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Abstract.  In this article, free vibration of functionally graded (FG) elliptic plates subjected to various 
classical boundary conditions has been investigated. Literature review reveals no study has been performed 
based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered 
based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue 
problem. The material properties of the FG plate are assumed to vary along thickness direction of the 
constituents according to power-law form. Trial functions denoting the displacement components are 
expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to 
study the effect of geometric configurations and gradation of constituent volume fractions on the natural 
frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A 
comparison study is carried out with existing literature for validation in special cases. Three-dimensional 
mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the 
edges. 
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1. Introduction 
 

The functionally graded materials (FGMs) are advanced composite materials which are 

designed to achieve functional behavior with the variation of mechanical properties continuously 

from one surface to the other. Use of FG structural members can be observed in various 

engineering applications and in manufacturing industries viz. aerospace, biomedical, nuclear, 

automobile, space-plane project and steel industries. The concept of FGMs was first introduced in 

1984 by a group of material scientists in Japan (Loy et al. 1999) while preparing a space–plane 

project as an exceptional material to withstand a very intense temperature deviation through 

comparatively less thickness. The primary constituents for these materials are metal with ceramic 

or a combination of materials. The study of dynamic characteristics of FGMs has also been gained 

considerable attention in research sectors during the past decades. 
As present work is based on flexural vibration of circular and elliptic plates, one may follow 

various sources that are available viz. (Wang et al. 2000, Chakraverty 2009, Leissa 1969, Rao 
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2004). Dynamic characteristics of isotropic circular and elliptic plates are quite well presented by 

different researchers throughout the globe using various computational techniques. Natural 

frequencies of simply supported elliptic plates are evaluated by Leissa (1967) by means of 

Rayleigh-Ritz technique. Mazumdar (1971) has computed fundamental frequencies of elliptic 

plates, for both clamped and simply supported edge supports, by the method of constant deflection 

lines. Leissa and Narita (1980) have analyzed natural frequencies of simply supported circular 

plates using Classical plate theory with ordinary and modified Bessel functions of the first kind. 

Galerkin method and Bolotin’s method is used by Chen and Hwang (1988) to study dynamic 

stability of isotropic Mindlin circular plates subjected to periodic radial loads. The 

spline-finite-strip method with subparametric mapping concept is employed by Cheung et al. 

(1988) in static and free vibration analysis of arbitrary shaped plates. Transverse vibration of 

circular and elliptic plates are studied by Singh and Chakraverty (1991, 1992b, c) with three 

respective boundary conditions viz. completely free, simply supported and clamped. Axisymmetric 

vibration of circular and its analogous elliptic plates are examined by Rajalingham and Bhat 

(1993) using characteristic orthogonal polynomials. Rajalingham et al. (1994) have analyzed 

vibration of clamped elliptic plates using exact circular plate modes as shape functions in 

Rayleigh-Ritz method. Circular and elliptic plates with variable thickness is being investigated in 

Singh and Chakraverty (1994) with all three boundary conditions. Natural frequencies for free 

vibration of nonhomogeneous circular and elliptic plates using two dimensional orthogonal 

polynomials is studied in (Chakraverty and Petyt 1997). Liew et al. (1997) used differential 

quadrature method and linear shear deformation Mindlin theory to analyze axisymmetric free 

vibration characteristics of moderately thick circular plates. Three-dimensional vibration of 

circular and annular plates are analyzed in (Liu and Lee 2000) using finite element method and in 

Zhao et al. (2003) applying Chebyshev-Ritz method. Free vibration of solid circular plates is 

studied in (Wu and Liu 2001) and (Wu et al. 2002) applying generalized differential quadrature 

rule. Chakraverty et al. (2007) have provided vibration behavior of plates by using the effects of 

non-homogeneity. 

While considering functionally graded circular and elliptic plates, one may find very few 

literature available for such analysis. Reddy et al. (1999) used first-order shear deformation 

Mindlin plate theory to study axisymmetric bending and stretching of functionally graded solid 

and annular circular plates. Buckling analysis is presented in (Najafizadeh and Eslami 2002) for 

radially loaded functionally graded solid circular plate subject to either clamped or simply 

supported edge conditions. Ma and Wang (2003) investigated axisymmetric large deflection 

bending and thermal post-buckling behavior of functionally graded circular plate under 

mechanical, thermal and combined thermo-mechanical loadings based on classical nonlinear von 

Karman plate theory. An inverse problem of a functionally graded elliptic plate is developed by 

Hsieh and Lee (2006) with large deflection and distributed boundary under uniform load. Prakash 

and Ganpathi (2006) have found free vibration characteristics and thermoelastic stability of 

functionally graded circular plates using finite element procedure. Semi–analytical solution 

methods are used in (Nie and Zhong 2007) to analyze three-dimensional free and forced vibration 

of functionally graded circular plates and in (Allahverdizadeh et al. 2008) to examine nonlinear 

free and forced vibration of thin circular functionally graded plate respectively. Saidi et al. (2009) 

have investigated axisymmetric bending and buckling of perfect functionally graded solid circular 

plates based on unconstrained third-order shear deformation plate theory. Benachour et al. (2011) 

have used a four variable refined plate theory for free vibration analysis of FG plates and a new 

hyperbolic theory is presented by El Meiche et al. (2011) for the buckling and free vibration 
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analysis of thick FG sandwich plates. Zhang (2013) has presented nonlinear bending analysis for 

functionally graded elliptical plates resting on two-parameter elastic foundations based on Reddy’s 

higher-order shear deformation plate theory. A unified nonlocal shear deformation theory is 

proposed by Tounsi et al. (2013) to study bending, buckling and free vibration of nanobeams. Liu 

et al. (2013) have studied the free vibration problems of uniform Euler-Bernoulli beam using a 

modified differential transform method. Thermoelastic bending analysis of functionally graded 

sandwich plates has been developed respectively by Tounsi et al. (2013) using a refined 

trigonometric shear deformation theory and by Houari et al. (2013) using a new higher order shear 

and normal deformation theory. On the other hand, Bouderba et al. (2013) have implemented a 

refined trigonometric shear deformation theory in finding the thermomechanical bending response 

of FGM thick plates resting on Winkler–Pasternak elastic foundations. Nonlinear behavior of FG 

plates under thermal loads has been investigated by Bachir Bouiadjra et al. (2013) using an 

efficient sinusoidal shear deformation theory. Bessaim et al. (2013) have developed a new 

higher-order shear and normal deformation theory for the bending and free vibration analysis of 

sandwich plates with functionally graded isotropic face sheets. Free vibration of a sandwich 

curved beam with FG core is investigated by Fard (2014) based on 2D refined higher order beam 

theory. The bending response of FG plate resting on elastic foundation and subjected to 

hygro-thermo-mechanical loading has been studied by Zidi et al. (2014) by the use of four varibale 

refined plate theory. Belabed et al. (2014) have proposed an efficient and simple higher order 

shear and normal deformation theory to obtain analytical results for the bending and free vibration 

of simply supported FG plates and Hebali et al. (2014) have given a new quasi-3D hyperbolic 

shear deformation theory for the static and free vibration analysis of functionally graded plates. To 

the best of present authors’ knowledge, no work is yet done on free vibration characteristics of 

functionally graded circular and elliptic plates. 

Whence the objective of present work is to evaluate natural frequencies and mode shapes of 

functionally graded circular and elliptic plates within the framework of classical plate theory. 

Material properties are assumed to vary along thickness direction of FG constituents in simple 

power-law exponent form. Rayleigh-Ritz method is used in mathematical formulation to obtain the 

generalized eigenfrequency equation. Trial functions denoting the displacement components are 

expressed in simple algebraic polynomial forms which can handle any edge support. A test of 

convergence of present results is performed with a comparison study with existing literature for 

validation. New results for frequencies and three-dimensional mode shapes are also presented 

under various boundary conditions at the edges of elliptic FG plates. 

 

 

2. Elliptic FG plate 
 

Let us consider a functionally graded elliptic plate with semi-major axis a, semi-minor axis b 

and thickness h as shown in Fig. 1. Circular FG plate is a special case of elliptic FG plate while 

equating semi-major and semi-minor axes that is a=b. 
Material properties of FG plate are assumed to vary along thickness direction according to 

power-law form as 
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Fig. 1 A typical functionally graded elliptic plate element with Cartesian coordinates 

 

 
(a) Variation of Young’s modulus        (b) Variation of mass densities 

Fig. 2 Power-law variation of (a) Young’s modulus and (b) mass densities of FG plate 

 

 

where c  and m  denote the values of the material properties of the ceramic and metal 

constituents of the FG plate respectively. k (power-law exponent) is a non-negative variable 

parameter. According to this distribution, the bottom surface (z=−h/2) of FG plate is pure metal, 

whereas the top surface (z=h/2) is pure ceramic and for different values of k one can obtain 

different volume fractions of material plate. For our present formulations, Young’s modulus (E) 

and mass densities (ρ) are taken into consideration as in Eq. (1) while other properties will remain 

constant through the thickness of the plate. It may be noted in the above Eq. (1) that = m  at 

z=−h/2 and = c  at z=h/2. Fig. 2 indicates the power-law variation of material properties of 

constituents of elliptic (or circular) FG plate. 

 

 

3. Mathematical modelling 
 

In this section, classical plate theory, mechanical kinematic relations and Rayleigh-Ritz method 

are used to obtain the generalized eigenvalue problem for free vibration of elliptic (or circular) 

340



 

 

 

 

 

 

Free vibration of functionally graded thin elliptic plates with various edge supports 

functionally graded plates. An overview of these basic components are described as follows. 
 

3.1 Classical plate theory 
 

Classical or Kirchoff’s plate theory (CPT) for the free vibration of functionally graded plate is 

based on the displacement field (Wang et al. 2000) 
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(2) 

where ux, uy and uz are the displacement components along x, y and z coordinate directions 

respectively and w is the transverse deflection of a point on the mid-plane (x−y plane). Transverse 

shear deformation is neglected in case of Kirchoff assumption that is deformation is due to 

bending and in-plane stretching. 

 

3.2 Mechanical kinematic relations 
 

In mechanics, the non-zero linear strains associated with the displacement field can be 

expressed as 

 











































































































yx

w
z

y

w
z

x

w
z

x

u

y

u

y

u
x

u

yx

y

x

xy

yy

xx

2

2

2

2

2

2







                     

(3) 

where εxx and εyy are the normal strains in x− and y− directions respectively and γxy is the shear 

strain. By assuming the material constituents of FG plate to obey the generalized Hooke’s law, the 

constitutive or stress-strain relationships can be expressed in matrix form as 
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where σxx, σyy are the normal stresses and τxy is the shear stress and the reduced stiffness 

components, Qij are given by 
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Here, E and v are Young’s modulus and Poisson’s ratio of the material constituents 

respectively. The strain energy U and kinetic energy T of the plate at any instant in cartesian 
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co-ordinates may be written as 
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where Ω denotes the midplane (domain) of the elliptic FG plate.  

Using Eqs. (2), (3) and (4) in Eqs. (5) and (6) lead to 
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where the stiffness coefficients in Eq. (7) are 
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and inertial coefficient, I0 in Eq. (8) is 
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The displacement component can be assumed harmonic type as w(x,y,t)=W(x,y)cosωt with 

W(x,y) is the maximum deflection and ω is the natural frequency of free vibration. Using the above 

harmonic motion, Eqs. (7) and (8) may be transformed into maximum strain (Umax) and kinetic 

energies (Tmax) respectively as follows 
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3.3 Application of Rayleigh-Ritz method 
 

One may express the transverse displacement (W(x,y)) as the sum of simple algebraic 

polynomials involving both x and y. 
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Table 1 Ten algebraic polynomials obtained from Pascal’s triangle 

i 1 2 3 4 5 6 7 8 9 10 

ψi 1 x y x
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 xy y
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where ci are unknown constants to be determined and υi are the admissible functions, which satisfy 

the essential boundary conditions and can be represented as 
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parameter p=0,1
 
or 2 according as the elliptic (or circular) FG plate is free (F), simply supported 

(S) or clamped (C). Table 1 involves the components of ψi 
generated from Pascal’s triangle. 

Assuming constant Poisson’s ratio (v), the Rayleigh quotient can be obtained by equating Umax 

and Tmax as 
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The stiffness coefficient (D11) and inertial coefficient (I0) in Eq. (11) may be expressed as 
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Accordingly, taking partial derivative of ω
2
 with respect to unknown constants as follows 
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(12) 

Further manipulation of Eq. (12) yields the generalized eigenvalue problem of the form  

   0=][][ 2   nnnn MK 
                         

(13) 

where [K]n×n and [M]n×n are symmetric stiffness and inertia matrices respectively and {∆} is the 

column vector of unknown generalized coefficients. Solutions of the eigenvalue problem, Eq. (13) 

gives the vibration characteristics viz. frequency parameters and mode shapes, for free vibration of 

elliptic (or circular) FG plate. As such, frequency parameters and mode shapes are incorporated in 

the next sections based on CPT taking various BCs. Test of convergence and validation of present 

results with existing literature are also performed. 

 

 

4. Convergence study 
 

In this part, convergence studies for frequency parameters of isotropic elliptic (or circular) 

plates (assuming k=0 in case of FG plates) are reported with respect to number of polynomials 

involved in the displacement component. The material properties of FG constituents are 

considered in Table 2. 
Non-dimensional frequency parameters of elliptic FG plate may be written as  
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c
 of the FG plate due to the deformation effect. 

In Tables 3 to 4, convergence of first six frequency parameters of isotropic circular and elliptic 

plates are incorporated. Isotropic circular plate is considered in Table 3 and elliptic plate in Table 4 

with a/b=2 taking clamped (C) and simply supported (S) edge supports. Rather than taking 

frequency parameters for combination of symmetric and antisymmetric modes separately, present 

study computes frequencies for all the modes at a time. This means that earlier authors used 

deflection function of odd-odd, even-odd, odd-even and even-even polynomials of x and y 

separately. Present authors have taken all the powers of x and y for the ease in computation in a 

single run. So the number of approximations may be seen less in previous works. It is interesting 

to note here that increase in number of polynomials in displacement component plays a crucial role 

 

 
Table 2 Material properties of the FGM constituents 

Properties Unit Aluminium (Al) Alumina (Al2O3) 

E GPa 70 380 

ρ kg/m
3 

2700 3800 

v - 0.3 0.3 
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Table 3 Convergence of frequency parameters for isotropic circular plate  

BCs Sources 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

C 

10×10 10.217 21.275 36.661 43.058 54.650 69.202 

13×13 10.216 21.275 35.609 41.210 54.650 69.202 

16×16 10.216 21.266 34.941 39.921 52.479 64.682 

19×19 10.216 21.263 34.941 39.921 51.914 62.439 

20 ×20 10.216 21.261 34.941 39.921 51.209 61.407 

S 

10×10 4.941 13.987 35.665 46.706 59.195 88.161 

13×13 4.938 13.987 30.391 39.456 59.195 88.161 

16×16 4.935 13.941 25.986 30.503 46.102 59.195 

19×19 4.935 13.915 25.986 30.503 42.362 45.976 

20 ×20 4.935 13.899 25.986 30.503 40.915 42.362 

 
Table 4 Convergence of frequency parameters for isotropic elliptic plate with a/b=2 

BCs Sources 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

C 

10×10 27.395 39.594 61.455 70.023 88.595 95.687 

13×13 27.378 39.594 56.329 70.023 88.595 89.812 

16×16 27.378 39.503 56.328 70.023 78.029 88.665 

19×19 27.378 39.500 56.328 69.884 78.025 88.665 

20 ×20 27.378 39.499 56.328 69.884 78.020 88.665 

S 

10×10 13.258 23.910 46.747 55.136 91.258 93.936 

13×13 13.218 23.910 39.388 46.747 76.705 93.936 

16×16 13.214 23.696 39.366 46.747 62.309 64.636 

19×19 13.214 23.653 39.366 46.341 60.605 64.636 

20 ×20 13.214 23.645 39.366 46.341 60.497 64.636 

 

 

in the conv ergence of frequency parameters irrespective of geometric configuration and edge 

support of the plate. 

 

 

5. Verification of results 
 

After satisfactory test of convergence of frequency parameters, we have performed a 

comparison study for frequency parameters of elliptic (or circular) plates with the existing 

literature. As there are not much articles related to free vibration of elliptic FG plates, it is worth 

taking isotropic plates to compare the results. First five frequency parameters of isotropic circular 

(a/b=1.0) and elliptic plate with different boundary conditions are compared in Table 5 assuming 

Poisson’s ratio as v=0.3. It may be concluded that frequencies related to present study are in 

excellent agreement with the existing literature. 
 

 

6. New results and discussion 
 

In view of the above verification, new results for frequency parameters of elliptic FG plates  
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Table 5 Comparison of first five frequency parameters of isotropic elliptic plate 

a/b BCs Sources 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 

1.0 

C Present 10.2158 21.261 34.878 39.773 51.209 

C Exact 10.216 21.260 34.878 39.773 - 

C Leissa (1969) 10.2158 21.26 34.88 39.771 51.04 

C Mazumdar (1971) 10.2151 - - - - 

C Cheung et al. (1988) 10.2062 21.27 34.94 40.21 52.05 

C 
Singh and Chakraverty 

(1992c, 1994) 
10.216 21.260 34.878 39.773 - 

C Rajalingham et al. (1994) 10.2158 21.2604 34.8770 39.7711 51.0300 

C Chakrverty and Petyt (1997) 10.216 21.260 34.878 39.773 51.030 

C 
Wu and Liu (2001), Wu et al. 

(2002) 
10.216 21.260 34.877 39.771 51.030 

C Prakash and Ganpathi (2006) 10.213 21.259 34.849 - 50.974 

C Chakraverty et al. (2007) 10.2158 21.2604 34.8770 39.7712 - 

S Present 4.9351 13.899 25.619 29.737 40.915 

S Exact 4.935 13.898 25.613 29.720 - 

S Leissa (1969) 4.9351 13.8982 25.6173 29.7200 39.9573 

S Leissa and Narita (1980) 4.93515 13.8982 25.6133 29.7200 39.9573 

S Cheung et al. (1988) 4.927 13.88 25.54 29.84 40.30 

S 
Singh and Chakraverty 

(1992b,1994) 
4.9351 13.898 25.613 29.720 - 

S Chakraverty and Petyt (1997) 4.9351 13.898 25.613 29.720 39.957 

S 
Wu and Liu (2001), 

Wu et al. (2002) 
4.935 13.898 25.613 29.720 39.957 

S Prakash and Ganpathi (2006) 4.935 13.898 25.613 - 39.957 

S Chakraverty et al. (2007) 4.9351 13.8982 25.6133 29.7201 - 

F Present 5.3583 9.0035 12.5645 21.2331 22.1935 

F Exact 5.3583 9.0031 12.439 20.475 - 

F Leissa (1969) 5.253 9.084 12.23 20.52 21.6 

F 
Singh and Chakraverty 

(1991,1994) 
5.3583 9.0031 12.439 20.475 - 

F Chakraverty and Petyt (1997) 5.3583 9.0031 12.439 20.475 21.835 

F 
Wu and Liu (2001), 

Wu et al. (2002) 
5.358 9.003 12.439 20.475 21.835 

F Chakraverty et al. (2007) 5.3583 9.0031 12.4390 20.4746 - 

2.0 

C Present 27.377 39.499 55.985 69.863 78.020 

C Leissa (1969) 27.378 - - - - 

C Mazumdar (1971) 27.471 - - - - 

C Singh and Chakraverty (1992c) 27.377 39.497 55.985 69.858 - 

C Singh and Chakraverty (1994) 27.377 39.497 55.985 69.858 77.037 

C Chakraverty et al. (2007) 27.3774 39.4974 55.9758 69.8580 - 

S Present 13.213 23.645 38.354 46.165 60.497 

S Singh and Chakraverty (1992b) 13.213 23.641 38.354 46.151 57.625 

S Singh and Chakraverty (1994) 13.213 23.641 38.354 46.151 - 

S Chakraverty et al. (2007) 13.2135 23.6410 38.3259 46.1504 - 

F Present 6.6706 10.548 17.213 22.353 32.696 

F Singh and Chakraverty (1994) 6.6706 10.548 16.923 22.019 - 

F Chakraverty et al. (2007) 6.6705 10.5476 16.9212 22.0149 - 
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Table 6 Effect of aspect ratios (a/b) on frequency parameters of clamped elliptic FG plate  

a/b k 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

1.0 

0.0 10.216 21.261 34.878 39.773 51.209 61.407 

0.1 9.851 20.501 33.631 38.352 49.379 59.213 

0.5 8.973 18.673 30.633 34.933 44.978 53.935 

1.0 8.500 17.689 29.020 33.093 42.609 51.094 

2.0 8.125 16.909 27.741 31.634 40.730 48.841 

5.0 7.576 15.767 25.865 29.496 37.976 45.539 

1.5 

0.0 17.129 28.472 41.487 44.392 57.038 65.369 

0.1 16.517 27.454 40.005 42.806 54.999 63.032 

0.5 15.045 25.007 36.439 38.990 50.097 57.414 

1.0 14.253 23.690 34.519 36.936 47.458 54.389 

2.0 13.624 22.646 32.998 35.308 45.366 51.992 

5.0 12.703 21.115 30.767 32.921 42.299 48.477 

2.0 

0.0 27.377 39.499 55.985 69.863 78.020 88.074 

0.1 26.399 38.087 53.984 67.366 75.232 84.926 

0.5 24.046 34.692 49.172 61.361 68.526 77.356 

1.0 22.779 32.865 46.582 58.129 64.917 73.282 

2.0 21.775 31.416 44.529 55.566 62.055 70.051 

5.0 20.303 29.292 41.518 51.809 57.859 65.315 

3.0 

0.0 56.801 71.626 90.350 116.81 147.34 150.18 

0.1 54.771 69.066 87.121 112.64 142.08 144.81 

0.5 49.888 62.909 79.356 102.59 129.41 131.90 

1.0 47.261 59.596 75.176 97.195 122.59 124.95 

2.0 45.177 56.969 71.862 92.909 117.19 119.44 

5.0 42.122 53.117 67.003 86.628 109.27 111.37 

 

 

may be evaluated. Effect of aspect ratios (a/b) on first six frequency parameters are discussed in 

Tables 6 to 8 with various boundary conditions and gradation of properties in FG constituents. 

Clamped edge support is considered in Table 6 with different power-law exponents (k) to evaluate 

the first seven frequency parameters of elliptic FG plates. In a similar fashion, frequencies are 

computed for simply supported and completely free edge supports in Tables 7 and 8 respectively. 

In case of clamped and simply supported edge supports, it can be observed that frequencies are 

increasing with increase in aspect ratios and act in a reverse order with increase in power-law 

indices, whereas frequencies follow peculiar behavior in case of completely free FG elliptic plates 

that is frequencies are decreasing with increase in k and are showing fluctuations with increase in 

a/b at higher modes. 
 In Tables 9 to 10, effect of variation of Poisson’s ratio (v) on natural frequencies of elliptic (or 

circular) FG plates supported by various edge conditions with fixed aspect ratio (a/b) and 

power-law index (k) are summarized. For both isotropic (k=0) and FG plates, it can be easily seen 

that frequencies remain constant for different values of v in case of clamped plates. Assuming 

simply supported, frequencies are increasing with increase in v, whereas frequencies are showing 

fluctuating order while considering free edge condition, keeping both a/b and k fixed. One may 

conclude that effects of edge supports and Poisson’s ratio on free vibration response of FG elliptic 

plates is also quite similar to that of isotropic elliptic plates. 
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Table 7 Effect of aspect ratios (a/b) on frequency parameters of simply supported elliptic FG plate 

a/b k 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

1.0 

0.0 4.935 13.899 25.619 29.736 40.915 51.072 

0.1 4.759 13.402 24.703 28.674 39.453 49.247 

0.5 4.335 12.207 22.501 26.118 35.936 44.857 

1.0 4.106 11.564 21.316 24.742 34.043 42.495 

2.0 3.925 11.055 20.376 23.651 32.542 40.621 

5.0 3.659 10.307 18.999 22.052 30.342 37.875 

1.5 

0.0 8.282 17.835 27.452 31.805 41.409 52.246 

0.1 7.986 17.198 26.471 30.668 39.929 50.379 

0.5 7.274 15.665 24.112 27.935 36.369 45.889 

1.0 6.891 14.839 22.842 26.463 34.454 43.472 

2.0 6.587 14.186 21.835 25.297 32.935 41.555 

5.0 6.142 13.227 20.358 23.586 30.708 38.746 

2.0 

0.0 13.213 23.645 38.354 46.165 60.497 62.848 

0.1 12.741 22.799 36.984 44.515 58.335 60.602 

0.5 11.606 20.767 33.687 40.547 53.135 55.199 

1.0 10.994 19.673 31.913 38.412 50.337 52.292 

2.0 10.509 18.806 30.506 36.718 48.118 49.987 

5.0 9.799 17.535 28.443 34.236 44.864 46.607 

3.0 

0.0 27.081 40.146 57.050 84.282 98.673 116.06 

0.1 26.114 38.711 55.011 81.269 95.146 111.91 

0.5 23.786 35.260 50.108 74.026 86.665 101.94 

1.0 22.533 33.403 47.469 70.127 82.101 96.569 

2.0 21.539 31.931 45.376 67.035 78.481 92.312 

5.0 20.083 29.772 42.308 62.503 73.175 86.070 

 
Table 8 Effect of aspect ratios (a/b) on frequency parameters of completely free elliptic FG plate  

a/b k 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

1.0 

0.0 5.358 9.003 12.564 21.233 22.193 37.564 

0.1 5.167 8.682 12.115 20.474 21.400 36.221 

0.5 4.706 7.908 11.035 18.649 19.493 32.993 

1.0 4.458 7.491 10.454 17.667 18.466 31.255 

2.0 4.262 7.161 9.993 16.888 17.652 29.877 

5.0 3.974 6.677 9.318 15.746 16.459 27.857 

1.5 

0.0 6.477 7.986 16.309 16.510 17.767 29.971 

0.1 6.245 7.701 15.726 15.920 17.132 28.899 

0.5 5.689 7.014 14.324 14.501 15.605 26.323 

1.0 5.389 6.645 13.569 13.737 14.783 24.937 

2.0 5.151 6.352 12.971 13.132 14.131 23.838 

5.0 4.803 5.922 12.094 12.244 13.176 22.226 

2.0 

0.0 6.671 10.548 17.212 22.353 27.773 32.696 

0.1 6.432 10.171 16.596 21.554 26.780 31.527 

0.5 5.859 9.264 15.117 19.633 24.393 28.717 

1.0 5.550 8.776 14.321 18.599 23.108 27.205 
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Table 8 Continued 

2.0 
2.0 5.306 8.389 13.689 17.779 22.089 26.005 

5.0 4.947 7.822 12.764 16.577 20.596 24.247 

3.0 

0.0 6.757 15.615 17.618 31.415 33.961 51.246 

0.1 6.516 15.057 16.988 30.292 32.748 49.414 

0.5 5.935 13.714 15.474 27.592 29.829 45.009 

1.0 5.622 12.992 14.659 26.139 28.258 42.639 

2.0 5.374 12.419 14.013 24.986 27.012 40.759 

5.0 5.011 11.579 13.065 23.297 25.185 38.003 

 
Table 9 Effect of Poisson’s ratio (v) on frequency parameters of elliptic FG plate with various BCs for k=0  

a/b BC v 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

1.0 

C 

0.00 10.216 21.260 34.878 39.773 51.209 61.407 

0.25 10.216 21.260 34.878 39.773 51.209 61.407 

0.33 10.216 21.260 34.878 39.773 51.209 61.407 

0.50 10.216 21.260 34.878 39.773 51.209 61.407 

S 

0.00 4.4436 13.502 25.249 29.379 40.519 50.644 

0.25 4.8601 13.835 25.559 29.678 40.851 51.002 

0.33 4.9790 13.936 25.654 29.771 40.953 51.114 

0.50 5.2127 14.141 25.849 29.963 41.166 51.347 

F 

0.00 6.1531 8.2441 14.148 20.758 24.659 37.779 

0.25 5.5112 8.8902 12.881 21.158 22.701 37.599 

0.33 5.2620 9.0692 12.363 21.277 21.867 37.543 

0.50 4.6404 9.4141 11.021 19.648 21.519 34.641 

2.0 

C 

0.00 27.377 39.499 55.985 69.862 78.019 88.074 

0.25 27.377 39.499 55.985 69.862 78.019 88.074 

0.33 27.377 39.499 55.985 69.862 78.019 88.074 

0.50 27.377 39.499 55.985 69.862 78.019 88.074 

S 

0.00 12.646 22.829 37.367 45.803 59.139 62.416 

0.25 13.125 23.519 38.201 46.106 60.283 62.777 

0.33 13.265 23.718 38.444 46.201 60.624 62.889 

0.50 13.546 24.115 38.930 46.399 61.314 63.126 

F 

0.00 7.060 12.269 18.235 25.329 27.675 34.809 

0.25 6.778 10.870 17.473 22.938 27.775 33.196 

0.33 6.597 10.346 17.034 21.981 27.768 32.359 

0.50 6.037 9.0676 15.683 19.540 27.710 29.828 

 

 

Three-dimensional mode shapes of FG circular and elliptic plates are plotted in Figs. 3 to 5 

taking various BCs with k=1. Fig. 3 is meant for clamped FG plates. In a similar fashion, Fig. 4 is 

for simply supported and Fig. 5 is for completely free FG plates respectively. Looking into the 

deflected shapes of mode shapes, it is easy to predict the edge support to be clamped, simply 

supported or free, irrespective of the geometry and power-law exponent used in gradation. 
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Table 10 Effect of Poisson’s ratio (v) on frequency parameters of elliptic FG plate with various BCs for k=1 

a/b BC v 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

1.0 

C 

0.00 8.5001 17.689 29.019 33.093 42.609 51.094 

0.25 8.5001 17.689 29.019 33.093 42.609 51.094 

0.33 8.5001 17.689 29.019 33.093 42.609 51.094 

0.50 8.5001 17.689 29.019 33.093 42.609 51.094 

S 

0.00 3.6973 11.234 21.009 24.445 33.715 42.139 

0.25 4.0439 11.512 21.266 24.694 33.989 42.436 

0.33 4.1428 11.596 21.346 24.771 34.075 42.529 

0.50 4.3372 11.766 21.508 24.931 34.253 42.724 

F 

0.00 5.1197 6.8595 11.772 17.272 20.517 31.434 

0.25 4.5856 7.3971 10.718 17.605 18.889 31.284 

0.33 4.3783 7.5461 10.286 17.704 18.194 31.238 

0.50 3.8610 7.8330 9.1701 16.348 17.9045 28.823 

2.0 

C 

0.00 22.779 32.865 46.582 58.129 64.916 73.282 

0.25 22.779 32.865 46.582 58.129 64.916 73.282 

0.33 22.779 32.865 46.582 58.129 64.916 73.282 

0.50 22.779 32.865 46.582 58.129 64.916 73.282 

S 

0.00 10.522 18.995 31.092 38.111 49.207 51.933 

0.25 10.921 19.569 31.785 38.362 50.158 52.234 

0.33 11.038 19.735 31.988 38.441 50.442 52.328 

0.50 11.271 20.065 32.392 38.607 51.017 52.524 

 

0.00 5.874 10.208 15.173 21.075 23.027 28.962 

0.25 5.639 9.0445 14.538 19.085 23.111 27.621 

0.33 5.489 8.6086 14.173 18.289 23.105 26.925 

0.50 5.023 7.5447 13.049 16.258 23.056 24.819 

 

  

(a) FG circular plate (b) FG elliptic plate 

Fig. 3 Three-dimensional mode shapes of clamped (a) circular and (b) elliptic FG plate with k = 1 

 

 

7. Conclusions 
 

The analysis of natural frequencies and mode shapes of functionally graded elliptic and circular 

plates with various boundary conditions based on classical plate theory is proposed in the present  

350



 

 

 

 

 

 

Free vibration of functionally graded thin elliptic plates with various edge supports 

  
(a) FG circular plate (b) FG elliptic plate 

Fig. 4 Three-dimensional mode shapes of simply-supported (a) circular and (b) elliptic FG plate with k=1 

 

  
(a) FG circular plate (b) FG elliptic plate 

Fig. 5Three-dimensional mode shapes of free (a) circular and (b) elliptic FG plate with k=1 

 

 

investigation. Generalized eigenfrequency equation for free vibration can be obtained by means of 

Rayleigh-Ritz method. Trial functions denoting displacement component may handle any 

boundary condition very easily. Looking into the present modelling and results, one may conclude 

as follows. 
• The aspect ratios (a/b), power-law indices (k) and different material distributions play key 

factors to study free vibration characteristics of FG elliptic (or circular) plates. 

• In Rayleigh-Ritz method, increase in the number of polynomials (n) play a crucial role in the 

convergence of frequency parameters.  

• From Tables and Figers, it is observed that the frequencies are increasing with increase in 

aspect ratios for a fixed power-law index and are decreasing with increase in power-law exponents 

for a fixed aspect ratio while assuming clamped and simply supported BCs, whereas a fluctuating 

order of frequencies can be seen in case of free FG elliptic plates.  

• Assuming effect of Poisson’s ratio (v), one may see that frequencies are independent of v for 

clamped elliptic plates. But frequencies are increasing with increase in v in case of simply 

supported and are showing fluctuating behavior while considering free edge condition, keeping 

both a/b and k fixed.  

• Other shear deformation plate theories can also be extended easily following the above 

analysis.  
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