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Abstract.  Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-
shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-
deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates 
simply supported on all four edges and subjected to combined action of external compressive in-plane and 
transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and 
transverse loads was investigated. The proposed analytical method is compared to the physical test results, 
and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-
dimensional characteristic equation was proposed and found to give reasonable accuracy. 
 

Keywords:  steel fiber reinforced concrete plate; out-of-plane central deflection; load-deflection response; 

analytical model; ultimate strength prediction 

 
 
1. Introduction 
 

Concrete plates are used as structural elements in the hulls of floating concrete structures, 

floating bridges, walls of off-shore structures and liquid storage tanks. These plate elements are 

subjected to combined compressive in-plane loads due to the longitudinal bending of structure and 

transverse loads caused by hydrostatic pressure or deck loads. These plates resist loads in two way 

action and develop biaxial curvatures. A few analytical models exist and test results are available 

only for reinforced concrete plates under combined in-plane and transverse loads (Aghayere and 

MacGregor 1990a, b, Ghoneim and MacGregor 1994a, b). Bao et al. (1997), Malekzadeh (2007) 

have given an analytical solution for the bending and buckling of orthotropic steel plates and 

composite thin plates, respectively. Oiao et al. (2013) have studied on ultimate strength predictions 

of simply supported square plates of laminated composite materials subjected to uniaxial in-plane 

compressive load. An analytical study for bending analysis of soft-core composite sandwich plates 

using improved high-order theory was carried out by Kheirikhah et al. (2012). A rigorous 

evaluation procedure for the cracked moment in RC beams and slabs arrived and suggested by 

Lopes and Lopes (2012). A numerical study with two constitutive models was carried out to 

estimate the flexural behavior of full-scale FRC slabs of different dimensions (Blanco et al. 2014). 

A method of analysis is developed here based on the assumed deflection method. In this way 
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calculation of the strength of a plate is reduced to one degree of freedom problem. A simple 

analytical model of the plate response based on a Fourier expansion of the deflection and lateral 

load is presented. The behavior of the high-strength steel fiber reinforced concrete plates, taking 

into account the non-linear material response using moment-curvature relationship, is determined 

by applying the theory of elasticity. Due to the non-linear nature of the stress-strain relations, use 

of numerical procedures rather than closed form solutions has been employed. The geometrical 

non-linearity is incorporated in the governing differential equation. An experimental program was 

already carried out to investigate the behavior of high-strength SFRC plates subjected to in-plane 

and transverse loads, with aspect ratio (Ly/Lx) or (a/b) of all the plates as 1 and length to thick ratio 

maintained as 20 (Ramadoss and Nagamani 2009). The results from the analysis are compared to 

the test results from an experimental study carried out by Ramadoss and Nagamani (2009). Good 

agreement was obtained for simply supported square plates containing varying fiber volume 

fraction. 

          

 

2. Research significance 

 

     Most of the research carried out on metal and RC plates supported on four edges and subjected 

to combined loads or in-plane loads. A very few analytical methods are available to treat the 

situation of combined in-plane and transverse loads. The analytical methods for predicting the 

ultimate strength of steel fiber reinforced concrete plates (composite plates) subjected to combined 

in-plane and transverse loads have been scarce to the author‟s knowledge. This paper presents a 

simple analytical model for the prediction of ultimate strength of high-strength SFRC plates in a 

reasonably accurate manner. To predict the constitutive behavior of HSSFRC in compression, a 

non-dimensional characteristic equation was proposed.  

 

 

3. Material constitute law  

      

3.1 Constitutive model for stress-strain curve of SFRC in compression 

 

Under pure flexure, the strength of plain concrete does not have a significant influence on the 

flexural capacity, but the steel fiber reinforced concrete (SFRC) has a significant effect on the 

flexural capacity compared to plain concrete. Under combined flexural and axial compression, 

strength of SFRC plays an important role in the determination of the section capacity, particularly, 

if the level of the in-plane load is significant. Compressive strength test was performed according 

to ASTM C 39-1992 standards using 150 mm dia. cylinder specimens, and flexural strength 

(modulus of rupture) test was conducted as per the specification of ASTM C 78-1994. Mechanical 

properties of the high-strength SFRC (HSSFRC) with varying fiber volume fraction (Vf = 0- 1.5%) 

are given in Table 1.  

The stress–strain behavior of HSSFRC with 150Ø  cylinder compressive strength ranging from 

52 to 70 MPa has been investigated. Elastic modulus (secant modulus), Ecf = 29.68- 36.79 GPa and 

Poisson‟s ratio, ν= 0.19- 0.25 obtained for HSSFRCs are used in this analytical study. ACI 

Committee 318-1995 (2004) permits the use of any concrete stress-strain relationship that predicts 

section strength in substantial agreement with the results of compressive strength tests. Stress- 
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Table 1 Summary of experimental program and test results of HSSFRC 

Plate 

Specimen 

Specimen size 

(mm) 

SF 

(%) 

Vf 

(%) 

f’cf 

(MPa) 

frf 

(MPa) 
Nx/ f’cf.h 

q 

(kN/m
2
) 

A1 600×600×30 10 0 52.56 6.21 0.063 79.17 

A2 600×600×30 10 1.0 56.01 7.73 0.060 125.27 

A3 600×600×30 10 1.5 57.42 8.19 0 93.06 

B1 600×600×30 15 0 55.7 6.84 0.060 106.11 

B2 600×600×30 15 1 60.21 8.64 0.055 129.44 

B3 600×600×30 15 1.5 61.17 9.28 0 95.83 

C1 600×600×30 10 0 63.86 7.4 0.052 115.28 

C2 600×600×30 10 1.0 68.91 9.32 0.048 133.33 

C3 600×600×30 10 1.5 69.67 10.13 0 99.44 

D1 600×600×30 15 0 64.28 8.16 0 65.83 

D2 600×600×30 15 1.0 69.74 10.32 0.048 142.78 

D3 600×600×30 15 1.5 70.32 11.08 0.047 159.86 

Note: Lx = Ly = 600 mm; h = thickness of plate = 30 mm; aspect ratio = Ly/ Lx =1; slenderness ratio (Lx/h) = 

20; Nx = in-plane load per unit width; q = transverse load per unit area; SF (%) = silica fume replacement in 

percent; Vf = steel fiber volume fraction. 

 

 

Fig. 1 Stress-strain curves for silica fume concrete and steel fiber reinforced concrete (w/cm = 0.40, SF 

content =10%) 

 

 

strain curves for HSC with 10% SF replacement (silica fume concrete) and steel fiber (crimped 

type) reinforced concrete, obtained using cylinder specimens are shown in Fig 1. From the stress-

strain (σ–ε) curves generated in this study (refer Fig. 1), it is seen that the post-peak segment of the 

curve is altered by the addition of steel fibers, and can also be observed that an increase in concrete 

strength increases the extent of curved portion in ascending branch and renders the drop in the 

descending part steeper for HSC and gradually flatter for SFRC. This gradual drop in the post peak 

region for SFRC is occurred because of matrix-fiber bond effect and three dimensional mechanism 

of crimped steel fibers. Although the drop in the post peak region is gradual for SFRC, there is a 

residual stress even at a strain as high as 0.015. 
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Fig. 2 Plate dimension, coordinate axes, and loading considered in testing (boundary condition: 

plate simply supported along four edges)  

 

 

In an earlier study (Wee et al. 1996), a number of available models for plain concrete had been 

assessed, and a modified Carreira and Chu (1985) equation was found to be simple; provided a 

good correlation with the test results on HSC. The same model has been chosen here for high-

strength steel fiber reinforced concrete. An analysis of test data generated in this study reveals that 

the model can adequately describe the ascending branch of the curve provided appropriate values 

of Eit, ο, εο and β are used. A modified equation considering the material parameter to assess the 

concrete stress () at any given concrete strain (ε) is given as 

f

f
= 









 








)/(1

)/(

                                                     

(1) 

where 

itE

f













1

1                                                               (2) 

where  ƒο= peak stress; εο= strain corresponding to peak stress; Eit= initial tangent modulus; ƒ= 

stress corresponding to strain ε; and β= material parameter that depends on the shape of the stress-

strain curve, which is greater than or equal to 1. 

The predictions using this proposed analytical model (Eq. (1)) were thus computed and 

compared with the experimental values, are in good agreement with the experimental curves. This 

type of work was carried out elsewhere by Ramadoss and Nagamani (2013). Thus, the proposed 

model (Eq. (1)) can be used to obtain the complete stress-strain (σ–ε) behavior of HSSFRC. 

 

3.2 Load–deflection response 
    
The test program was divided into four series of plates simply supported along four edges as  

z length=b; =Lx 

width=a; height=h 

b 

a 
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Fig. 3 Lateral load verses Out-of-plane center deflection for plate specimens A1, A2, and A3. 

 

 

Fig. 4 Transverse load-Curvature diagram for a typical SFRC section (plate A2); in-plane 

load (Nx) = 100 kN/m 

 

 

given in Table 1. The geometry of the typical rectangular plate element and loading considered in 

this experimental study is shown in Fig. 2. Table 1 gives the ratio of the applied in-plane load per 

unit width to the uniaxial strength of concrete multiplied by the plate thickness for all of the 

specimens. Fig. 3 shows the transverse load verses out-of-plane deflection (P-∆) at the center of 

the plate specimens (A1, A2, and A3). The SFRC specimens exhibited essentially a linear P-∆ 

response well beyond the load while the flexural cracks were first observed during the test. Each 

diagram is essentially a straight line up to the start of cracking. Beyond cracking, a rapid change of 

slope in the load- deflection curve was observed. On further loading, yielding of fibers started in 

one or more regions and spread through the areas still elastic. This continued till the yield line 

mechanism developed. A small out-of-plane deflection occurred in several specimens during the 

application of the in-plane loads. This deflection ranged from 0-2 % of the transverse load. The  
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Fig. 5 Moment-Curvature diagram for a typical SFRC section (plate A2); in-plane load (Nx)=100 

kN/m 

 

 

level of the in-plane load (Nx/f’c.h) for all the specimens was moderate, in the sense that there is no 

possibility of collapse under in-plane load alone.  

 

3.3 Moment–curvature relation 
      

The non-linear behavior of a concrete member is characterized by the load-moment-curvature 

relationships of its cross section. The analytical method developed to calculate the M–Ø  

relationship are based on application of the basic principles of equilibrium of forces and strain 

compatibility, assuming linear distribution of strain over cross section and using idealized stress-

strain relations to represent the behavior of SFRC. Due to the non-linear nature of this stress-strain 

(σ- ε) relation, use of numerical procedures rather than closed form solutions has been employed. 

Transverse (lateral) load Vs Center curvature for a high-strength SFRC plate section with in-plane 

load (Nx) = 100 kN/m is shown in Fig. 4. Moment-curvature diagram for a typical SFRC section 

with in-plane load (Nx) = 100 kN/m is shown in Fig. 5. 

      
 

4. Analytical model for SFRC plate subjected to combined in-plane and transverse 
loads  
      

4.1 Theoretical background 
 
Several past attempts have been made to apply the methods of limit analysis to plates subjected 

to externally applied transverse loads and internally induced in-plane loads due to the support 

conditions or externally applied in-plane and lateral loads. To determine the ultimate transverse 

load using the limit analysis, the value of central deflection at the ultimate load must be known.  

Equations for orthotropic plates derived in test books on „Theory of plates‟ (Timoshenko and 

Woinowsky-Kriger 1959) and „Stability of structures‟ (Bazant and Cedolin 1991), are needed for 

use in the proposed analytical model. A typical rectangular plate of length Lx, width Ly, and  
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Section-AA 

Fig. 6 Plate dimensions, coordinate axes, boundary condition and loading condition for analysis 

 

 

uniform thickness h with a section along x- axis, as considered in the analysis is shown in Fig. 6. 

The x-, y-, and z- axes are longitudinal, transverse, and vertical axes, respectively. The uniform in-

plane load per unit length, Nx and Ny are applied in the x and y directions to the sides Ly (=a) and Lx 

(=b), respectively. Both in-plane loads are applied on the thickness of the plates. In addition, there 

is a uniform lateral pressure (q) at any point (x,y). The out-of-plane displacement from the flat 

surface is represented by „w‟. 

      

4.2 Analytical model 
 
Based on the Kirchoff theory, the relationship between moments and deformations for elastic 

orthotropic plates are given as 

Mx = -Dx (∂
2 
w/ x

2
 + υy ∂

2 
w/ y

2
)

                                                                       
(3) 

My = -Dy (∂
2 
w/ y

2
 + υx ∂

2 
w/ x

2
)                                             (4) 

Mxy = 2Dt (∂
2 
w/ x y)                                                       (5) 
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where 

2Dt = (1-√ υx υy) (√Dx Dy)                                                   (6) 

represents torsional rigidity of the plate, while Dx and Dy are the flexural rigidity in x- and y- 

directions, respectively. Mx and My are moments per unit width. Mx is about the y-axis and My is 

about the x-axis. 

The equilibrium equation for an elastic orthographic plate under combined transverse load q 

(x,y) per unit area and compressive in plane loads Nx and Ny per unit width in the x- and y- 

directions, respectively is given as 


2
Mx/x

2
 - 2 

2
Mxy/x y +

2
My/y

2
 –Nx  

2
w/ x

2
 - Ny  

2
w/ y

2
 = - q(x,y)                 (7) 

The preceding equation is independent of the material properties and hence is valid for both 

elastic and plastic cases. Substituting the Eqs. (3) through (7), the governing differential equation 

for the deflection of the elastic orthotropic plate is written as 

Dx 
4
w/ x

4
  + 2H 

4
w /x

2
  y

2
 + Dy  

4
w/ y

4
 = q(x,y) –Nx  

2
w/ x

2
 - Ny  

2
w/ y

2
         (8) 

where 

 H = 0.5 (vxDy + vy Dx +4Dt)                                                   (9) 

is called the “effective torsional rigidity” of the plate, while vx and vy are the Poisson‟s ratios in the 

x and y directions, respectively. 

The equations derived are based on the following assumptions: 

1. Small transverse deflections are assumed. This means membrane action is neglected. 

2. Plane sections remain plane after bending. This implies that vertical shear strains are 

negligible. 

3. The stress normal to the mid plane, σz is very small compared with other stress components 

and may be neglected. 

4. The plate is initially flat. 

5. The material is elastic and orthotropic. 

There is an experimental evidence to suggest the effective Poisson‟s ratio to be zero, which is 

reasonable for a cracked concrete plate. For Poisson‟s ratio equal to zero, the Eqs. (6) and (9) 

reduce to the expressions given below for the concrete slab can be adopted. 

2Dt = √Dx Dy;   H = 2Dt 

Based on the preceding approximations, the differential equation of the plate problem in hand 

can be written as 

Dx 
4
w/ x

4
  + 4Dt  

4
w /x

2
 y

2
 + Dy  

4
w/ y

4
 = q(x,y) –Nx  

2
w/ x

2
 - Ny  

2
w/ y

2
          (10) 

The uniform lateral load is represented by the trigonometric series  











11

2 /sin/sin
1

/16y)(x, q
n

yx

m

LynLxm
mn

q                            (11) 

A sinusoidal shape of the deflection curve has been used by Bazant et al. (1991) for the 

analysis of RC beam-columns. The deflection surface can be expressed in the form of the double 
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sine series (Eq. (12)) which satisfies the boundary conditions for the simply supported plate with 

in-plane restrictions. 











1

0

1

/sin/siny)(x,w
n

yx

m

LynLxmw 
                          

       (12) 

where m and n are positive odd integers (m = 1,3,5, … and n = 1, 3, 5, …)  

wo is the maximum transverse deflection occurs at the center of the plate elements. 

     Eqs. (11) and (12) are usually expressed in infinite series form. Herein, however, only a finite  

series to provide some acceptable tolerance is considered. In this analysis, six terms )5(  nm  

are used. Substituting this series in Eq. (10), we find the following expression for the coefficient 

wo. 

       

)
DL

πnN

DL

πmN
1(Dmn π

16q
w

2

y

22

y

2

x

22

x2

o



  
(13) 

In which m and n are odd integers 1, 3, 5 and wo= 0 if m or n or both are even numbers. Hence, 

the deflection of the plate is 











1

0

1

/sin/siny)(x,w
n

yx

m

LynLxmw                                  (14)  

where 

4

y

44

y

2

y

2

x

422

yx

4

x

44

x

L

πnD

LL

πnmD2D

L

πmD
D                                 (15)  

For such plates the maximum bending moment occurs at x= Lx/2 and y= Ly/2, and torsional 

moment occurs at the corners of the plate. The maximum moments are 

xxxxo eNqLwN 
2

xmx,M 
                                             

 (16) 

yyxyo eNqLwN 
2

ymy,M                                               (17) 

yxxy LqLmxy,M
                                                      

(18) 

where αx, αy and αxy are moment coefficients depend upon the aspect ratio (Ly/Lx) of plate. ex and ey 

are the eccentricity of in-plane loads in x and y planes, respectively. 

The curvatures can be approximated by the second derivatives of the deflection function as 

2

2

xxx
x

w
w,φ




                                                         (19)  

2

2

yyy
y

w
w,φ




                                                        (20) 

1281



 

 

 

 

 

 

Ramadoss Perumal and S. Palanivel 

y

w
w,φ

2

xyxy





x
                                                       (21) 

Assuming the poisson‟s ratio to be zero at ultímate state (cracked) for the most of the practical 

cases, Eqs. (3) through (6) and Eqs. (19) through (21) give the moment-curvature relationships as 

xoD xmx,M 
                                                         

 (22) 

yoD ymy,M                                                            (23) 

xyoDD yxmxy,M 
                                                  

 (24) 

From the above Eqs. (22) to (24), we obtain 

my,mx,mxy,M MM
                                                  

(25) 

Using Eq. (14) and Eq. (19) through (21), we obtain 

2

2

0x0 wφ
xL


                                                             (26) 

2

2

0y0 wφ
yL


                                                             (27) 

xy LL

2

0xy0 wφ


                                                          (28) 

where, Lx=b; Ly=a 

Hence, the curvature in the x-direction, at the center of the plate, is related to the lateral load by 

the relation 





2
sin

2
sin

16
φ

2
11

x0

nm

DnL

qm

x

n

n

m

m




                                          (29) 

where φx0 is the curvature at the center of the plate in the x-direction.  In the preceding equation,  

is given by 

)
DL

πnN

DL

πmN
1(λ

2

y

22

y

2

x

22

x 

                                             

(30) 

The ratio (R) between the curvatures at the plate center in the y- and x- directions is given by 

2

2

2

2

max,

max,
R

a

b

L

L

y

x

x

y





                                                     (31)  

Hence, the curvature at the center of the plate in the y-direction is given by 

1282



 

 

 

 

 

 

Analysis and prediction of ultimate strength of high-strength SFRC plates... 

x0y0 φφ R                                                                (32) 

x0xy0x02

2

y0y02

2

x0 φφ;φφ;φφ
a

b

a

b

b

a


 

From Eq. (16), the total transverse load verses curvature relation obtained is as given in Eq. (33). 














 xx

xo
mx

x

eN
bN

M
b 2

2

x
,2

1
q






                                        

(33) 

where,  
2

2

0x0 wφ
b


  is the máximum curvature in the x- direction 

The constants αx and αy depend upon the aspect ratio (a/b) of the plate element should be less 

than 2, are determined by the yield line theory. 
 
 

The procedure for assessing the transverse load (q) at ultimate failure for a given set of in-plane 

loads Nx and Ny per unit width of the plate is as follows: 

1. Obtain the M-N-φ relationships for sections of unit width at the centre of the plate. 

2. Assume a value of φxo or φyo and from the equation calculate the other value of curvature. 

3. From the M-N-φ relationships derived in step 1, obtain Mxo and Myo corresponding to φxo and 

φyo, respectively. 

4. Compute the transverse load (q) for a given value of φxo and φyo. 

5. Compute the center deflection (w) for a given value of φxo and φyo.  

6. Increment φxo or φyo and repeat the steps 3 and 4.  

7. Draw a plot of transverse load (q) Vs the curvature in the x- direction or y-direction/ or 

deflection (w). The peak of this curve is taken as ultimate transverse load (q).  

   

 

5. Comparison of analytical predictions with test results 
      

An analytical model is presented for predicting the central deflection of HSSFRC plates 

subjected to combined biaxial in-plane compressive and transverse (lateral) loads. The plates are 

assumed to be simply supported on four edges without in-plane restraints. The analytical model 

described was used to predict the ultimate strength of high-strength steel fiber reinforced concrete 

plates tested. Test results indicated that application of the in-plane load prior to transverse load or 

proportional loading lead to little difference in the load deflection response and ultimate strength. 

Plate specimens tested under transverse loads only cases, carried loads higher than those predicted 

by the yield-line analysis. Table 2 compares the maximum transverse load (ultimate strength) 

obtained from the test with the maximum load from proposed analytical model. Table 3 compares 

the maximum center deflection from the test with the deflection obtained from proposed analytical 

model using C++ program developed. The average test to predicted center deflection value ratio is 

0.94, standard deviation is 0.14, and the coefficient of variation is 14.7 percent. The computation 

method is considered satisfactory in view of the nature of the problem being dealt with and the 

wide range of variables involved in the test program. It should be emphasized that the main 

purpose of the method described in the preceding is to obtain the maximum transverse load under 

controlled in-plane load. It is suitable for tracing the load-deflection behavior as long as the 

diagram for load-deflection is raised. Figs. 7 and 8 show comparisons between the analytical and  
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Table 2 Comparison of transverse load from test with the ultimate prediction from model 

Plate 

Specimen 

Maximum transverse 

load  from test (kN/m
2
) 

Maximum transverse 

load from analysis (kN/m
2
) 

Test/ predicted 
Test/ predicted 

(yield) capacity 

A1 79.17 7.28 0.64 - 

A2 125.27 9.49 1.19 - 

A3 93.06 6.76 0.77 1.527 

B1 106.11 8.04 0.77 - 

B2 129.44 9.25 1.16 - 

B3 95.83 6.68 0.76 1.388 

C1 115.28 7.9 0.67 - 

C2 133.33 8.53 1.20 - 

C3 99.44 6.29 0.78 1.345 

D1 65.83 4.42 0.80 1.105 

D2 142.78 9.13 1.11 - 

D3 159.86 10.15 1.02 - 

Mean:                                                                                                                 0.900 

Coefficient of variation (%):                                                                            24.277 

Standard deviation:                                                                                            0.218 

 
Table 3 Comparison of center deflection from test with the predicted value from model 

Plate 

Specimen 

Maximum center deflection 

from test (kN/m
2
) 

Predicted deflection from 

analysis (kN/m
2
) 

Test / predicted 

A1 4.63 5.87 0.79 

A2 11.32 9.89 1.14 

A3 5.19 6.26 0.83 

B1 5.72 7.04 0.81 

B2 10.75 9.52 1.13 

B3 5.1 6.12 0.84 

C1 5.26 6.35 0.83 

C2 10.23 8.93 1.15 

C3 4.89 5.67 0.86 

D1 3.52 4.22 0.83 

D2 10.16 9.63 1.06 

D3 10.35 10.15 1.02 

Mean:                                                                                                                                          0.940 

Coefficient of variation (%):                                                                                                       14.72 

Standard deviation:                                                                                                                      0.138 

 

 

experimental load-deflection curves for high-strength SFRC plates with and without in-plane load 

containing fiber volume fractions, Vf=1 and 1.5%, respectively. In the ascending branch of the 

lateral load-deflection curves, the curves indicate a good agreement between the test and analysis. 

But, there is a deviation in the load-deflection curves near the ultimate load which is due to the 

formation of cracking along the yield lines in attaining the ultimate load. Although the analysis is 

presented for biaxial in-plane loads, it has been checked against uniaxially loaded plates. The 

analytical results are compared with experimental values; maximum loads are well predicted by  
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Fig. 7 Transverse load-deflection curve for plate specimen A2: Test verse analytical prediction 

 

 

Fig. 8 Transverse load-deflection curve for plate specimen A3: Test verse analytical prediction 

 

 

the analytical model, and reasonably good agreement is reached. 

Central deflections of HSSFRC plate elements were also computed using ANSYS software 

considering the following parameters. 

Material properties: Ultimate compressive stress (f’cf or fo); Modulus of rupture (frf); Modulus of 

elasticity (static modulus) (Ecf); Poisson's ratio (ν). 

Plate parameters and boundary condition: Plate thickness (h); Aspect ratio (Ly/ Lx); Slenderness 

ratio (Ly/ h); All the edges are simply supported without in-plane restraints. 

Computed central deflections of the plate elements were compared with the experimental 

values given in Table 2, and the absolute variation obtained is within 6%. 
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6. Summary and conclusions 
 

Plate specimens were tested for combined loads, and transverse load only cases. Table 1 shows 
the properties of each specimen as well as the maximum transverse load per unit area, and the 
uniform in-plane load per unit width applied in the x-direction. The transverse load verses out-of-
plane deflection relationship of specimen tested under in-plane and lateral loads is given in Fig. 3 
to show the behavior of the HSSFRC plate element subjected to combined loads. Proportional 
loading or prior application of in-plane load resulted essentially in the same lateral load-deflection 
response and the same ultimate strength. The analytical method described in this paper is to obtain 
the ultimate transverse load under controlled in-plane load. 

In this analytical study, the following conclusions are drawn: 
1. Plate specimens tested under transverse loads only, carried loads higher than those predicted 

by the yield-line analysis (Table 2). This is partly attributed to the significantly increased flexural 
strength and improved fiber bond resistance of the fibrous concrete. 

2. The prediction capability of the analytical model presented for ultimate strength capacity of 

HSSFRC plates subjected to combined in-plane and transverse loads is quite comparable to 

experimental results. 

3. The comparison of test results of maximum transverse loads with the predictions by the 

analytical model checked for uniaxially loaded plates is presented. The analytical results are 

compared with test results, and reasonably good agreement is reached. 

4. Analytical non-dimensional characteristic equation proposed can be used to predict the 

constitutive behavior of HSSFRC in compression, and good agreement has been achieved with 

experimental results 
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Notations 
 

HSSFRC = High-strength steel fiber reinforced concrete 

q = Intensity of continuously distributed load, kN/m
2
. 

Nx = Normal force per unit length of section in x-direction, kN/m. 

Lx or b = Length of plate in x-direction. 

Ly or a = Length of plate in y-direction. 

h = Thickness of plate element, mm 

a/b = aspect ratio 

w = out-of-plane center deflection 

ν = Poisson‟s ratio 

fo = peak stress 

ε = strain corresponding to stress 

εo = strain corresponding to peak stress 

Eit = initial tangent modulus 

β = material parameter 

f’cf = Compressive strength of HSSFRC at 28 days, MPa. 

frf = Flexural  tensile strength of HSSFRC at 28 days, MPa. 

Ecf = Static elastic (secant) modulus of HSFRC at 28 days, GPa 

Mx = moment per unit width about the y- axis 

My = moment per unit width about the x- axis 

Mxy = torsion moment per unit width about the xy- axes 

wo = centre deflection of the plate element  

φ or ø = center curvature of plate 

αx , αy and αxy = moment coefficients for Mx, My, and Mxy, respectively. 
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