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Abstract.  In this paper, the classical continuum mechanics is adopted and modified to be consistent with 
the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the 
effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and 
relations of the modified couple stress theory are derived to illustrate the microstructural effects on 
nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified 
continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely 
surface pre-tension, is generated in the bulk structure of the continuum. The essential kinematical and 
kinetically relations of nano-continuums are derived and discussed. These essential relations are used to 
derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is 
derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to 
express the effect of surface parameters and the effect of the microstructure couple stress on the bending 
behavior of a simply supported FG nano plate. 
 

Keywords:  couple stress theory; nanomechanics; nano plates; functionally graded materials; surface 

elasticity; size-dependent model 

 
 
1. Introduction 
 

Classical continuum mechanics of solids is based on the assumption that matter is continuously 

distributed throughout the solid. This classical theory disregarded the molecular structure of matter 

and neglected the microstructure size-dependency which causes the physical breakdowns of 

classical continuum mechanics in micro/nano scale applications. The challenge is to adopt the 

classical continuum theories to account for the size dependency and the discrete nature effect of 

the material microstructure, keeping the continuity assumptions and considerations. 

Interactions at microscopic scale are the physical origin of many macroscopic phenomena. In 

conventional theories of continuum mechanics, a material body is modeled as a continuum 

consisting of an infinite number of material particles. Each material particle is treated as a mass 

point. However, in the microcontinuum theories, the microstructure of the material particle must 

be considered to describe the microscopic motion and to account for the microstructure size-
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dependency. Chen et al. (2004) provided an atomistic viewpoint of the applicability of 

microcontinuum theories. First established; in Micromorphic theory (Eringen and Suhubi 1964, 

Eringen 1999) a material body is a continuous collection of a relatively large number of 

deformable particles, with each particle possessing finite size and inner structure. The 

Micromorphic theory is based basically on the kinetics and interactions of atoms where the 

deformation involves macro-strains (displacement gradients of the center of the particles) and 

microscopic internal strains (microscopic internal displacement gradients within the structure of 

the particle). The microstructure of the particle in Micromorphic theory consists of a finite number 

of unit cells.  

For infinitesimal deformation and slow motion assumptions, the Micromorphic theory is 

reduced to Microstructure theory, Mindlin (1964), where the kinetics of atoms are ignored. In 

Micropolar theory, Eringen and Suhubi (1964), the material particle is considered as rigid, i.e., 

neglecting the internal possible motions within the inner structure of the particle. It accounts for 

the atomic dynamic effect for materials with stiff, nearly rigid, microstructures.  

When the deformation of the microstructure of the particle is very small and the change of the 

orientation can be ignored, the Micropolar theory can be reduced to Cosserat theory (Cosserat and 

Cosserat 1909) which is not suited for problems involving the significant change of the orientation 

of the microstructure. In the original Cosserat theory, the kinematical quantities were the 

displacement and a material microrotation, which is assumed to being independent of the 

continuum macrorotation.  

In the classical couple stress theory (Mindlin and Tiersten 1962, Toupin 1962), the distinction 

of macromotion of the particle and the micromotion within its structure is eliminated. The couple 

stress theory, by including higher order stress measure, provides a suitable size-dependent model 

for microscopically homogenous materials that possess only one atom per crystal in the unit cell.  

Nonlocal theory (Eringen 1966, Edelen 1969) considers the long-range interatomic interactions 

and yields size-dependent results. The effect of microstructure does not appear in the theory where 

the particle is idealized as a mass point, similar to the classical continuum theory. The Nonlocal 

theory can be applied to a crystal that has only one atom per the unit cell at various length scales.  

Here in this paper, the effects of microscopic interactions on the continuum mechanics in the 

frame work of the modified couple stress theory are considered for linear elastic materials. In 

classical couple stress theories (Mindlin and Tiersten 1962, Toupin 1962, Koiter 1964), the applied 

loads on the material particle include not only a force to drive the material particle to translate but 

also a couple (of forces) to drive it to rotate. In this classical conception, only the conventional 

equilibrium relationships of forces and moments (of forces) are enforced and the couple is 

unconstrained in the absence of higher order equilibrium requirements. The modified couple stress 

theory proposed by Yang et al. (2002) results from the classical couple stress theory to introduce 

only one material length scale and to include a symmetric couple stress tensor to be consistent with 

higher order theories.  

Based on the modified couple stress theory, several size-dependent beam and plate models have 

been developed to capture the size effects in small scale structures. For example, Park and Gao 

(2006) developed an Euler-Bernoulli beam model for bending analysis of nanobeams. This model 

was employed by Kong et al. (2008), Kahrobaiyan et al. (2010) to study vibration of microbeams. 

Ma et al. (2008) developed a Timoshenko beam model to incorporate the effects of transverse 

shear deformation and rotary inertia. The Timoshenko beam model was adopted to study the 

buckling (Fu and Zhang 2010) and vibration (Ke and Wang 2011, Ke et al. 2011) of microtubes. 

Tsiatas (2009) first developed a Kirchhoff plate model for static analysis of microplates. This 
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model was used by Yin et al. (2010), Jomehzadeh et al. (2011) to study the vibration of 

microplates. To account for the effects of transverse shear deformation and rotary inertia in 

moderately thick microplates, Ma et al. (2011), Ke et al. (2012) developed a Mindlin plate model. 

Recently, Thai and Choi (2013) proposed a size-dependent FG Kirchhoff and Mindlin plate models 

based on the modified couple stress theory. They provided analytical solutions to study the 

bending, buckling and vibration of FG nano-plates. Arbind and Reddy (2013) proposed the 

nonlinear analysis of FG beams with account for the microstructural length scale and the Von 

Karman nonlinearity. 

Another physical reason for the breakdown of classical continuum mechanics at micro/nano-

scale sizes is surface energy effects. Atoms at or near a free surface experience reduced 

coordination, due to a different local binding environment, than the interior atoms. As a 

consequence of under-coordination, the surface will be subjected to a residual stress, namely 

surface tension. In order to keep equilibrium, a residual stress field in the bulk will be induced by 

surface tension in the reference configuration that is not subjected to any external loading (Ru 

2010, Shaat et al. 2013a, Wang and Zhao 2009). For the induced residual stresses in elastic 

continua due to inclusion of surface tension in the framework of continuum thermodynamics, the 

reader could refer to Wang and Zhao (2011). Such surface effects are negligible in macro-scale 

sizes of solids; however, in micro/nano-scale sizes such effects will be significant. Gurtin and 

Murdoch (1975, 1978) adopted the classical continuum theory and formulated a surface elasticity 

model, where the surface of solids can be viewed as a 2D elastic membrane with different material 

constants (due to environmental interactions) adhering to the underlying bulk material without 

slipping. Recently, many researchers have studied the effect of surface energy on the elastic 

behavior of nano-structural elements based on Gurtin and Murdoch surface model (Lu et al. 2006, 

Shaat et al. 2012, 2013b, c, Lü et al. 2009, Wang et al. 2010). In Gurtin and Murdoch model, the 

surface is represented as a single layer consisting of an infinite number of material particles as in 

classical elasticity, neglecting the microstructure of the surface. However, Guo and Zhao (2005, 

2007) considered the microstructure of the surface of nanofilms and nanobeams, where the surface 

consists of multi-layers of relaxed crystals. A lattice model is proposed where the possible bond 

relaxation of the atom is considered which alter the mechanical properties of the nano film. This 

issue could be considered in another work.  

Functionally graded materials (FGMs) are microscopically inhomogeneous composite 

materials, in which the volume fraction of the consistent materials is varied continuously as a 

continuous function of the material position along one or more dimension of the structure. 

Recently, FGMs have attracted much attention due to their effectiveness for various applications 

such as thermal coatings of barrier for ceramic engines, gas turbines, nuclear fusions, optical thin 

layers, biomaterial electronics, etc. Therefore, many researchers have studied the thermo-

mechanical behavior of FGMs in different situations (Alieldin et al. 2011, Alshorbagy et al. 2013, 

Alibeigloo 2010). 

Due to their versatility of behavior, FGMs are now widely used in nanoscale applications such 

as nano-optoelectronic and nano-thermoelectric materials (Bharti et al. 2013). The carbon 

nanotubes reinforced functionally graded composite materials are expected to be the new 

generation material having a wide range of unexplored potential applications in various 

technological areas such as aerospace, energy, automobile, medicine, structural and chemical 

industry. They can be used as gas adsorbents, templates, actuators, catalyst supports, probes, 

chemical sensors, nanopipes, nano-reactors etc. To this aim scientists exerted their efforts to 

propose innovative technologies to fabricate, with fewer prices, FGMs for nanoscale applications 
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(Bafekrpour et al. 2012, Birman and Byrd 2007). 

In plate theory, the neutral plane is coincident with the geometric mid-plane of isotropic plates. 

However, the neutral plane of FG plates may not coincide with their geometric mid-plane, because 

of the material property variation through the plate thickness. It had been approved that the neutral 

plane position plays an important role in studying the bending behaviors of FG plates; therefore 

the position of the neutral plane for FG plates must be predetermined (Shaat et al. 2013b, c). 

Yaghoobi and Fereidoon (2010) studied the influence of neutral plane position on deflection of FG 

beams under uniformly distributed load. 

Unfortunately, all above mentioned studies dealt separately with the effect of surface energy or 

the effect of couple stress on nano structures. However, it is convenient to consider both surface 

and microstructure effects, altogether, in studying the behavior of nanosolids. Recently, Gao and 

Mahmoud (2014), Mahmoud et al. (2012) considered both the microstructure effect in combining 

with surface energy effect on bending behavior of nano beams. Moreover in our previous work 

(Shaat et al. 2014), effects of both of surface and microstrcuture, in the context of the modified 

couple stress theory, are considered in studying the bending behavior of Kirchhoff nano plates. 

Here in this paper, the bending behavior of FG ultra-thin Mindlin plates is investigated considering 

both the microstrucutre effects, in the context of the modified couple stress theory, and surface 

energy effects. The fundamental equations and relations for the modified couple stress theory are 

derived to illustrate the microstructural couple stress effects on nanosolids. Moreover, the effect of 

the material surface free energy is incorporated into the modified continuum theory. The essential 

kinematical and kinetically relations for nano-continuum mechanics of nanosolids are derived and 

discussed. Then, based on the modified couple stress theory, these essential relations are used to 

derive the size-dependent Mindlin model for ultra-thin FG films considering the exact neutral 

plane position. In order to illustrate the microstructure couple stress and the surface energy effects, 

an analytical solution is derived and used to provide a parametric study. 

 

 

2. Modified couple stress theory 
 

2.1 Kinematics 
 
Here the kinematics of a continuum under the assumptions of infinitesimal deformation is 

presented. Deformation of a continuum refers to relative displacements and changes in the 

geometry experienced by the continuum under the influence of a force system. To well represent 

the induced deformations in a continuum, consider a fiber element (  ) connects two material 

particles    and    in the reference configuration (see Fig. 1). In the deformed configuration, the 

two material particles take up positions    and   , due to successive sequences of induced changes 

in the fiber element (      ). 

The displacement gradient tensor and the gradient rotation tensor at particle    which represent 

the relative displacement and rotation gradients of particle   with respect to    are 

                                                                            (1) 

where the displacement gradient tensor      and the rotation gradient tensor      are decomposed 

into their symmetric and skew-symmetric parts. 

In classical continuum mechanics only the displacement gradient tensor is considered to 

illustrate the possible deformations of the fiber element. With  
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Fig. 1 A fiber element    between two material particles    and    and the successive sequences of 

induced changes in the fiber element. (0) the reference configuration (1) possible stretches in the fiber 

element (2) rigid-like rotation of the fiber element (3) possible twist induced in the fiber element (4) 

possible bending induced in the fiber element. 

 

 

    
 

 
            and     

 

 
(         )                                            (2) 

where     is the symmetric infinitesimal strain tensor (small deformation tensor) which is the 

suitable measure of deformation induced in the fiber element that contribute to elongation or 

contraction in the fiber element (        in Fig. 1).While     is the skew-symmetric 

infinitesimal rotation tensor which measures the rigid-like rotations of the fiber element between 

the two material particles (        in Fig. 1). We have to note that,     does not contribute to 

the change in the fiber element length and consequently cannot appear in a tensor measuring 

material deformations. As a result, in classical continuum theories, such as Cauchy elasticity, such 

rotation tensor is disregarded and     is used as a measure of the induced deformation in the 

continuum (Hadjesfandiari and Dargush 2011). 

However, in nano-size continuums, in addition to the contribution of the stretches of the fiber 

element, it is convenient to have an additional tensor measures the possible twisting and bending 

of the fiber element, which come as a consequence of the possible relative rotations of the two 

material particles    and   . Consequently, in the couple stress theory, we expect to include the 

curvature tensor      which is the gradient of the rotation vector (   
 

 
       ) at particle   . The 

diagonal components of the      tensor represent the pure torsion of the fiber element while the off-

diagonal components represent the total curvatures-due-to-bending of the fiber element.  

The rotation gradient tensor tensor      could be decomposed into    and    with 

    
 

 
             ;       

 

 
(         )                                              (3) 

The diagonal components in the symmetric tensor     represent the pure torsion of the fiber 

element (        in Fig. 1) while the off-diagonal components measure part of the curvatures-

due to-bending of the fiber element (        in Fig. 1). On the other hand, the skew-symmetric 
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tensor     measures the other part of the curvatures-due-to-bending of the fiber element (    

    in Fig. 1). The latter,    , has zero diagonal components, while the off-diagonal components 

represent the mean curvatures of the fiber element. These two tensors account for the deformation 

energy of the fiber element, in addition to the conventional infinitesimal strain tensor    .  

By discussing some kinetic concepts of the mechanics of particles, Yang et al. (2002) provided 

a third higher order equilibrium equation in addition to the conventional equilibrium equations of 

material particles. This third additional equation requires that summation of couples of couples at 

the level of material particles to be zero to achieve equilibrium. Consequently, to successfully 

apply the third proposed equation the skew-symmetric couple stress tensor has to be eliminated. 

This theory is based on that the couple stress is not a free vector but a local driving force that 

rotates the material particles in addition to the conventional affected forces. This modifies the 

classical couple stress theory to be consistent with higher order theories of solid mechanics. 

Consequently, we could conclude that, in the modified couple stress theory, the deformation of the 

continuum depends only on the symmetric part of the displacement gradient tensor (symmetric 

infinitesimal strain tensor) (   ) and the symmetric part of the rotation gradient tensor (   ). 

 

2.2 Strain energy density function and constitutive equations 
 
In this paper, the continuum microstructure is modeled based on the modified couple stress 

theory in which the strain energy is a function of the infinitesimal strain     in addition to the 

symmetric rotation gradient tensor     and can be expressed as follows (Yang et al. 2002). 

   (       )  
 

 
                                                              (4) 

Consequently, the constitutive equations for the modified couple stress theory are 

    
  

    
                                                                   (5a) 

    
  

    
                                                                         (5b) 

where   and   are continuum bulk Lame constants and   is a material length scale parameter 

which is regarded as a material property measuring the effect of couple stress. This parameter can 

be determined from torsion tests of slim cylinders (Chong et al. 2001) or bending tests of thin 

beams (Lam et al. 2003).     and     are the force-stress tensor and the couple-stress tensor, 

respectively. These two tensors are symmetrical ones. 

 

 

3. Surface elasticity theory  
 

In the presence of initial surface tension, the surface of an elastic body does not have a “natural 

state” characterized by zero surface energy. Moreover in the presence of initial surface tension, the 

theory of surface elasticity is a hybrid formulation characterized by linearized bulk elastic material 

and second order finite deformation of the surface (Ru 2010, Shaat et al. 2013a). 

For classical linear elasticity, it is not necessary to distinguish the initial/deformed areas, 

because this only causes high-order infinitesimal terms which are discarded in linear elasticity. For 

surface elasticity, however, because of the pre-existing surface tension, the finite change in surface 
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area should be accounted up to second order products of displacement gradients. For this reason, 

one may have to quantify the change in surface area up to second order products of surface 

strains/displacement gradients, and distinguish the surface energy and surface stress measured in 

the initial surface area or the deformed surface area. Based on this concept the contribution of the 

surface energy to the system total strain energy will be (Ru 2010, Shaat et al. 2013a) 

          
             (   

    
 )         (   

    
 )                           (6) 

where   is the surface strain energy per unit surface area (surface strain energy density),    and    

are surface Lame Constants and    is the pre-surface tension.    
  is the infinitesimal strain tensor 

at the continuum surface considering the possible deformations (elongation or contraction) induced 

in the fiber element between two material particles on the surface of the continuum (Eq. (2)).The 

last term in Eq. (6) depends on all non-zero 3D displacement gradients. Where the sum   of 6 

squared terms of the second order surface gradient tensor    
      

  ̂  ̂  (where  ̂  are unit 

vectors) is due to the difference between the trace of Lagrangian surface finite strain    and the 

trace of infinitesimal surface strain    (Ru 2010). This clearly explains the cause of the 

displacement gradient term in Gurtin and Murdoch model and the difference between the Gurtin 

and Murdoch model and other existing surface elasticity models.  

Thus, the constitutive relations of the surface layers as given by Gurtin and Murdoch (1975, 

1978) can be extracted from Eq. (6) to be  

                     
                

        
                             (7a) 

           
                                                               (7b) 

where     represent the in-plane Cartesian coordination of the surface, while   represents the out-

plane Cartesian coordination of the surface. In Eq. (7), the terms (       
            

 ) are 

introduced as a consequence of exploiting the Lagrangian surface description and considering the 

pre-strain developed at the plate surface. In most previous works, theoretical analyses were based 

on the Eulerian surface elasticity, in which the out-plane terms of surface stress were neglected 

and the effect of residual stress in the bulk was not taken into account. As an illustration, in this 

paper, we will consider the effects of these factors on the size-dependent behavior of nano 

structures. 

 

 

4. Minimum of total potential energy principle  
 

Based on discussions in previous sections, the total strain energy density is a function of the 

infinitesimal strain     and the symmetric rotation gradient     of the bulk material, and the 

infinitesimal strain    
  and the second-order displacement gradient     of the surface layer of the 

structure. This is in the context of the modified couple stress theory in combining with surface 

elasticity theory. 

The potential energy in an elastic plate is the energy contained in the elastic distortions (strain 

energy) and the capacity of the loads to do work (work done). So, the total potential energy can be 

written as 

                                                                         (8) 

where   and    are the strain energy of the bulk and the strain energy of the surface of the 
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continuum, respectively.   is the applied work on the continuum and   is the total potential 

energy. From Eq. (4) and Eq. (6), the strain energies    and    become 

   ∫     
 

 
 

 
∫ (             )   

                                        (9) 

   ∫  
 

   
 

 
∫ (      

         
 )  

 
                                       (10) 

Thus the equilibrium equation based on the minimization of the total potential energy principle 

will be 

                                                                        (11) 

where 

    ∫ (               )   
                                                    (12) 

    ∫ (       
          

 )  
 

                                                   (13) 
 

 

5. Size-dependent elasticity 
 

Here, the size-dependent elasticity model for nano FG Mindlin plates is proposed, 

incorporating microstructure and surface energy effects, to study the elastic behavior of ultra-thin 

FG films. 

  

5.1 Displacement and strain fields of Mindlin plate 
 

The Mindlin hypothesis is built up on the assumption that the transverse normals do not remain 

perpendicular to the mid-plane after deformation. This amounts to include transverse shear strains 

in the theory. Under the illustrated assumptions, the displacement fields for Mindlin FG plates are 

of the form 

                                                                                    

                                                                                   

                                                                             (14) 

where                  are unknown functions to be determined and    denotes the position of 

the neutral plane from the geometrical mid plane (see Fig. 2), where for isotropic homogenous 

plates     . Consequently, from Eq. (2) the nonzero infinitesimal strain components     are 

given by 

                                                             (         )   

                                                                           (15) 

Moreover, the components of the rotation vector    and the symmetric part of the rotation 

gradient tensor     are being associated with the displacement field in Eq. (14), by the following 

form 
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Fig. 2 Coordinate system and geometry of the FG plate. 
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5.2 Governing equations 
 

Consider a rectangular FG plate of length  , width   and thickness   subjected to a mechanical 

transverse load of intensity  . If the surface stresses on the upper and lower surfaces of the plate 

layers are different and denoted by    
  and    

 , respectively. By substitution for the virtual strain 

fields      and     , with the aid of Eq. (15) and Eq. (17), into Eq. (12) and Eq. (13), the virtual 

strain energy could be obtained in the form 

   ∫ { (                 
       

       
       

  
 

 
(             )*     

 

  (                 
       

       
       

  
 

 
(             )*     (            

     
       

       
       

  
 

 
(                           )*    (            

    
 

 
(     
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(     

       
 )  

 

 
(                               )*     

(                
 

 
(     

       
 )  

 

 
(     

       
 )  

 

 
(                  

             )*    }                                                            (18) 

where the stress resultants    ,    ,   and     are defined by  

     ∫       
   

    
                                                                 (19a) 

     ∫             
   

    
                                                        (19b) 

113



 

 

 

 

 

 

F.F. Mahmoud and M. Shaat 

    ∫       
  ⁄

   ⁄
                                                                  (19c) 

    ∫             
  ⁄

   ⁄
                                                         (19d) 

Moreover, the following equivalent stress resultants could be defined 

   
         

      
                                                           (20a) 

   
      

 

 
(   

     
 )                                                      (20b) 

Consequently, the governing equations in terms of the equivalent resultant forces and moments 

are given by 

     
       

  
 

 
(             )                                                          

     
       

  
 

 
(             )                                                          

     
       

  
 

 
(                           )                                         

     
       

      
 

 
(                               )                              

     
       

      
 

 
(                               )                      (21) 

The stress resultants    
     

      and     for Mindlin FG plate are written explicitly in 

Appendix A. Then, substitution for the stress resultants    
     

      and     into Eq. (21) leads to 

the governing equations in terms of the generalized displacements (              ) for FG 

Mindlin nano plates.  
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 (           )  

   (       )  (
 ( ̅ ( 

      
 )          )

      
)  (    )  

 

 
          

 (           )  

  

 
  (    )  

  

 
(                   )  

 

 
   

              
               

                                           (22e) 

where the gradient operator    
  

    
  

   . The material parameters for the FG nano plate will be 
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where  ̅        
    

    ̅        
    

        ̅        
    

   are the average surface 

properties, and       
    

 ,       
    

  and       
    

 .  

    ∫  ̅     
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                                                                (24a) 

   ∫          
 

 

 
 

 

               ∫            
 

 

 
 

 

             ∫             
 

 

 
 

 

       (24b) 

where  ̅   are the equivalent material property stiffnesses and   is the shear correction factor 

(Alieldin et al. 2011). Moreover, here the material length scale parameter      that used to capture 

the couple stress effects on the plate behavior is considered to be varying continuously through the 

plate thickness for the FG plate.  

Eq. (22) shows that some terms have been added to the governing equations of the classical 

model to incorporate surface energy and microstructure couple stress effects. The additional terms 

provide additional stiffnesses to the classical form of the governing equations. For plates 

neglecting both the microstructure and surface energy effects, Eq. (22) reduces to the classical 
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form of governing equations. Also, in Eq. (23) some terms have been added to the classical plate 

rigidities to incorporate surface effects.  

 

 

6. Effective mechanical properties of FG plates 
 

In general, many approaches are used for homogenization of FGMs. The choice of the 

approach should be based on the gradient of gradation relative to the size of a typical 

representative volume element. In the case where the material properties associated with gradation 

vary with relatively slow changing functions of spatial coordinates, standard homogenization 

methods can be applied. Accordingly, the material is assumed locally homogeneous at the 

representative volume element scale but it is globally heterogeneous on the macroscopic structural 

scale. However, if the material properties vary rapidly with the coordinates, it is impossible to 

disregard the heterogeneous nature of the representative volume element. In this case grading is 

reflected at both microscopic (representative volume element) as well as macroscopic (structural) 

scales (Shaat et al. 2013c). 

Many researchers proposed a homogenization models for FGMs, such as the self-consistent 

models by Hill (1965), the mean field micromechanics models by Mori-Tanaka (1973). Here in 

this paper the effective Young’s Modulus      and the microstructure material length scale     of 

the FG plate will be estimated using the simple Voigt arithmetic method where the distributions of 

volume fractions through the plate thickness are assumed to follow the simple power law 

                 (
 

 
 

 

 
)
 
                                            (25a) 

                 (
 

 
 

 

 
)
 

                                            (25b) 

where    and   , and    and    are the properties of the upper and lower constituent materials 

(metal and ceramic), respectively.   can be any non-negative real number and  
 

 
   

 

 
 . The 

other mechanical properties are expected to have a constant function through the thickness of the 

plate. The Poisson’s ratio for the FG structures may be varying according to a continuous function 

like Young’s modulus. However, in most cases it varies linearly unlike the Young’s modulus 

which will vary according to a nonlinear function (Aboudi 1991). Moreover, based on many 

previous works (Delale and Erdogan 1983, Chi and Chung 2006), effects of varying the Poisson’s 

ratio have shown fewer contributions to the deformation of FG plates when compared with the 

Young’s modulus. Therefore, assuming a constant Poisson’s ratio is acceptable here. 

For the analyses of the flexural behavior of a FG plate, subjected only to a transversal applied 

load, we have to determine the location of the neutral plane before solving the equilibrium 

equation of the plate. Clearly, due to the varying of Young’s modulus of the FG plate through the 

thickness, the neutral plane is no longer located at the mid-plane but shifted from it. The effect of 

neutral plane position is typically neglected in most previous studies, while the position of neutral 

plane for FG plates must be predetermined. To determine the position of the neutral plane, a new 

coordinate system is constructed such that the new  -axis (       ) is placed at the neutral plane 

(see Fig. 2), (Yaghoobi and Fereidoon 2010, Shaat et al. 2013b, c). Moreover, consider an 

infinitely wide FG plate subjected to a transverse load. The position of the neutral plane can be 

determined by choosing    such that the axial force at the cross-section vanishes 
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∫
          

      
 

 

 
 

 

                                                                   (26) 

Consequently, for constant Poisson’s ratio   through the thickness, the neutral plane is shifted 

from the mid-plane by 

    (
∫        

 
 

 
 
 

∫       

 
 

 
 
 

,                                                              (27) 

Eq. (27) provides an applicable way to manage and control the position of neutral plane for FG 

plates. For design considerations, sometimes we have to adapt the neutral plane position with the 

required design constraints. Changing the grading continuous function of the FG plate controls the 

position of the neutral plane (Shaat et al. 2013b, c). 

 

 

7. Analytical solution 
 

In this section, an analytical solution for FG Mindlin simply supported plate is developed. The 

nano plate is a rectangular plate of length  , width   and thickness   (Fig. 2), and it is subjected to 

a double Fourier sinusoidal loading  

             
  

 
    

  

 
                                                       (28) 

The boundary conditions for the simply supported Mindlin plate considering microstructure 

couple stress and surface energy effects will have the form 

{

                                                               

   
                                                                    

   
                                               

                                 (29a) 

{

                                                               
   

                                                                    

   
                                               

                                (29b) 

 

The following displacements expansions will satisfy the boundary condition (Eq. (29)) for the 

simple supported plate 

                                                                         (30a) 

                                                                         (30b) 

                                                                         (30c) 

                                                                         (30d) 

                                                                          (30e) 

where           are coefficients to be determined and      ⁄ ,      ⁄ . We have to 

mention that, for simply supported plates these classical displacement expansions will satisfy the 

illustrated boundary conditions. However, for other situations the classical expansions could be 

adopted to satisfy the inclusion of the surface energy and the microstructure couple stress in the 
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boundary conditions.  

By substituting Eq. (28) and Eq. (30) into Eq. (22), which represent the Mindlin governing 

equations of nano FG plates, the magnitude coefficients of the degrees of freedom can be obtained 

by solving the following matrix form 

[
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                                                (31) 

where    
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8. Numerical results 
 

In this section, some numerical examples are performed for a simply supported FG plate to 

verify the present model and to provide a suitable parametric study. The plate has a length  , a 

width   and a thickness   and it is expected to be functionally graded according to the simple 

power law of a two constituent materials (Al and Si) through its thickness. Moreover, it is 

subjected to a sinusoidal distributed mechanical load of intensity  . Throughout this section, 

effects of surface energy, microstructure couple stress, grading parameter   considering the exact 

neutral plane position on the bending behavior of FG ultra-thin films are studied.  

 

8.1 Model verification  
 

In this subsection, the case studies solved by Thai and Choi (2013), Shaat et al. (2013b) are 

reconsidered here to verify the proposed present model for the inclusion of the couple stress effects 

and the inclusion of surface effects, respectively.  

Thai and Choi (2013) studied the effect of the length scale parameter   and the grading 

parameter   on the static deflection of a square simply supported FG plate whose material and 

geometrical parameters are: EU=14.4 GPa; EL=1.44 GPa; υU=υL=0.38; h=17.6 μm; p=1 Pa. In this 

study, Thai and Choi assumed a constant material length scale parameter   through the plate 

thickness. Table 1 shows a comparison between the nondimensional maximum deflection ( ̅  
       

    ⁄             ) predicted by Thai and Choi model and predicted by the present 

model. The table shows a high agreement between the results of the present model and those of 

Thai and Choi (2013) model.  

Now, consider an Al/Si infinitely wide isotropic FG plate with   ⁄     to study the effect of 

grading parameter   in combining with surface energy effects on its bending behavior. This case 

study is previously considered by Shaat et al. (2013b) thus the plate is subjected to a sinusoidal 

load of intensity        and has the following material parameters:                
                    . Fig. 3 shows the non-dimensional difference between the central 

deflection predicted by the surface elasticity model (neglecting couple stress effects) and the 

classical elasticity model (          ) for different values of the grading parameter  . The 

figure reflects the great effect of the plate surface energy and surface tension on its deflection. 

Moreover the figured results shows a great agreement with those presented in Shaat et al. (2013b).  
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Table 1 Non-dimensional central deflection  ̅         
    ⁄              of a simply supported 

square plate (         ) (neglecting surface energy effects) 

       ⁄  

             

Thai and Choi 

(2013) 

Present 

Model 

Thai and Choi 

(2013) 

Present 

Model 

Thai and Choi 

(2013) 

Present 

Model 

5 0 0.3306 0.3306 0.7387 0.73875 1.6898 1.6898 

 0.2 0.2876 0.2876 0.6200 0.6199 1.4867 1.4867 

 0.4 0.2086 0.20856 0.4224 0.4224 1.1010 1.1010 

 0.6 0.1456 0.14564 0.2817 0.2817 0.7818 0.78176 

 0.8 0.1049 0.10491 0.1974 0.19738 0.5691 0.5691 

 1 0.0793 0.0793 0.1469 0.14685 0.4328 0.4328 

10 0 0.2803 0.2803 0.6472 0.6472 1.4130 1.41299 

 0.2 0.2440 0.24402 0.5433 0.5433 1.2444 1.2444 

 0.4 0.1762 0.1762 0.3678 0.3678 0.9186 0.9186 

 0.6 0.1211 0.1211 0.2406 0.24056 0.6429 0.64288 

 0.8 0.0849 0.08491 0.1635 0.16346 0.4561 0.45614 

 1 0.0619 0.0619 0.1169 0.1169 0.3352 0.3352 

20 0 0.2677 0.2677 0.6243 0.62434 1.3438 1.3438 

 0.2 0.2330 0.2330 0.5240 0.52403 1.1834 1.18339 

 0.4 0.1680 0.16796 0.3539 0.35385 0.8719 0.8719 

 0.6 0.1148 0.11478 0.2300 0.2299 0.6069 0.6069 

 0.8 0.0797 0.0797 0.1547 0.15468 0.4266 0.4266 

 1 0.0574 0.05736 0.1092 0.10916 0.3095 0.3095 

 

 

8.2 Parametric study  
 

In this subsection, effects of the microstructure couple stress and surface energy on the bending 

behavior of FG simply supported plates are investigated. To this aim, consider a simply supported 

rectangular FG plate with the material parameters shown in Table 2.  

Fig. 4 shows the non-dimensional difference between central deflection predicted by the 

modified couple stress model (neglecting surface effects) and the classical elasticity model 

(          ) for different grading parameter   for range of plate thickness (       
     ). The results show that the FG and the homogenous plates provide negative non-

dimensional differences, which means that the length scale parameter      stiffens the plate. 

Moreover, the effect of the couple stress appears in micro scale thicknesses for FG plates and Al 

plate, while the Si plate provides a negligible sense with the couple stress effects for this range of 

plate thickness. This action depends basically on the value of the material parameter   for both Al 

and Si materials. The figure shows, also, a decrease in the non-dimensional difference by 

increasing the grading parameter  , this is for FG plate whose upper material parameter    is 

smaller than its lower material parameter   .  

Fig. 5 represents the surface energy effects on the behavior of FG and homogenous plates. The 

figure shows the non-dimensional difference between central deflection predicted by the surface 

elasticity model (neglecting couple stress effects) and the classical elasticity model (        
  ) for different grading parameter   for range of plate thickness (            ). For this 
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case of FG plate, the plate surface tension in addition to the surface Lame constants stiffens the 

plate. We have to mention that, surface energy and surface tension could stiffen or soften the plate 

depending on the plate surface properties. While the microstructure couple stress always adds 

additional stiffness to the plate.  

 

 

 

Fig. 3 Non-dimensional difference in central deflection            versus plate thickness for 

different grading parameter   (neglecting couple stress effects). 

 

 

Fig. 4 Non-dimensional difference in central deflection            versus plate thickness for 

different grading parameter  . (          ̅   *) (Neglecting surface energy effects)* 

Dimensionless load parameter  ̅  
   

    . 
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Table 2 Material Properties of the FG plate (Shaat et al. 2013b, c, Rokni et al. 2013, Gao and Mahmoud 

2014, Shaat and Mohamed 2014) 

Property Aluminum (Upper surface) Silicon (upper surface) 

Young’s modulus 

Poisson’s ratio 

Surface tension 

Surface Lama constants 

Microstructure parameter 

                                  

                                  

                                

                               

                                   

                                   

                                     

                                  

                              

                                    

 
 

 

Fig. 5 Non-dimensional difference in central deflection            versus plate thickness 

for different grading parameter  . (          ̅   ) (Neglecting couple stress effects). 

 

 

Fig. 6 represents the non-dimensional central deflection (   ) distribution along the plate 

length for different      ratios and for different       ratios. The figure reflects the great effect 

of the couple stress on the plate deflection which records the highest effects at    ⁄    and 

    ⁄   . Moreover, increasing       ratio reduces the plate deflection. By comparing the 

results of Fig. 6(a) and Fig. 6(b), the surface tension will stiffen the plate and hence reduces the 

plate deflection. This figure reflects the great effect of both of surface energy and couple stress on 

the bending behavior of the FG plate. 

Based on the proposed model, comprehensive results of non-dimensional deflection are also 

tabulated in Table 3 and Table 4 for various cases of including or not including the couple stress 

effect and surface energy effect for homogenous (   ) and FG (   ) plates. These results can 

be used for evaluating the reliability of size-dependent plate models developed in the future. The 

table shows a decrease in the plate non-dimensional central deflection ( ̅        
     ⁄ ) by 

increasing the grading parameter   (this is for a FG plate with     ⁄   ). Observing the 

numerical values in the table shows that the difference in deflection when considering and 

neglecting the surface effects reduces by increasing the grading parameter  . Moreover,  
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Table 3 Non-dimensional central deflection  ̅ of a simply supported square plate (      ) 

        ⁄     ⁄  
            

WSE
1
 NSE

2
 WSE NSE WSE NSE 

5 0.01 0 3.5158 3.5151 2.2079 2.2076 2.0113 2.0110 

  0.2 2.9669 2.9664 2.0968 2.0965 1.9520 1.9518 

  0.4 2.0404 2.0402 1.8236 1.8234 1.7942 1.7940 

  0.6 1.3695 1.3694 1.5028 1.5027 1.5829 1.5827 

  0.8 0.9632 0.9632 1.2118 1.2117 1.3615 1.3614 

  1 0.7181 0.7181 0.9765 0.9765 1.1573 1.1572 

 0.1 0 3.5158 3.5151 2.2079 2.2076 2.0113 2.0110 

  0.2 2.9669 2.9664 2.0836 2.0833 1.9411 1.9409 

  0.4 2.0404 2.0402 1.7849 1.7847 1.7582 1.7580 

  0.6 1.3695 1.3694 1.4460 1.4459 1.5218 1.5217 

  0.8 0.9632 0.9632 1.1490 1.1490 1.2842 1.2841 

  1 0.7181 0.7181 0,9160 0.9159 1.0734 1.0733 

 1 0 3.5158 3.5151 2.2079 2.2076 2.0113 2.0110 

  0.2 2.9669 2.9664 1.8473 1.8471 1.6723 1.6722 

  0.4 2.0404 2.0402 1.2524 1.2524 1.1224 1.1224 

  0.6 1.3695 1.3694 0.8322 0.8322 0.7407 0.7407 

  0.8 0.9632 0.9632 0.5820 0.5820 0.5159 0.5159 

  1 0.7181 0.7181 0.4325 0.4325 0.3826 0.3826 

20 0.01 0 2.9468 2.9543 1.8682 1.8712 1.7116 1.7141 

  0.2 2.4884 2.4937 1.7748 1.7775 1.6616 1.6639 

  0.4 1.6978 1.7003 1.5434 1.5455 1.5276 1.5296 

  0.6 1.1118 1.1129 1.2683 1.2696 1.3468 1.3483 

  0.8 0.7513 0.7518 1.0153 1.0162 1.1555 1.1566 

  1 0.5317 0.5320 0.8085 0.8091 0.9773 0.9781 

 0.1 0 2.9468 2.9543 1.8682 1.8712 1.7116 1.7141 

  0.2 2.4884 2.4937 1.7637 1.7663 1.6523 1.6547 

  0.4 1.6978 1.7003 1.5104 1.5124 1.4969 1.4988 

  0.6 1.1118 1.1129 1.2191 1.2204 1.2942 1.2957 

  0.8 0.7513 0.7518 0.9603 0.9611 1.0882 1.0892 

  1 0.5317 0.5320 0.7549 0.7554 0.9035 0.9042 

 1 0 2.9468 2.9543 1.8682 1.8712 1.7116 1.7141 

  0.2 2.4884 2.4937 1.5636 1.5657 1.4235 1.4253 

  0.4 1.6978 1.7003 1.0508 1.0518 0.9467 0.9475 

  0.6 1.1118 1.1129 0.6806 0.6810 0.6085 0.6088 

  0.8 0.7513 0.7518 0.4568 0.4570 0.4066 0.4067 

  1 0.5317 0.5320 0.3220 0.3221 0.2858 0.2859 
1
WSE: With surface energy (considering surface energy effects) 

2
NSE: Without surface energy (Neglecting surface energy effects) 

 

 

considering the couple stress effect reduces the contribution of the surface energy on the plate 

deflection which records the minimum values at    ⁄   . Also, the table reflects the great effect 

of the couple stress on the plate deflection which records the highest effect at    ⁄   . 

Moreover, it is observed that the microstructure effects on deflection, through the application of 

the modified-couple stress theory, is higher than that caused by the surface energy effect for 

   ⁄   .  
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Table 4 Non-dimensional central deflection  ̅ of a simply supported square plate (      ) 

        ⁄     ⁄  
            

WSE NSE WSE NSE WSE NSE 

5 0.01 0 4.7659 3.5151 2.6025 2.2076 2.3396 2.0110 

  0.2 3.7415 2.9664 2.4419 2.0965 2.2563 1.9518 

  0.4 2.3049 2.0402 2.0634 1.8234 2.0394 1.7940 

  0.6 1.4416 1.3694 1.6457 1.5027 1.7601 1.5827 

  0.8 0.9763 0.9632 1.2898 1.2117 1.4805 1.3614 

  1 0.7138 0.7181 1.0167 0.9765 1.2334 1.1572 

 0.1 0 4.7659 3.5151 2.6025 2.2076 2.3396 2.0110 

  0.2 3.7415 2.9664 2.4232 2.0833 2.2411 1.9409 

  0.4 2.3049 2.0402 2.0115 1.7847 1.9909 1.7580 

  0.6 1.4416 1.3694 1.5745 1.4459 1.6817 1.5217 

  0.8 0.9763 0.9632 1.2157 1.1490 1.3857 1.2841 

  1 0.7138 0.7181 0.9484 0.9159 1.1347 1.0733 

 1 0 4.7659 3.5151 2.6025 2.2076 2.3396 2.0110 

  0.2 3.7415 2.9664 2.0953 1.8471 1.8768 1.6722 

  0.4 2.3049 2.0402 1.3382 1.2524 1.1922 1.2240 

  0.6 1.4416 1.3694 0.8553 0.8322 0.7594 0.7407 

  0.8 0.9763 0.9632 0.5857 0.5820 0.5190 0.5159 

  1 0.7138 0.7181 0.4305 0.4325 0.3811 0.3826 

20 0.01 0 0.8415 2.9543 0.7202 1.8712 0.6959 1.7141 

  0.2 0.7992 2.4937 0.7058 1.7775 0.6875 1.6639 

  0.4 0.6946 1.7003 0.6660 1.5455 0.6633 1.5296 

  0.6 0.5707 1.1129 0.6088 1.2696 0.6267 1.3483 

  0.8 0.4573 0.7518 0.5435 1.0162 0.5817 1.1566 

  1 0.3650 0.5320 0.4778 0.8091 0.5326 0.9781 

 0.1 0 0.8415 2.9543 0.7202 1.8712 0.6959 1.7141 

  0.2 0.7992 2.4937 0.7041 1.7663 0.6859 1.6547 

  0.4 0.6946 1.7003 0.6597 1.5124 0.6575 1.4988 

  0.6 0.5707 1.1129 0.5972 1.2204 0.6150 1.2957 

  0.8 0.4573 0.7518 0.5273 0.9611 0.5641 1.0892 

  1 0.3650 0.5320 0.4585 0.7554 0.5099 0.9042 

 1 0 0.8415 2.9543 0.7202 1.8712 0.6959 1.7141 

  0.2 0.7992 2.4937 0.6697 1.5657 0.6429 1.4253 

  0.4 0.6946 1.7003 0.5536 1.0518 0.5234 0.9475 

  0.6 0.5707 1.1129 0.4299 0.6810 0.4001 0.6088 

  0.8 0.4573 0.7518 0.3280 0.4570 0.3013 0.4067 

  1 0.3650 0.5320 0.2519 0.3221 0.2293 0.2859 

 

 

Moreover, increasing the     ratio increases the contribution of the surface energy on the plate 

deflection. On the other hand, the couple stress effects reduce by increasing the     ratio. For 

lower     ratios, the trend of the surface energy is to soften the plate, while, for higher ratios, the 

surface energy will stiffen the plate. This reflects the great effect of the transverse shear strain, 

which included in the Mindlin plate theory, in combining with the surface energy on the bending 

behavior of FG ultra-thin plates (Shaat et al. 2013b, c).   
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Fig. 6 Non-dimensional central deflection distribution along the plate length for different      and 

      ratios. (                    ). 

 

 
Also when considering couple stress effects and neglecting surface energy effects, the table 

records the same values for both of       and       . Moreover, for micro-scale thickness 

the effect of surface energy is negligible and increases as reducing the plate thickness to nano scale 

thickness.  
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9. Conclusions 
 

Here, the essential kinematical and kinetical relations for nano continuum mechanics of nano 

solids are derived and discussed. The fundamental equations and relations for the modified couple 

stress theory are derived to illustrate the microstructure effects on micro/nano solids. Moreover, 

the effect of the material surface free energy is incorporated into the modified continuum theory. 

Through the paper, the governing equations for the size-dependent model for Mindlin nano FG 

plates are derived and analytically solved to provide a parametric study. As a consequence, some 

conclusions are extracted:  

• Each of the plate surface energy and microstructure couple stress has a significant effect on its 

bending behavior which will be more significant when working together. 

• For very small plate thicknesses, the microstructure couple stress will be significant and 

records the highest contributions for   ⁄   .  

• Comparing to the effect of microstructure couple stress, the effect of surface energy reduces 

by increasing     ratio. 

• There is a great effect of the transverse shear strain in combining with the surface energy on 

the bending behavior of FG ultra-thin plates.  

• Increasing     ratio increases the contributions of surface energy and reduces the 

contribution of the microstrucutre couple stress. 

• The classical continuum theories provide a misleading estimation of the behavior of 

nanosolids. Consequently, the classical theories are adopted to provide an acceptable estimation 

for the unique behavior of nanosolids that is relevant to experimental estimations. 
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Appendix A 
 

Since the plate is thin, the stress component     is small comparing to the in-plane stress 

components, which is simply assumed to be zero in the classical plate theory. However, due to 

surface tension a residual stress field will be developed in the bulk material; therefore it is assumed 

here that the stress component     varies linearly through the pate thickness (Lu et al. 2006, Shaat 

et al. 2012, 2013b, c, Lü et al. 2009). With the assumption,     can be written as 
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Consequently, the symmetric force-stress tensor for the bulk with residual stresses, due to surface 

tension, can be written as follows 

                  
 

   
                                                         

From Eq. (14) and Eq. (15) in Eq. (7), then Eq. (   ) and then in Eq. (   ), the components of 

the force-stress tensor, for Mindlin plate, could be obtained 

   
  

    

 
(          )  

          

 
(           )

 (
 

     
(
  ̅       

 
 

   
 

)+(           ) 

   
  

    

 
(          )  

          

 
(           )

 (
 

     
(
  ̅       

 
 

   
 

)+(           ) 

   
      (         )            (         ) 

   
       (       ) 

   
       (       )                                                                     

where      
     

     and      
    

      
 are FG plate bulk Lame constants. Moreover, From Eq. (17) 

in Eq. (  ), the symmetric couple-stress tensor    , for Mindlin plate, can be obtained  
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The stress resultants    
     

      and     for Mindlin plate theory can be obtained by 

substituting the displacement fields (Eq.    ) into Eq. (7), Eq.     and Eq.       and then into 

Eq.      and Eq.     . 
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