05% frequency perturbation 1875.211 4.7024 840.7858
Estimated with -0.05% frequency perturbation 1940.823 4.6772 909.1771
Average percentage (%) error 1.7 0.268 39

Table 9b Estimation error in the identified joint parameters with £0.1% frequency perturbation

Non-dimensional Joint Parameters K, K, K,
Identified Values 1928.972 4.6964 876.7310
Estimated with +0.1% frequency perturbation 1844.136 4.7152 822.3736
Estimated with -0.1% frequency perturbation 1983.690 4.6651 923.1977
Average percentage (%) error 3.6 0.53 5.75

3.3 Error sensitivity analysis

The estimates of K, K, and K. presented in Table 7 are obtained with data without any
measurement error. However, for practical measurement of natural frequencies, effect of
measurement noise also needs to be considered. Natural frequencies are generally measured using
FFT analyzers. The major source of error with these instruments is spectral resolution error, which
depends on data block size for FFT processing. For a typical 2048 data block size, 800 spectral
lines are displayed in the given frequency range f,, which means two adjacent frequency data will
be separated by f. /800. The error in the measurement then becomes f. /(2*#800)=0.0625%. With a
data block size of 4096, there will be 1600 spectral lines in the frequency range and measurement
error will be £, /(2¥1600)=0.03125%. Over and above this resolution error, there may be random
noise also. Hence the frequency values measured experimentally are perturbed by +0.05% and
+0.1% to test the effect of measurement error on the joint stiffness estimation. The estimation with
perturbed natural frequencies is presented for experimental case in Tables 9(a)-(b).

The estimated error in the identified joint stiffness parameter is within 6%. As the cross
coupling stiffness K, is more sensitive to the natural frequencies of the joint system the error is
relatively more compared to that of translational and rotational stiffness.

4. A Single Lap Jointed (SLJ) beam

In a SLJ beam demonstrated in this section, a joint is modeled as an elastic support consisting
of translational and a rotational spring. The concept of substructure synthesis, discussed in the
previous section, is used to derive the frequency equation of the composite system consisting of
two free-free beams; one embedded with springs K; and K, An over determined system of linear
equations involving the unknown joint parameters are formulated from the frequency equation
using a set of measured natural frequency data. The equations are solved for best estimation of the
support parameters using multi-linear regression procedure.
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4.1 Two parameter model of SLJ

In a two parameter joint system, the SLJ beam is modeled with elastic constraint, represented
by a translational spring (stiffness K, ) and a rotational spring (stiffness K, ) as shown in Figs. 5(a)-

(b). The beam is considered as a composite system consisting of a free-free beam embedded with
translational & rotational spring as sub-system P and other free-free beam as sub-system R as
shown in Fig. 5(b). The elements of FRF matrix [d] for sub system P are,

v B
o (5
o (577

The elements of FRF matrix [7] for sub system R are same as given in prewious section. Now,
simplifying frequency Eq. (10) by substituting direct and cross receptances of substructure P and

R, gives
2)? 3
W EAEA PR EATEN AN
EI) \)? El )\ 2 )\ Fg

2
+2L_ L‘£K2+L=O
EL)\1 \F, F,F,

(22)

e,

(b)
Fig. 5 (a) Modeling of single lap joint (b) Sub-systems P and R of single lap jointed beam
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The joint stiffness parameters can be represented as non-dimensional parameters as,

. S S 3 and K, K
(EI/I) (EI/L )
Eq. (22) then becomes
2
4K, K, + 2K, 13- 2Ky./13.§ By N (23)
) Fg s F5Fy

The joint parameters K, and K, can be estimated from measured natural frequencies using the
similar procedure discussed in previous section.

4.2 Finite dlement modeling of SLJ beam

A single lap jointed free-free beam comprises of two beams jointed in between, a joint matrix
with two unknowns K; & K, representing a joint element is given in Eq. (24).

K, 0 K3 0
0 Ky 0 Ky
K;; 0 Kj3 0
0 K, 0 K,

[Kjoint = (24)

where, K|1=K33=-K13=-K31=K; and K»,=K4,=-K>4=-K4,=K, Cross coupling terms are neglected in
joint modeling. A program is developed in MATLAB to model single lap joint using FEM. The
dimensions of the beams are: L=1 m, A=2x10"* m’, p=7800 Kg/m3 , E=2.07x10" N/m* and [=3x10”
m*. The natural frequencies were computed (see Table 10a) for three sets of assumed values of non
dimensional stiffness K, and K,; the frequencies thus obtained are used in Eq. (23) to estimate K,
and K. The estimated K, and K, values are given in Table 10(b). These values obtained using sub
structure synthesis & multi linear regres sion are very close to assumed values.

4.3 Numerical simulation and discussion

For numerical simulation, Eq. (23) is considered here again. When K, and K, values are zero,

Table 10a Non-dimensional frequencies 4; of a SLJ beam for different joint parameters using FEM

Joint Parameters Al A A3 A4 As
K.=1000 K,=100 4.7007 7.5928 10.9430 12.5820 16.9299

K.=500 K,=50 4.6722 7.3354 10.8937 11.5757 16.2911

K=50 K =20 4.5912 5.1595 9.7041 10.7630 15.7590

Table 10b Estimates of joint stiffness parameters using sub-structure synthesis

Exact joint parameters Estimate of K, Estimate of X,
K,=1000 K,=100 1002.63 100.4
K.=500 K,=50 500.270 50.11

K=50 K,=20 50.0500 20.00
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Fig. 6 Test set up - single lap bolted joint

the equation reduces to Fs=cos(4)cosi( 41)—1=0, which is the frequency equation of free-free beam,
for which A values are 4.7300, 7.8532, 10.9956,14.1371 and so on; similarly for very high values
of K, and K, , these A values tends to ideal values of free-free beam. However, in practical cases,
K. and K, will have some finite values depending on type of the joint and 4 values will be less than
those of an ideal SLJ beam. For a given set of support stiffness, non-dimensional natural
frequencies 4 can be solved from Eq. (23).

The estimates of K, and K, presented in Table 10b are obtained with data without any
measurement error. However, for practical measurement of natural frequencies, effect of
measurement noise and spectral resolution error of measuring instrument needs to be considered,
as discussed in section 3.3. The estimation with perturbed natural frequencies is presented for
experimental case in next section.

5. Experimental case: single lap jointed beam

Fig. 6 shows the test set up for measuring the vibration response of a SLJ free-free beam. The
beam was excited through impulse and free vibration response is measured using B&K 4370
accelerometer and FFT analyzer. A data block size of 2048 samples with 800 spectral lines is used
to measure the natural frequencies of beam. The material properties and cross sectional area of
beam is listed in Table 2, length of beam is taken as 0.6 m. The measured natural frequencies at the
resonance peaks of frequency spectrum is given in Table 11; to minimize the resolution error of
FFT, different frequency bands were selected in FFT analyzer. It is observed that the measured
natural frequencies are less by more than 6% compared to natural frequencies of ideal SLJ beam,;
so one can predict that the joint stiffness will be in sensitive region (non stiff region).

5.1 Identification of joint parameters

The joint parameters K; and K, are identified using first four natural frequencies given in Table
11.

Eq. (23) is used for estimation of non dimensional stiffness parameters using non dimensional
frequencies. The estimated non dimensional stiffness parameters and corresponding linear joint
parameters is given in Table 12.
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Table 11 Measured natural frequencies of SLJ Beam

Mode Measured natural frequency (Hz) Non-dimensional natural frequency
S 72 4.3929
2 197.25 7.271
S 397.25 10.3185
S 528.75 11.9045
Jos 945.7 15.9207

Table 12 The identified joint parameters

Non-dimensional joint stiffness parameters Linear joint stiffness parameters
K.=824.3349 K, =5.348x10° (N.m™)
K,= 15.4084 K> =3599.46 (N.m.rad™")

Table 13 Comparison of natural frequencies measured experimentally and computed with FEM

Mode Experimentally Measured (Hz) Computed from FE Model (Hz)
S 72 72.61
S 197.25 199.42
I 397.25 398.8
Jra 528.75 526.7
Jrs 945.7 951.49

Table 14 The identified joint parameters using perturbed natural frequencies

Non-dimensional joint parameters Linear joint parameters Percentage (%) error in -
Kx Ky K[ Kz Kl K2
823.79 15.39 5.34x10° 3594.89 0.05 0.12

Now, the estimated joint parameters are incorporated in FE model to validate the sub-structure
synthesis model by comparing experimentally measured natural frequencies with those computed
from FE model. Table 13 shows the comparison. The result of FE model agrees well with the
proposed model of SLJ beam. Although only first four measured natural frequencies are
considered in regression analysis, the fifth measured natural frequency is also close to that
computed with FE model. This shows that the higher natural frequencies, those not considered in
regression analysis, also validate the proposed algorithm.

Considering FFT resolution error (as discussed in section 3.3) corresponding to measured
natural frequencies and frequency band selected in measurement; all four natural frequencies are
perturbed, first on higher side and then on lower side to study the robustness of the model. The
identified joint parameters with perturbed natural frequencies are given in Table 14.

With perturbed natural frequencies, the estimated error in joint stiffness parameter is very less;
thus the model is robust for error in frequency measurement.
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6. Conclusions

A new procedure for joint stiffness identification has been proposed in this work. The
procedure is based on natural frequency measurement and hence is very much convenient in
practical applications. Using method of sub-structure synthesis, a frequency equation in terms of
the joint stiffness parameters is developed. With the measured natural frequencies, one can obtain
an over determined set of equations, which is then processed through multi-linear regression to
obtain the best estimates of the joint parameters. It is shown that the procedure gives accurate
estimates for a wide range of stiffness values. Unknown joint stiffness parameters are identified for
physical structure using both 2-parameter and 3-parameter model in case of cantilever beam. It
was observed for the demonstrated structure that the 3-parameter model gives better estimate than
2-parameter model.

Similar identification technique has also been developed for single lap joint. It is seen that the
experimentation results agree well with the updated FE model and the method is robust against
measurement error. The procedure can be used for stiffness identification of various other joints in
structures.
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Nomenclature

cross sectional area of each beam

Young’s modulus

force, corresponds to coordinate X.

FRF Frequency Response Function

F,—Fs functions defined in reference (Bishop 1960)
moment of inertia

translational stiffness of single lap joint
rotational stiffness of single lap joint
rotational stiffness of cantilever joint
translational stiffness of cantilever joint

non dimensional translational stiffness of joint
non dimensional rotational stiffness of joint
non dimensional cross coupled stiffness of joint
length of beam

moment, corresponds to coordinate 6

sub structure (sub system) I

sub structure (sub system) II

joint coordinate, translational.

composite system (sub system I-+II)
generalised inverse of matrix.

joint coordinate, rotational.

receptance function for sub system P of cantilever.
receptance function for sub system P of SLJ.
receptance function for sub system R.
receptance function for composite system Z.
FRF matrix for P.

FRF matrix for R.

FRF matrix for Z.

non dimensional joint parameter vector.

non dimensional natural frequency of Z
mass density
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0} radian frequency.
1 natural frequency, Hz





