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Abstract.  The long-term performance of plates resting on viscoelastic foundations is a major concern in 
the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address 
these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the 
time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-
elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms 
of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, 
bending moment and foundation reaction were compared to those from ideal elastic and standard 
viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by 
the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of 
model parameters on the long-term performance of a foundation plate were systematically investigated. The 
results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate 
response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-
dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems 
to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small 
fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional 
differential order value is needed. The fractionalized Zener model is capable of accounting for the primary 
and secondary consolidation processes of the foundation soil and can be used to predict the plate 
performance over many decades of time. 
 

Keywords:  viscoelastic foundation; plate-on-foundation; fractional calculus; rheological model; time-

dependent behavior; Mittag-Leffler function 

 
 
1. Introduction 
 

The static and dynamic responses of loaded plates resting on foundations are common 

problems for pavements, airports, high-rise buildings and underground structures. The Winkler 

foundation model, which consists of elastic spring elements, has been frequently utilized to solve 
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these problems (e.g., Straughan 1990, Saha 1997, Matsunage 2000, Buczkowski and Torbacki 

2001, Zhong and Zhang 2006). In the past few decades, various methods have been adopted to 

facilitate the analyses, such as the finite strip method (Huang and Thambiratnam 2002), the 

symplectic superposition method (Zhong et al. 2009, Li et al. 2013) and the integral transform 

method (Kim and Roesset 1998, Kim 2004). However, it is found in engineering practices that the 

foundation materials exhibit significant rheological behavior and the plate deflection under loading 

is highly time-dependent. In order to address this inadequacy, a quantity of research has been 

carried out to study the time-dependent behavior of plates resting on viscoelastic foundations (e.g., 

Sonoda and Kabayashi 1980, Nassar 1981, Zaman et al. 1991, Sun 2003, Chen et al. 2011). 

Among these studies, some classical rheological models, such as the Maxwell, Kelvin, Bingham, 

Merchant, Zener, and Burgers models, are usually employed. To acquire a better predicting result, 

some more advanced models have been applied. But the number of parameters will thereupon be 

increased, resulting in difficulties in determining these model parameters (Chen et al. 2006). Being 

capable of describing the properties of viscoelastic materials with a fairly small number of 

parameters, fractional calculus may be an appropriate tool to address this problem. 

Fractional calculus is a branch of calculus dealing with the generalization of differentiation and 

integration operator to an arbitrary order. Fractional calculus can trace its history back to the 17th 

century, and have been applied in various fields to date. As far as we have been able to ascertain, 

Gemant (1936) first introduced fractional calculus to viscoelasticity and proposed the 

fractionalized models for viscoelastic materials. The constitutive equations of these models include 

fractional-order differential operators, instead of integer-order ones. Since then, extensive studies 

have been carried out in this field and fractional calculus encounters much success in describing 

the rheological property of viscoelastic and viscoplastic materials (Bagley and Torvik 1986, 

Mainardi 2012). As reported by Welch et al. (1999), fractionalized viscoelastic models have 

several advantages over conventional ones, such as fewer model parameters and amenable to 

analysis using Fourier and Laplace transforms. In general, most viscoelastic models involving 

fractional calculus that have been developed in the last few decades are based on the replacement 

of standard rheological elements by fractional derivative ones intermediate between pure solids 

and pure liquids. Schiessel et al. (1995) generalized a number of rheological models by replacing 

all the Hookean springs and Newtonian dashpots by fractional derivative elements. By replacing a 

Newtonian dashpot in the standard Kelvin model with a fractional derivative element, Zhu et al. 

(2012) proposed a fractionalized Kelvin-Voigt model to account for the time-dependent settlement 

of soil ground. Yin et al. (2007, 2012, 2013) employed a single fractional derivative element to 

describe the rheological properties of a variety of geo-materials under different loading conditions. 

To date, however, there are only a few researchers applying fractional calculus-based models to 

analyze structural problems and soil-structure interactions (Gusella and Terenzi, 1997, 

Atanackovic and Stankovic 2004, Dikmen 2005, Lewandowski et al. 2012, Sumelka 2014), and 

the plate-on-foundation problems in particular. Some preliminary works have been carried out by 

Zhu et al. (2011), but the adopted model is not the most frequently used for geo-materials and 

cannot consider the instantaneous response of a foundation plate subjected to external loading. 

Therefore, a more rational model should be developed to solve this problem. 

This paper aims at developing a fractionalized Zener model (FZM) to study the quasi-static 

plate-on-foundation problem. The analytical solutions are derived using the viscoelastic-elastic 

correspondence principle and the Laplace transforms. Based on the evaluation of the Mittag-

Leffler function, the solutions of plate deflection, bending moment and foundation reaction are 

presented and compared with the results calculated from ideal elastic and standard viscoelastic 
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models. The influences of key model parameters on the predicted plate performance are further 

examined through a parametric study. 

 

 

2. Fractionalized zener model  
 

2.1 Mathematical preliminaries 
 

The nth derivate (n is a positive integer) of a suitable function f (t), namely D
n
 f (t)=d

n
 f (t)/dt

n
, 

is familiar to all who have some basic knowledge of calculus. When we replace n with a fraction 

or non-integer, the meaning of the above formula is extended, which is the origin of the concept of 

fractional calculus. Fractional calculus can be defined by different ways, such as the Grünwald-

Letnikov definition, the Caputo definition, and the Riemann-Liouville definition. Because the 

fractional derivatives are mainly used during the formation of the plate-foundation interaction 

model, the last one, which is capable of facilitating the computation of fractional derivatives, is 

employed in this study. 

Starting with Cauchy’s integral formula, the Riemann–Liouville fractional integration of 

function f (t) of order v is normally expressed as (Miller and Ross 1993, Nonnenmacher and 

Metzler 1995) 

 1

0
0

1
( ) ( ) ( ) , (Re 0, 0)

( )

t
v v

tD f t t f d v t
v

      
    (1) 

where the subscripts 0 and t on D refer to the limits of the integration, and Г(v) denotes the gamma 

function with argument v. We note that the above integral corresponds to regular integration for 
v=1. Let [α] be the smallest integer that exceeds α, the Riemann-Liouville fractional derivate of 

order α is then defined by (Miller and Ross 1993) 

 
[ ]

0 0 0( ) ( ) , (Re 0, 0)v

t t tD f t D D f t t         (2) 

where v=[α]−α>0. In the sections to follow, the notations utilized in Eqs. (1) and (2) will be 

simplified by dropping the subscripts 0 and t. 

 

2.2 The four-parameter fractionalized model 
 

The standard viscoelastic models, such as the Kelvin and Maxwell models, are constructed by 

combining a class of basic elements like Hookean springs and Newtonian dashpots. We can write 

the constitutive relations between stress σ(t) and strain ε(t) of a spring and a dashpot in the form of 

differential operators 

 

0

1

( ) ( )

( ) ( )

t ED t

t D t

 

  

 



  (3) 

where E and η are modulus of elasticity and coefficient of viscosity, respectively. The spring and 

the dashpot can be used to simulate the stress-strain relation of an ideal solid (elasticity) and an 

ideal fluid (viscosity), respectively. 

The fractionalized rheological models, however, are based on the utilization of the so-called  
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Fig. 1 Four-parameter fractionalized Zener model 

 

 

“intermediate” model (Smit and de Vries 1970), or “spring-pot” model (Koeller 1984). The 

fractional derivative element is normally represented by a diamond (Bagley and Torvik 1979, 

Welch et al. 1999, Dikmen 2005), as shown in Fig. 1. Let τ=η/E be the creep time or relaxation 

time, the constitutive equation of this element is 

 ( ) ( ), (0 1)t E D t         (4) 

where D
α 
denotes the fractional differentiation defined by Eq. (2). It is worth noting that for two 

limiting cases, namely α=0 and α=1, Eq. (4) reduces to the constitutive equations of a spring and a 

dashpot, respectively. As a result, this fractional derivative element has the capability of exhibiting 

the characteristics of both solids and fluids. 

The standard Zener model (SZM) consists of a Maxwell model and a Hookean spring arranged 

in parallel. Schiessel et al. (1995) generalized this model by replacing these elements with 

fractional derivative elements, but the upgraded model involves nine parameters. A more common 

approach is to replace the dashpot with a fractional derivative element while the two springs 

remain unchanged, as shown in Fig. 1 (Mainardi and Spada 2011). Following the notations 

introduced above, the stress-strain relation of the FZM is 

 
1 0 1 1( 1/ ) ( ) ( )( 1/ ) ( )D t E E D t t           (5) 

where 1 1/ E  , and 
1 1 1 01 /t E E  . It is noted that this FZM has four model parameters. 

When α=1, this model collapses to the SZM. 

Based on the fractional calculus, it is not difficult to derive the creep compliance and relaxation 

modulus of the FZM, which can be expressed by 

 1

0 1 0 1

1
( ) 1 1

E t
J t E

E E E t





     
       
        

  (6) 

   1 0
0 1

1 0 1

/
( ) 1 1

1 /

E E t
G t E E E

E E






     
        
        

  (7) 

where Eα is the Mittag-Leffler function defined as 

 
0

( )
( 1)

nt
E t

n







 

   (8) 

1072



 

 

 

 

 

 

Bending of a rectangular plate resting on a fractionalized Zener foundation 

 

Fig. 2 Effect of fractional differential order on the non-dimensional creep compliance of the FZM 

 

 

Fig. 3 Effect of fractional differential order on the non-dimensional relaxation modulus of the FZM 

 

 

Figs. 2 and 3 illustrate the effects of the fractional differential order α on the non-dimensional 

creep compliance and relaxation modulus, respectively. For numerical calculation, it is convenient 

to let E0=2E1, and to introduce the non-dimensional times t/t1 and t/τ1. Referring to Figs. 2 and 3, it 

is seen that the FZM is able to describe the viscoelastic behavior of geo-materials for different 

time scales when α varies from 0 to 1. In addition, it is interesting that the parameters t1 and τ1 are 

two characteristic times. In the vicinity of t1 or τ1, a shift in the slope of the curves is observed. 

 

 

3. Analytical solutions of soil-structure interaction using the FZM 
 
Fig. 4 defines the coordinates x, y and z, and shows the case where a uniformly distributed load 

(UDL) of q0 is applied on a rectangular thin plate simply supported along all four sides on a  

10
-9

10
-6

10
-3

10
0

10
3

10
6

10
9

1.0

1.1

1.2

1.3

1.4

1.5

 = 0.1
 = 0.3

 = 0.5

 = 0.7

 = 0.9

 

 

N
o
n
-d

im
e
n

s
io

n
a
l 
c
re

e
p
 c

o
m

p
lia

n
c
e
 J

(t
)*

(E
0
+

E
1
)

Non-dimensional time t/t
1

10
-9

10
-6

10
-3

10
0

10
3

10
6

10
9

0.6

0.7

0.8

0.9

1.0

 = 0.1
 = 0.3

 = 0.5

 = 0.7

 = 0.9

 

 

N
o
n
-d

im
e
n

s
io

n
a
l 
re

la
x
a
ti
o
n
 m

o
d
u
lu

s
 G

(t
)/

(E
0
+

E
1
)

Non-dimensional time t/
1

1073



 

 

 

 

 

 

Cheng-Cheng Zhang, Hong-Hu Zhu, Bin Shi and Guo-Xiong Mei 

 

Fig. 4 Schematic illustration of a loaded rectangular thin plate on a fractionalized Zener foundation 

 

 

fractionalized Zener foundation. The compressible soil foundation has an average thickness of H. 

The length, width, and thickness of the plate are a, b, and h, respectively. The governing equation 

for lateral deflection (w(x, y)) and bending moments (Mx, My) of the plate can be expressed by 

 2 2

0( , ) ( , )D w x y R x y q      (9) 

 
2 2 2 2

2 2 2 2
,x y

w w w w
M D M D

x y y x
 

      
        

      
  (10) 

where R(x, y) is the reaction of the foundation, and D is the bending rigidity of the plate given by 

 
3

212(1 )

Eh
D





  (11) 

where E and μ are Young’s modulus and Poisson’s ratio of the foundation plate, respectively. 

 

3.1 Elastic solution 
 
First, the elastic solution of this plate-on-foundation problem will be given. For the plate resting 

on a Winkler-type foundation consisting of elastic springs with stiffness of k =E/H, the foundation 

reaction can be expressed by 

 ( , ) ( , )R x y kw x y   (12) 

Note that here we consider the average strain of the foundation soil. Now the deflection of the 

plate can be derived from Eq. (9) as (Timoshenko and Woinowsky-Krieger 1959) 
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The foundation reaction and the bending moments of the plate can be readily calculated using 

Eq. (12) and Eq. (10), respectively. Taking the Laplace transforms of Eqs. (9), (12), and (13), we 

obtain the governing equation and the resulting deflection expressed in the “s” domain 

 2 2 0( , , ) ( , , )
q

D w x y s kw x y s
s

      (14) 
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2 2
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0

2

1 1
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16

π
( , , )
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m n
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m n
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a b

q
w x y s

s

 

 

 

 
   


      

     
      

   (15) 

 
3.2 Viscoelastic solution  
 

If the load shown in Fig. 4 is applied quasi-statically, it can be represented in the form of 

  0( )q t q H t   (16) 

where H(t) is the Heaviside step function. Then the deflection w(x, y, t) of the plate is given by 

 2 2 ( , , ) ( , , ) ( )D w x y t R x y t q t      (17) 

Assuming that the reaction of the foundation R(x, y, t) is governed by the fractionalized Zener 

viscoelastic equation, it satisfies  

 
0 1 1 1( )( 1/ ) ( , , ) ( 1/ ) ( , , )k k D t w x y t D R x y t       (18) 

*

1 1/ k   

1 1 1 01 /t k k   

where k0, k1 and η
*
 are coefficients of the foundation.  

The Laplace transforms of Eqs. (16)-(18) are 

 2 2 0( , , ) ( ) ( , , )
q

D w x y s k s w x y s
s

      (19) 

 1
0 1

1

( 1 / )
( ) ( )

( 1 / )

s t
k s k k
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  (20) 

In the theory of viscoelasticity, the correspondence principle (or elastic-viscoelastic analogy) 

was first proposed by Christensen (1982). It is stated that the Laplace- or Fourier-transformed 

elastic and viscoelastic equations are equivalent providing that the boundary conditions and the 

geometry are the same. In view of this principle, the viscoelastic solution can be obtained by 

replacing k with ( )k s  in Eq. (15), i.e. 
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Taking the inverse Laplace transform of Eq. (21), we can express the time-dependent plate 

deflection as 
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Similarly, the foundation reaction is readily obtained as 
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and the bending moments are 

 

2 2
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  (24) 

Eqs. (22)-(24) are the analytical solutions of plate deflection, foundation reaction, and bending 

moments for a loaded rectangular thin plate resting on a fractionalized Zener foundation. It is 

obvious that when the fractional differential order α=1, the Mittag-Leffler function reduces to e
t
, 

and Eqs. (22)-(24) then turn into the results derived from the SZM. 

 

 

4. Result analysis of a numerical example 
 

4.1 Properties of the FZM in comparison with classical models 
 

A numerical example is established to analyze the time-dependent performance of a rectangular 

thin plate resting on a fractionalized Zener viscoelastic foundation subjected to a UDL of 100 kPa. 

Table 1 presents the corresponding values of related parameters used in this example. The 

calculated distributions of plate deflections, bending moments and foundation reactions along the 

longitudinal dimension, are presented in Figs. 5-7. In the calculation process, the asymptotic 

approximation of the Mittag-Leffler function is obtained using the simple algorithm proposed by 

Welch et al. (1999). First, a variable xcrit that is related to fractional differential order was sought. 

Then the Mittag-Leffler function was evaluated according to an empirical criterion for selection 

between the exact series and the asymptotic representation. 

The plate deflections resulting from the FZM on t=0d, 100d, 500d, and 1500d, are shown in 

Fig. 5, together with those from the elastic model (EM) and the SZM. When t=0d, the calculated 

deflections from the SZM and FZM correspond to the EM solution given in Eq. (13) where the  

1076



 

 

 

 

 

 

Bending of a rectangular plate resting on a fractionalized Zener foundation 

Table 1 Properties of the plate and the foundation used in the numerical example 

Plate 

Length a (m) 10 

Width b (m) 10 

Height h (m) 0.5 

Bending rigidity D (MPa·m
3
) 100 

Foundation 

Spring stiffness k0 (MPa·m
-1

) 5 

Spring stiffness k1 (MPa·m
-1

) 8 

Coefficient of viscosity η
*
 (MPa·d·m

-1
) 2000 

Fractional differential order α 0.5 

 

  

(a) t=0d (b) t=100d 

  

(c) t=500d (d) t=1500d 

Fig. 5 Comparison of plate deflections calculated using elastic, standard Zener and fractionalized 

Zener models 
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(a) t=0d (b) t=100d 

  
(c) t=500d (d) t=1500d 

Fig. 6 Comparison of bending moments of the plate calculated using elastic, standard Zener and 

fractionalized Zener models 

 

 

modulus k is replaced by k0+k1. In comparison with the FZM results, those calculated from the 

SZM are smaller at first (t=100d) but then develop quickly (t=500d), and eventually tend to be 

stable (t=1500d). With time lapses, the deflections calculated from the SZM and FZM tend 

towards the EM solution as well where k in Eq. (13) is replaced by k0. Using the current 

parameters, it approximately takes 1500 d for the deflections from the SZM to be stable while for 

those using the FZM, it will be much longer. Similar trends have been obtained for the bending 

moments of the plate and foundation reactions, as shown in Figs. 6 and 7. 

 
4.2 Parametric study of the FZM 
 
In the proposed FZM, there are four model parameters, i.e. spring stiffness k0 and k1, coefficient 

of viscosity η
*
, and fractional differential order α. As stated previously, we know that when t=0 and 

t=∞, the plate deflections and foundation reactions can be calculated from the elastic model as 
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(a) t=0d (b) t=100d 

  
(c) t=500d (d) t=1500d 

Fig. 7 Comparison of foundation reactions calculated using elastic, standard Zener and 

fractionalized Zener models 

 

 

long as the modulus k is respectively replaced by k0+k1 and k0, respectively. That is to say that the 

upper and lower bound solutions of the FZM are dependent on the spring stiffness k0 and k1. 

Figs. 8 and 9 show the influences of the coefficient of viscosity η
* 
and the fractional differential 

order α on the time-dependent deflection at the plate center. It can be seen from Fig. 8 that the 

effect of η
*
 of the FZM on the plate deflection is quite similar to that of the SZM. η

* 
controls the 

rate of deflecting but has no effect on initial and overall amounts of the plate deflection. With the 

increase of η
*
, it takes a longer time to reach the ultimate deflection. The influence of α on the 

plate deflection is depicted in Fig. 9. When α=0, the resulting deflection is not time-dependent and 

its value is equal to that calculated from the EM. In addition, the deflection-time curves in Fig. 9 

can be divided into two stages: In Stage I, the deflection decreases with the increase of α; In Stage 

II, the deflection increases with an increasing α value. When α is relatively small, the deflection is 

large at first but then accumulates slowly as time elapses. In contrast, for a larger α value, the 

initial deflecting rate is smaller but it develops sharply over time. The deflection calculated from 

the SZM (i.e., α=1 in the FZM) falls into the latter case. 
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Fig. 8 Influence of coefficient of viscosity η
*
 on deflection-time curves of the plate center 

 

 

Fig. 9 Influence of fractional differential order α on deflection-time curves of the plate center 

 

 

4.3 Discussions 
 

From the view of foundation settlement, the total settlement estimated by the FZM is 

comprised of three components, as shown in Fig. 10. In the classical soil mechanism, foundation 

settlement consists of elastic settlement (Se), primary consolidation settlement (Spc) and secondary 

consolidation settlement (Ssc), i.e. 

e pc scS S S S                                   (25) 

The primary and secondary consolidation settlements of a soil layer with thickness H are (Das 

2010) 
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Fig. 10 Three components of the total ground settlement predicted by the FZM 
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where Cc and Cα are compression index and secondary consolidation index, respectively; eo and ep 

are the initial void ratio and the void ratio at the end of primary (EOP) consolidation, respectively; 

σ
′
0 and ∆σ

′
 are the initial effective overburden pressure and the increase in the effective pressure, 

respectively; t1 and t2 are times. 

It appears that the FZM can be used to describe such regulation as defined by Eqs. (25) and 

(26). The characteristic point “E” in Fig. 10 that divides the two time-dependent stages may be 

supposed to be the completion of the consolidation process, i.e., EOP. It is clear that the amount of 

the primary consolidation settlement is not affected by the fractional differential order α. As a 

result, α is not related to compression index Cc. However, this parameter is capable of describing 

how quick the foundation soil is consolidated under surcharge loads. More specifically, when α is 

relatively small (α=0.4), the development of primary consolidation settlement is quite quick with a 

much slower secondary consolidation process, and vice versa. The increase of α represents a 

smaller consolidation coefficient Cv and a larger secondary consolidation index Cα. Therefore, the 

α value is supposed to be related to the property of ground soil. A sandy foundation will have a 

small fractional differential order, while in order to simulate the creeping of clay foundations, a 

larger fractional differential order value is needed. 

Another distinct benefit of the FZM is that there will be a limit of secondary compression when 

load duration is infinite. Comparatively, according to the conventional solution Eq. (26), when 

t2→∞, Ssc tends to infinity, which is physically impossible. Regarding this problem, the FZM 

prediction is more rational than the conventional one. 
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5. Conclusions 
 

In this paper, a fractionalized model is upgraded based on the Zener model to describe the time-

dependent performance of a loaded rectangular thin plate resting on a viscoelastic foundation. 

Analytical solutions of plate deflection, bending moment and foundation reaction are derived in 

terms of the Mittag-Leffler function. The following conclusions are drawn in this study: 

• Through the comparison between the results calculated from the FZM and those calculated 

from the SZM and EM, it is found that the upper and lower bound solutions of the plate deflection, 

bending moment and foundation reaction of the FZM can be obtained from the EM. 

• Together with the coefficient of viscosity η
*
, the introduction of fractional differential order α 

provides a powerful method in describing the long-term performance of a foundation plate with a 

fairly small number of parameters. 

• It is demonstrated in the parametric study that the FZM can provide a wide range of results 

with only four parameters. A small fractional differential order corresponds to a plate resting on a 

sandy foundation characterized by a larger initial deflection and a smooth deflection-time curve in 

the later period, while for a clay foundation with a smaller permeability coefficient, the value of 

fractional differential order should be increased. The fractionalized rheological model can simulate 

the complex characteristics of soil-structure interaction problems elegantly. 

Despite the qualitative relationship between the model parameters and the plate response as 

stated above, we note that the physical meaning of the fractional differential order still remains to 

be investigated so as to gain a deeper understanding of the potential of fractional calculus in 

solving plate-foundation interaction problems. More laboratory and field works are required to be 

undertaken for verifying the proposed fractionalized viscoelastic model. 
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