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Abstract.  According to the structure characteristics of the non-uniform beam bridge, a practical model for 
calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the 
model includes not only the beam bridge structure but also the non-uniform beam with added masses and 
elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal 
perturbation method and establishment of a semi-analytical method for solving the vibration equation of the 
non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace 
of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the 
dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the 
application of the modal perturbation method is suitable for solving the vibration equation of the simply 
supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The 
examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. 
Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the 
symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses 
on dynamic characteristics of the three-span non-uniform beam bridge are reported. 
 

Keywords:  modal perturbation method; analytic solution; non-uniform beam; elastic support; added mass; 

mode shape 

 
 
1. Introduction 
 

Non-uniform beams are widely used in the building of highway bridges, railroad bridges and 

city bridges. The theory and experimental research on the dynamic characteristics of the non-

uniform beam is becoming more and more popular. However, the vibration equation of the non-

uniform beam has complex forms of variable coefficient differential equation and only some 

special structures can obtain the analytical solution (Chen and Wu 2002, Kamke 1980) of the 

vibration equation. For the non-uniform beam bridge, the vibration equation is too complicated to 

obtain the exact solution because of the changing discontinuity of the support cross-section, the 
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hinged edge, which is not ideal and the weight of the diaphragm. The calculation of the vibration 

equation of the non-uniform beam bridge normally used is the simplified model, because the 

supports are simplified as hinge bearing and the weight of diaphragm is ignored, which may result 

in calculation error. This error in the long-span non-uniform beam bridge can't be ignored (Pratiher 

2012, Bambill et al. 2013). It is necessary to make reasonable assumptions and simplifications 

according to the structure characteristics of the non-uniform beam bridge and refine a practical 

model for calculating the vibration equation of non-uniform beam with arbitrary added masses and 

elastic supports. At the same time, to find an appropriate method to solve the vibration equation of 

the non-uniform beam according to the computational model and obtain the more accurate 

solutions. In recent years, international scholars have done a lot of research on the dynamic 

characteristics of the non-uniform beam and have obtained some results. 

Bahrami et al. (2011) used the wave propagation method to study the vibration of the beams 

with variable cross-sections. The beam is partitioned into several continuous segments, each with a 

uniform cross-section, for which there exists an exact analytical solution. Firouz-Abadi et al. 

(2007) employed the WKB approximation to investigate the transverse free vibration of a class of 

variable-cross-section beams and obtained a singular differential equation in terms of the natural 

frequency of vibration. Sarkar and Ganguli (2013) studied the free vibration of a non-uniform 

free–free Euler–Bernoulli beam using an inverse problem approach. Qian and Yue (2011) 

presented the numerical calculation method for the natural frequency of the transverse vibration of 

the simply supported none-uniform beam by using the finite difference method. Utilizing the 

Hilbert space methods, Jovanovic (2011) derived the generalized Fourier series solution for the 

transverse vibration of a beam that was subjected to a viscous boundary and numerical 

simulations. The above research was unable to take into account, effectively, the influence of 

elastic supports and added masses. Mao (2011), Hsu et al. (2008) studied the free vibration 

problems of the non-uniform Euler-Bernoulli beam under various supporting conditions based on 

the Adomian decomposition method (ADM). Ho and Chen (1998) introduced using the differential 

transformation method to solve the free and forced vibration problems of a general elastically end 

restrained non-uniform beam. Huang and Li (2010) studied the free vibration of axially functional 

graded beams with a non-uniform cross-section and natural frequencies. The above studies didn't 

consider the influence of added mass for the dynamic characteristics of the beam. Elishakoff and 

Johnson (2005) focused on the free vibration of the uniform or non-uniform cross-section beams 

that carry the concentrated masses and utilized the semi-inverse method on the closed-form 

solution. This method, however, was not suitable for the beam with elastic supports. DeRosa et al. 

(1996), Xia et al. (2000) presented an accurate analytical method for natural vibrations of the 

beams with lumped masses and elastic supports, which only applied to the uniform beam. Lou et 

al. (2005), Pan et al. (2012) introduced the mode perturbation method (MPM) to analyze the 

dynamic characteristics of Timoshenko beams. In this approach, the differential equation of 

motion, describing the dynamic behavior of the Timoshenko beam, can be transformed into a set 

of nonlinear algebraic equations. In the bridge and mechanical structures, using the MPM (Lou et 

al. 2005, Pan et al. 2012, Lou and Wu 1997) directly to solve the modal parameters of the non-

uniform beam is unable to take the support stiffness and the added mass on the supports into 

consideration, which can also have an effect on the dynamic characteristics of the structure. In this 

paper, a practical model for calculating the vibration equation of the non-uniform Bernoulli-Euler 

beam with arbitrary added masses and elastic supports is given. The application of the modal 

perturbation method is extended to solve the dynamic characteristics of the calculation model. 

Practical examples are presented to show the increase accuracy of the extending the application of  
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Fig. 1 Calculation model of non-uniform beam 

 

 

the modal perturbation method. Furthermore, simplify calculating method for symmetrical beam 

has been studied based on the symmetry of mode shape. Eventually, the effects of elastic supports 

and added masses on dynamic characteristics of the three-span non-uniform beam bridge are 

reported. 

 

 

2. The calculation model 
 

The dynamic characteristics of the non-uniform beam is affected by support stiffness and added 

mass. The support ensured the free deformation of the beam under such factors as load, 

temperature change and concrete shrinkage, which must have enough vertical stiffness and 

elasticity. The beam must have enough lateral stiffness to prevent the cross-section from 

deformation of distortion, bending-torsion and warping, which is usually set on the diaphragm of 

the individual section of the beam. In general, it is thought that the greater the stiffness of the 

diaphragm, the better the beam’s integrity. So the diaphragm is generally thicker (Yang et al. 2010) 

and the diaphragm of the concrete beam will produce a larger added mass. However, the 

Eigenvalue analysis of beams usually ignores the influence of the actual support stiffness and 

added mass produced by the diaphragm and other factors (Lee and Yhim 2005, Bedon and 

Morassi 2014). The calculation model, which does take into account the influence of the actual 

support stiffness and added mass, is shown in Fig. 1(a). The calculation model, which only 

considers the influence of the actual support stiffness, is shown in Fig. 1(b). The consideration of 

the influence of the actual support stiffness and added mass to the dynamic characteristics of non-

uniform beam, the mechanical calculation model of the dynamic characteristics of non-uniform 

beam with arbitrary added masses and elastic supports provides more accuracy, as shown in Fig. 

1(c). The model considers the actual support stiffness and added mass influence on the dynamic 

characteristics of non-uniform beam effectively. 

 

 

3. Vibration equation of non-uniform beam with arbitrary added masses and elastic 
supports 
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The free vibration equation of non-uniform Bernoulli-Euler beam with h+1 added masses ma 

(a=1, 2,···, h+1) and n+1 elastic supports kb (b=1, 2, ···, n+1), as shown in Fig. 1(c), can be written 

as (Ho and Chen 1998, Xia et al. 2000) 

 
 

 
 

 
 

   
2 2 22 1 1

2 2 2 2
1 1

0
h n

m s

a a b b

a b

x,t x,t x,t
EI x A x m x x k x x x,t

x x t t

  
   

 

 

   
      

    
   (1) 

where x is axial coordinate, μ(x,t) is the transverse deflection, E is Young’s modulus, ρ is the mass 

density of the beam material, A(x) is the cross-sectional area of the non-uniform beam at the 

position x, I(x) is the moment of inertia of A(x), t is the time, δ is Dirac function, xa
m
 is the axial 

coordinate of the added mass ma and xb
s
 is the axial coordinate of the elastic support kb . 

For any mode of vibration, the lateral deflection μ(x,t) may be written in the form (Clough and 

Penzien 2003, Timoshenko 1974) 

     x,t x q t                                (2) 

where )(x  is the modal deflection and q(t) is a harmonic function of time t. then substitution of 

Eq. (2) into Eq. (1) yields 

 
 

           
22 1 1

2 2
1 1

0
h n

m s

a a b b

a b

x
EI x A x x m x x x k x x x

x x


      

 

 

 
      

   
     (3) 

where 2   is the eigenvalue of the non-uniform Bernoulli-Euler beam and   is the angular 

frequency. Eq. (3) is a high-order variable coefficient differential equation which is more difficult 

to obtain the analytical solution and is typically solved by the approximate method. This paper 

extended the application of the modal perturbation method (Lou et al. 2005, Pan et al. 2012) to 

solve the vibration problem of the non-uniform Euler-Bernoulli beam with arbitrary added masses 

and elastic supports and achieve an accurate and efficient semi-analytical method for solving Eq. (3). 

 

 

4. The principle of MPM 
 

4.1 Mathematical formulation. 
 

The uniform Bernoulli- Euler beam with elastic supports, which is shown in Fig. 1(d) has the 

same span length, material characteristics and boundary conditions as the non-uniform beam. The 

moment of inertia and area of the uniform beam are calculated to be the average value of the non-

uniform beam as follows 

 0
0

1 L

I I x dx
L

                                 (4) 

 0
0

1 L

A A x dx
L

                                 (5) 

where A0 is the cross-sectional area of the uniform beam, I0 is the moment of inertia of A0 and L is 

the sum of span length of uniform beam, as shown in Fig. 1. 
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The moment of inertia and area of the non-uniform beam can be written as 

   0I x I I x                                  (6) 

   0A x A A x                                  (7) 

where A(x) is the cross-sectional area of the non-uniform beam, I(x) is the moment of inertia of 

A(x), ΔA(x) is the increment of the cross-sectional area, ΔI(x) is the increment of inertia moment of 

ΔA(x). The free vibration equation of the uniform beam with complete elastic supports is obtained 

   
   

4 2 1

0 04 2
1

0
n

s

b b

b

x,t x,t
EI A k x x x,t

x t

 
  





 
   

 
                (8) 

Obviously, Eq. (8) is different with the modal perturbation method (Lou et al. 2005, Pan et al. 

2012). Assumption that λi and φi(x) is the i
th
 eigenvalue and eigen function of the uniform 

Bernoulli-Euler beam, respectively. The Eq. (8) can be expressed into 

       
1

4

0 0

1

0
n

s

i i i b b i

b

EI x A x k x x x     




                      (9) 

The modal solution of Eq. (9) is shown in Appendix C. To obtain the eigenvalues and eigen 

functions of the non-uniform Bernoulli-Euler beam with added masses and elastic supports 

described in Eq. (3), this paper extended the application of the modal perturbation method in 

solving the process of the vibration equation. The variable coefficient differential equation, which 

describes the dynamic behavior of the non-uniform Bernoulli-Euler beam, is converted to 

nonlinear algebraic equations. The eigenvalues and eigen functions of the non-uniform Bernoulli-

Euler beam can actually solve the nonlinear algebraic equations. The i
th
 eigenvalue and eigen 

function of the non-uniform Bernoulli-Euler beam with added masses and elastic supports is 

written as 

     i i ix x x                                 (10) 

i i i                                    (11) 

where ∆φi(x) and ∆λi is the increment of the i
th
 eigenvalues and eigen function of the non-uniform 

Bernoulli-Euler beam. ∆φi(x) is consistent with a sum of the first n eigen functions of the uniform 

Euler-Bernoulli beam except the i
th
 eigen function φi(x) and is written as follows 

   
1

i j j

j , j i

x x q


 
 

                              (12) 

where qj is defined as the modal linear combination coefficient. Obviously, to obtain the η 

unknown variables which are made up of the increment Δλi and the coefficients qj (j=1, 2, ···, η; 

j≠i), the eigenvalues and eigen functions of the non-uniform beam with added masses and elastic 

supports are achievable in Eq. (10) and Eq. (11). Based on the basic structure dynamic theory 

(Clough and Penzien 2003, Timoshenko 1974), the uniform beam has an infinite number of normal 

modes and an ample number of accurate results of the eigenvalue and eigen functions, which in 

practice can be acquired by using a limited number of low order modes. 

Substituting Eqs. (6), (7), (10) and (11) into Eq. (3), we have 
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 
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             
1

1

0
n

b







  (13) 

Implementing Eq. (12) into Eq. (13) and pre-multiplying both sides of the result with φk(x) 

(k=1, 2, ···, η) and then integrating the final equation over the beam length, will allow 

simplification to occur by using the mode orthogonally (Clough and Penzien 2003). This is 

formulated as 

       
1 1

i k ki ki i k kj kj j i j k kj i kj kj j ki i ki

j , j i j , j i

m m m m q m m k q k m
 

        
   

                
    

(14) 

where 

 2

0
0

L

k km A x dx                               (15) 

           
1

0 0
1

hL L
m

ki k i a a k i

a

m A x x x dx m x x x x dx     




                (16) 

     
2

20

L
"

ki k ik x EI x x dx
x

 


                          (17) 

Eq. (15) and Eq. (16) can be achieved directly by numerical integration whereas Eq. (17) has to be 

simplified first. In this paper, section 3.2 will give the simplified calculation method of Eq. (17) in 

elastic boundary conditions. 

Eq. (14) can be written in a matrix form (k=1, 2, ···, η) 

[A–B+λiC+λiDqi]q=p                            (18) 

where the i
th
 coefficient qi of the position vector q is Δλi/λi and the other elements of the position 

vector q were consist of the modal linear combination coefficients. The matrices A, B, C, D, p and 

q are defined in Appendix A. Thus the variable coefficient differential Eq. (1) is transformed into 

the nonlinear matrix Eq. (18). 

 
4.2 The calculation of coefficient ∆kki in elastic boundary condition. 

 

Directly using Eq. (17) is more difficult to gain coefficient values ∆kki, which requires 

simplifying Eq. (17) and indirectly gaining coefficient values ∆kki. Substituting Eq. (6) into Eq. 

(17), we get 

         
2 2

02 20 0

L L
" "

ki k i k ik x EI x x dx x EI x dx
x x

   
 

                      (19) 
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Substituting Eq. (9) into Eq. (19), we obtain 

               
2 1

020 0 0
1

nL L L
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




      

     (20) 

when k≠i, Eq. (20) can be simplified according to the mode orthogonality 

           
2 1

20 0
1

nL L
" s
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




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             (21) 

According to the property of the δ(x) function, Eq. (21) can be rewritten approximately as 

         
2 1

20
1

nL
" s s

ki k i b k b i b
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


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               (22) 

when k=i, Eq. (20) can be rewritten as 

         
2 1

2 2

020 0
1

nL L
" s

ki i i i i b i b
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




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           (23) 

The first item of Eq. (20) can be rewritten as follows by subsection integration 

                       
2

2 00 0
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L
L LL

" " ' " " ''

k i k i k i i kx EI x x dx x EI x x x EI x x EI x x x dx
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       
 

          

 (24) 

Apparently, the first item of Eq. (24) shows that the boundary shear of the i
th
 mode shape works on 

the displacement of the k
th
 mode shape and the second item of Eq. (24) expresses that boundary 

bending moment of the i
th
 mode shape works on the rotating angle of the k

th
 mode shape. For the 

uniform beam with elastic supports, the second item of Eq. (24) is always zero. Eq. (24) can be 

written as follows 

                 
0 0

0

L
L L

" " " "

k i k i k ix d EI x x x EI x x EI x x x dx
x x

     
 
               (25) 

As shown in Fig. 1(d), the boundary conditions of the uniform beam with elastic supports are 

   1 00 0' ' 'k EI                                (27) 

   1 0

' ' '

nk L EI L                               (28) 

Substituting Eqs. (27) and (28) into Eq. (25), we get 

                   1 1
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          (29) 

According to Eq. (22), Eq. (23) and Eq. (29), Eq. (19) can be modified 
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Fig. 2 single-span beam (Unit: m) 

 

 

Fig. 3 The first five mode shapes 

 

 

Eventually, coefficient ∆kki can be obtained easily using Eq. (30). 

 

4.3 To solve the nonlinear algebraic equations. 
 

Eq. (18) can be solved by Newton-Ralph method and genetic algorithm, etc (Burden and Faires 

1997). Because the Jacobian matrix of Eq. (18) can be acquired easily, Eq. (18) are solved directly 

by Newton-Raphson method in this paper. It is very important to select initial value for Newton-

Raphson method. Appropriate initial value can not only reduce the number of iterations but also 

obtain more accurate results. According to the physical meaning of Eq. (18) and combination 

coefficient q, the initial value is given as 

q=0                                    (31) 

The iteration of terminal condition is (Lou and Wu 1997) 

     1

i i iq q q
  




                              (32) 

where κ is the number of iterations and ξ is the convergent error. 

When the vector q has been obtained, the i
th
 mode shape and natural frequency of the non-

uniform beam with added masses and elastic supports can be acquired from Eqs. (10) and (11). 

Make the i in Eqs. (10) and (11) equals to 1, 2, ···, n and repeat the above iterative process, the 

first n order modal parameters of the non-uniform Bernoulli-Euler beam with added masses and 

elastic supports can be gained. 
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Table 1 The natural frequencies of the single-span beam (Unit: HZ) 

Freq. FEM 
MPM 

η=6 η=7 η=8 η=9 η=10 η=11 η=12 η=13 

f1 4.43022 4.45612(3)a 4.45472(3) 4.45472(3) 4.45243(3) 4.45243(3) 4.45197(3) 4.45197(3) 4.45156(3) 

f2 17.64774 17.85962(4) 17.85962(3) 17.82835(3) 17.82835(3) 17.80986(3) 17.80986(3) 17.80372(3) 17.80372(3) 

f3 39.58707 40.52119(4) 40.31455(4) 40.31455(4) 40.20429(4) 40.20429(4) 40.14510(4) 40.14510(4) 40.12668(4) 

f4 69.22859 72.08915(3) 72.08915(3) 71.47583(4) 71.47583(4) 71.24049(4) 71.24049(4) 71.13326(4) 71.13308(4) 

f5 109.30385 113.26756(4) 112.12905(4) 112.12905(4) 111.00607(4) 1.1100607(4) 110.68292(4) 110.68292(4) 110.50141(4) 

a. Number in bracket shows the number of iterations, which has the same meaning in the Table 2. 

 

 

5. Examples and discussion 
 

5.1 Single-span beam with added masses and elastic supports. 
 

A single-span beam with added masses and elastic supports is shown in Fig. 2. The beam was 

made of mild steel of cross-sectional area from 0.5 m×0.8 m to 0.5 m×1.6 m with a length of 16 m. 

It had the following material properties: Young’s modulus E=200 GPa, density ρ=7850 kg/m
3
, 

added mass m1=m2=2000 kg, supports stiffness k1=k2=5×10
6 
kN/m, convergent error ξ=1×10

-8
. The 

natural frequencies of the single-span beam which were obtained by the MPM and the finite 

element method (FEM), are shown in Table 1. The first five mode shapes acquired by the MPM 

(η=9) and FEM are shown in Fig. 3. 

 
5.2 Two-span stepped beam with elastic supports. 
 

A two-span stepped beam with elastic supports is shown in Fig. 4. Stepped beam with elastic 

supports was made of mild steel of cross-sectional area from 0.3 m×0.5 m to 0.3 m×0.3 m with a 

length of L1=L2=5 m. It had the following material properties: Young’s modulus E=200 GPa, 

density ρ=7850 kg/m
3
, supports stiffness k1=k2=k3=2.0×10

7 
kN/m, convergent error ξ=1×10

-8
. The 

natural frequencies and the first five mode shapes of the two-span stepped beam, which are 

obtained by the MPM (η=9), ADM (Mao 2011) and FEM, are shown in Table 2 and Fig. 5, 

respectively. 

In Table 1 and Table 2, the natural frequencies obtained by MPM are well agreed with the 

results of FEM and ADM. The results show that the bigger the value of η has the more accurate 

this method results are. Obviously, the modal parameters of non-uniform Bernoulli-Euler beam 

with added masses and elastic supports can be obtained enough accuracy by extending the 

application of the modal perturbation method. The MPM results are slightly greater than the results 

of ADM and FEM because it's belongs to the Ritz method (Clough and Penzien 2003) and the 

results of the Ritz method are always higher than the real frequencies based on dynamics of 

structures. The MPM has the advantages of rapid convergence and high precision according to the 

iterative times and the frequency results in Table 1 and Table 2. At the same time the mode shapes 

of the single-span beam and two-span stepped beam obtained by the MPM are also consistent well 

with the FEM and ADM results. By comparing the modal displacement in elastic supports in Fig. 3 

and Fig. 5, the MPM can effectively consider the effects of the dynamic characteristic with the 

elastic supports. 

1005



 

 

 

 

 

 

Lu-ning Shi, Wei-ming Yan and Hao-xiang He 

 

Fig. 4 Two-span stepped beam (Unit: m) 

 

 

Fig. 5 The first five mode shapes 

 
Table 2 The natural frequencies of two-span stepped beam (Unit: Hz) 

Freq. ADM FEM 
MPM 

η=7 η=8 η=9 η=10 η=11 η=12 η=13 

f1 26.75217 26.74879 26.76252(3) 26.76230(3) 26.76223(3) 26.76220(3) 26.76220(3) 26.76219(3) 26.76219(3) 

f2 41.60236 41.61601 41.78257(4) 41.78189(4) 41.78167(4) 41.79841(4) 41.77116(4) 41.76831(4) 41.76692(4) 

f3 106.78979 106.73371 106.95582(4) 106.95459(4) 106.95421(4) 106.95403(4) 106.94919(4) 106.94001(3) 106.93796(4) 

f4 133.18575 133.33598 134.08198(4) 134.07538(4) 134.07345(4) 134.07253(4) 134.01742(4) 1.3400933(4) 133.99695(4) 

f5 239.42214 239.09972 240.28674(4) 240.26261(4) 240.25795(4) 240.25597(4) 240.23056(4) 240.22065(3) 240.21968(4) 

 

 

The MPM can accurately and efficiently obtain the modal parameters of the structure with the 

basic information, such as material, cross section and span length but FEM need not only the 

above information but also the geometric modeling and meshing. Calculation accuracy of the FEM 

is related to the grid quality and size. The computing power is about the number of elements. 

Furthermore, FEM need to manually adjust the parameter values in the parameter sensitivity 

analysis and the computation efficiency is low. Conversely, the method of this paper can do 

parameter sensitivity analysis conveniently. Obviously, it has the incomparable advantage over 

FEM in the computation efficiency and parameter sensitivity analysis. 

As shown in Table 1, when solving the odd-order modal parameters, the results of η=2n+1 

(n=2, 3, ···) is comparatively close with the results of η=2n+2. Solving the even-order modal 

parameters, the results of η=2n+1(n=2, 3, ···) and the results of η=2n are also comparatively close. 

This shows that the even-order modal has less of an influence on the results of the odd-order 

modal parameters and the odd-order modal also has less of an influence on the results of the even-

order modal parameters. This conclusion, though, does not apply to case 2 in section 5.2. This is 
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associated with the symmetry of structure and section 5 in this paper will present a detailed 

discussion about this law. 

 

 

6. A simplified method for symmetrical beam 
 

6.1 Simplified method and formula. 
 

According to the symmetry of mode shape and the value of modal linear combination 

coefficient qj, Eq. (18) can be simplified. Based on the dynamics of structures (Clough and  

Penzien 2003), the odd-order mode shapes of the symmetrical beam have the same symmetry and 

the even-order mode shapes of the symmetrical beam have the same symmetry, but the odd-order 

mode shapes and the even-order mode shapes always have the opposite symmetry. The even-order 

mode shapes of the uniform beam, which have the opposite symmetry of the odd-order mode 

shapes will interfere with the solution of the odd-order modal parameters of the non-uniform beam 

and will increase the number of iterations and reduce the convergence speed. Therefore, we can 

only use the odd-order mode shapes of the uniform beam and ignore the influence of even-order 

mode shapes to solve the odd-order modal parameters of the non-uniform beam. If using the first 

η
th
 mode shapes (assuming that the value of η is an odd number) of the uniform beam to solve the 

odd-order modal parameters of the non-uniform beam, then Eq. (18) can be simplified to 

[As–Bs+λiCs+λiDsqsi]qs=ps                           (33) 

The matrices As, Bs, Cs, Ds, ps and qs are defined in Appendix B. Apparently, the nonlinear 

algebraic Eq. (18) with η unknown numbers have been transformed into the Eq. (34) with (η+1)/2 

unknown numbers. 

Similarly, the even-order modal parameters of the non-uniform beam can be obtained only with 

the even-order mode shapes of uniform beam. When using the first η
th
 mode shapes (assuming that 

the value of η is an even number) of the uniform beam to solve the even-order modal parameters 

of the non-uniform beam, Eq. (18) can also be simplified and the matrices As, Bs, Cs, Ds, ps and qs 

are also defined in Appendix B. 

In the same way, the nonlinear algebraic Eq. (18) with η unknown numbers have been 

transformed into the Eq. (33) with η/2 unknown numbers. This method can be called the simplified 

modal perturbation method (SMPM). 

 

6.2 Simplified calculation verification & Example 1. 
 

Taking a pedestrian beam bridge as an example, the symmetrical beam bridge is shown in Fig. 

6. Using SMPM and MPM to solve the modal parameters, respectively, the results are shown in 

Table 3 and Table 4. Limited by space, the paper only gives the results of the first two frequencies. 

beam length is 20 m, concrete grade is C50, the bottom edge and top floor of the beam changed as 

the quadratic parabola, added mass in supports is 4100 kg, added mass in the midspan is 1920 kg; 

supports stiffness is about 7.6×10
6 
kN/m and convergent error is ξ=1×10

-8
. 

 

Example 2. 
Two-span continuous beam bridge is shown in Fig. 8, span length is 50 m+50 m, concrete 

grade is C50, the bottom edge and top floor of the beam changed as the quadratic parabola, added 
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Fig. 6 The general layout of the pedestrian bridge (Unit: m) 

 
Table 3 The perturbation results of fundamental frequency 

η 5 (MPM)
b
 5 (SMPM) 7 (MPM) 7 (SMPM) 9 (MPM) 9 (SMPM) 11 (MPM) 11 (SMPM) 

1st freq. 5.49609(3)
c
 5.49609(3) 5.49597(3) 5.49597(3) 5.49597(3) 5.49597(3) 5.49597(3) 5.49597(3) 

q 

q1 -0.25699 -0.25699 -0.25703 -0.25702 -0.25703 -0.25702 -0.25703 -0.25702 

q2 -0.00006 - -0.00006 - -0.00006 - -0.00006 - 

q3 -0.34590 -0.34590 -0.34574 -0.34574 -0.34574 -0.34574 -0.34574 -0.34574 

q4 -0.00034 - -0.00027 - -0.00027 - -0.00027 - 

q5 -0.09732 -0.09732 -0.09285 -0.09285 -0.09286 -0.09285 -0.09285 -0.09285 

q6 - - -0.00060 - -0.00052 - -0.00054 - 

q7 - - -0.02400 -0.02399 -0.02406 -0.02405 -0.02403 -0.02405 

q8 - - - - -0.00032 - -0.00030 - 

q9 - - - - 0.00023 0.00022 0.00029 0.00025 

q10 - - - - - - -0.00010 - 

q11 - - - - - - 0.00002 -0.00010 

b. The title in bracket shows the computing method, which has the same meaning in the Table 4-Table 6. 

c. Number in bracket shows the number of iterations, which has the same meaning in the Table 4-Table 6. 

 
Table 4 The perturbation results of second frequency 

η 6 (MPM) 6 (SMPM) 8 (MPM) 8 (SMPM) 10 (MPM) 10 (SMPM) 12 (MPM) 12 (SMPM) 

2nd freq. 24.21885(4) 24.37514(3) 24.21881(3) 24.37111(3) 24.21879(3) 4.21879(3) 24.21878(3) 24.21878(3) 

q 

q1 0.00000 - 0.00000 - 0.00000 - 0.00000 - 

q2 -0.06911 -0.05706 -0.06912 -0.05737 -0.06912 -0.06911 -0.06912 -0.06911 

q3 -0.00001 - -0.00001 - -0.00001 - -0.00001 - 

q4 -0.30293 -0.32325 -0.30293 -0.32252 -0.30292 -0.30292 -0.30292 -0.30291 

q5 -0.00002 - -0.00001 - -0.00001 - -0.00001 - 

q6 -0.05690 -0.12212 -0.05621 -0.11419 -0.05622 -0.05622 -0.05622 -0.05622 

q7 - - -0.00001 - -0.00001 - -0.00001 - 

q8 - - -0.00299 -0.03717 -0.00323 -0.00322 -0.00325 -0.00325 

q9 - - - - -0.00001 - 0.00000 - 

q10 - - - - 0.00094 0.00093 0.00083 0.00083 

q11 - - - - - - 0.00000 - 

q12 - - - - - - 0.00050 0.00048 

 

 

mass on side support is 20215 kg, added mass on the intermediate support is 53220 kg; side 

support stiffness is about 1.68×10
7 
kN/m, intermediate support stiffness is about 5.1×10

7 
kN/m and 
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convergent error is ξ=1×10
-8

. The results of the first two frequencies by SMPM and MPM are 

shown in Table 5 and Table 6. 

 

 

 

Fig. 7 The general layout of two-span continuous beam (Unit: m) 

 
Table 5 The perturbation results of fundamental frequency 

η 5 (MPM) 5 (SMPM) 7 (MPM) 7 (SMPM) 9 (MPM) 9 (SMPM) 11 (MPM) 11 (SMPM) 

1st freq. 1.90414(4) 1.90426(4) 1.90376(4) 1.90391(4) 1.90234(4) 1.90255(4) 1.90212(4) 1.90241(4) 

q 

q1 -0.30457 -0.30448 -0.30485 -0.30473 -0.30588 -0.30572 -0.3060 -0.30583 

q2 -0.00458 - -0.00396 - -0.00325 - -0.00272 - 

q3 0.374024 0.37390 0.37659 0.37634 0.37801 0.37761 0.37846 0.37791 

q4 -0.01498 - -0.01649 - -0.01428 - -0.01313 - 

q5 -0.20250 -0.20272 -0.20898 -0.20952 -0.19794 -0.19863 -0.19686 -0.19790 

q6 - - -0.01199 - -0.01397 - -0.00949 - 

q7 - - -0.04943 -0.05031 -0.06040 -0.06140 -0.06044 -0.06126 

q8 - - - - -0.02471 - -0.02384 - 

q9 - - - - -0.12983 -0.13079 -0.13023 -0.13090 

q10 - - - - - - -0.03575 - 

q11 - - - - - - -0.04190 -0.04573 

 
Table 6 The perturbation results of second frequency 

η 6 (MPM) 6 (SMPM) 8 (MPM) 8 (SMPM) 10 (MPM) 10 (SMPM) 12 (MPM) 12 (SMPM) 

2nd freq. 3.85903(3) 3.85958(3) 3.85373(3) 3.85414(3) 3.85362(3) 3.85398(4) 3.84139(4) 3.85348(4) 

q 

q1 0.00143 - 0.00109 - 0.00119 - 0.00074 - 

q2 0.18133 0.18167 0.17809 0.17834 0.17802 0.17825 0.17056 0.17794 

q3 -0.00727 - -0.00414 - -0.00368 - -0.00171 - 

q4 0.53752 0.54245 0.54835 0.54841 0.54386 0.54735 0.54665 0.54790 

q5 -0.03375 - -0.03650 - -0.03459 - -0.02659 - 

q6 -0.18518 -0.18474 -0.20166 -0.20318 -0.20160 -0.20481 -0.18150 -0.20368 

q7 - - -0.06197 - -0.06373 - -0.02557 - 

q8 - - -0.11725 -0.14695 -0.11704 -0.14477 -0.11854 -0.14428 

q9 - - - - -0.01686 - -0.05221 - 

q10 - - - - -0.01594 0.03049 0.023437 0.03079 

q11 - - - - - - -0.30317 - 

q12 - - - - - - -0.06311 -0.06859 
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Form Table 3-Table 6, the first two frequencies of SMPM is very close to the results of MPM 

for the symmetrical beams. The iterations of SMPM are not significant more increase than that of 

MPM. Comparison the other-order frequencies of SMPM with that of MPM, This law is also 

established. This shows that the odd-order modal parameters of the symmetrical non-uniform 

beam can be obtained by using the SMPM while ignoring the influence of the even-order mode 

shapes to gain the results. Also, the even-order modal parameters of the non-uniform beam can 

also be acquired by using the SMPM while only considering the influence of the even-order mode 

shapes to gain the results. In conclusion, the SMPM can solve the modal parameters of the 

symmetrical non-uniform beam as well as calculate the accuracy to be very close to the MPM. 

However, the SMPM as about half the number of coefficients and unknowns as does the MPM. 

Therefore, the SMPM computational efficiency is greater. 

 

 

7. The effects of added mass and support stiffness  
 

Three-span continuous beam bridge is shown in Fig. 8. Size and location of added mass and 

support stiffness, which effect on the dynamic characteristics of the three-span continuous beam 

bridge, are been studied by this method. Span length is 38 m+60 m+38 m, concrete grade is C50, 

the bottom edge and top floor of the beam changed as the quadratic parabola, added mass on the 

side support and midspan is 23500 kg, added mass on the intermediate support is 48000 kg; side 

support stiffness is about 9.0×10
7 
kN/m, intermediate support stiffness is about 2.7×10

7 
kN/m and 

convergent error is ξ=1×10
-8

. 

 

7.1 The effect of the size of added mass and support stiffness. 
 

In modal analysis, eight conditions are shown in Table 7 according to whether to consider the 

support stiffness and added mass. First six frequencies of each condition are been calculated by 

MPM (η=9). 

From Table 7, the results of condition 1 are different with that of condition 5. It shows that the 

added mass and support stiffness effect on the natural frequencies and the high-order natural 

frequencies have higher sensitivity than the low-order natural frequencies. Condition 1 and 

condition 3 have quite close results. Condition 2 and condition 4 also have similar results. It can be 

inferred that added mass on hinged bearing effect on the frequencies is very weak. The results of 

condition 1 are different from condition 4. It can be concluded that added mass in midspan effects 

 

 

 

Fig. 8 The general layout of three-span continuous beam bridge (Unit: m) 
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Table 7 Frequencies of three-span continuous beam bridge in each condition 

Condition 1 2 3 4 5 6 7 8 

Support 

stiffness 

kN/m 

k1 o
d
 o o o 9×10

6
 9×10

6
 9×10

6
 9×10

6
 

k2 o o o o 2.7×10
7
 2.7×10

7
 2.7×10

7
 2.7×10

7
 

k3 o o o o 2.7×10
7
 2.7×10

7
 2.7×10

7
 2.7×10

7
 

k4 o o o o 9×10
6
 9×10

6
 9×10

6
 9×10

6
 

Added mass 

kg 

m1 0 23500 23500 0 23500 0 23500 0 

m2 0 48000 48000 0 48000 0 48000 0 

m3 0 23500 0 23500 23500 0 0 23500 

m4 0 48000 48000 0 48000 0 48000 0 

m5 0 23500 23500 0 23500 0 23500 0 

Frequency 

Hz 

f1 2.06383 2.03355 2.06383 2.03354 2.02833 2.05856 2.05855 2.02834 

f2 3.96812 3.96812 3.96812 3.96812 3.94851 3.94854 3.94851 3.94854 

f3 5.38605 5.34368 5.38605 5.34367 5.26184 5.30220 5.30202 5.26201 

f4 8.34615 8.34615 8.34615 8.34614 8.17638 8.17724 8.17638 8.17724 

f5 13.35731 13.21745 13.35731 13.21745 13.10949 13.24843 13.24638 13.11141 

f6 15.98634 15.98628 15.98634 15.98628 15.33352 15.34691 15.33366 15.34684 

d. “o” shows the hinged bearing and the stiffness of hinged bearing is infinite value. 

 

 

Fig. 9 The effect of added mass m6 in different location on the natural frequencies 

 

 

on the frequencies, and it is not to be ignored. The results of condition 6 and 7 are less than that of 

condition 1 and 3. It can be seen that the added mass on elastic support can be considered on 

dynamic characteristic when the support stiffness is been given. The results of condition 8 are 

larger than that of condition 5. This shows that the actual support stiffness in bridge is a high value 

but the added mass on bearing will have greater effect on the dynamic characteristic when support 

is damaged. 

 

7.2 The effect of location of added mass. 
 

The different location added mass has the different effect on the dynamic characteristic of the 

bridge. Added mass m6 (m6=m2) in different location is studied. The results are shown in Fig. 9. 
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(a) Side support (b) Intermediate support 

Fig. 10 The first six natural frequencies versus the change of one support stiffness 

 

 

From Fig. 9, the added mass m6 has the different effect on the different order natural 

frequencies. The added mass m6 on the midspan of the main span and side span has a greater 

influence on the fundamental frequency. The added mass m6 on the midspan of the main span has a 

significant impact on the odd-order natural frequencies and almost no effect on the even-order 

natural frequencies. Analysis shows that this is associated with the symmetry of mode shapes. The 

added mass m6 on the support has trifling impact on the natural frequencies. 

 

7.3 The effect of support stiffness. 
 

With the increase of the bridge service life, bridge support will appear different damage under 

long-term load and environmental factors. Under the accidental loading factors, bridge support 

will appear failure. These will cause the decline of support stiffness with varying degrees. The first 

six natural frequencies versus the change of one support stiffness (±50%), which stands for the 

different damage degree of bridge support, is shown in Fig. 10. 

From Fig. 10, with the increase of support stiffness, natural frequencies increased slightly with 

nonlinear relationship. Because the actual support stiffness of bridges is generally larger and 

natural frequencies only slightly increase with the increase of support stiffness. Conversely, when 

the bridge support has a damage, Natural frequencies will have obvious decline with the decrease 

of support stiffness. The change of intermediate support stiffness has the more significant effect on 

natural frequencies than that of side support stiffness. Preliminary analysis suggests that these are 

caused by the relatively large variation of the intermediate support stiffness. Generally, high-order 

natural frequencies has higher sensitivity than lower-order natural frequencies with the change of 

support stiffness but the change of individual order natural frequency don't meet this rule, such as 

the fourth-order natural frequency in Fig. 10(a) and the fifth-order natural frequency in Fig. 10(b). 

By looking for the frequency which has the higher sensitivity of support damage, we can do the 

support damage identification research using the analytical solution of dynamic characteristics of 

non-uniform beam with added masses and elastic supports. 
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7. Conclusions 
 

In this paper, the free vibration of the non-uniform Euler–Bernoulli beam with arbitrary added 

masses and elastic supports are analyzed by extending the application of the modal perturbation 

method. This method can not only solve the free vibration of the complicated beam (Lou and Wu 

1997) but also consider the added mass on the support and support stiffness effects on the dynamic 

characteristics of the beam effectively. It's adapted for calculating the dynamic characteristics of 

non-uniform beam bridge. The specific calculation formula of ∆kki is deduced in the elastic 

boundary conditions. The results of this paper are in excellent agreement with published results. 

The solution can be obtained by solving a set of nonlinear algebraic equations with unknown 

numbers. The MPM results are slightly greater than the real results because it's belongs to the Ritz 

method. The MPM has the incomparable advantage over the FEM in the parameter sensitivity 

analysis and computation efficiency. 

Furthermore, SMPM can reduce the coefficients and unknown numbers of about 50% and the 

number of iterations is not increased significantly. The computational efficiency of SMPM is 

higher than that of MPM for the symmetrical non-uniform beam.  

Using the analytical solution of dynamic characteristics of non-uniform beam with added 

masses and elastic supports, the effects of size and location of added mass and support stiffness on 

the dynamic characteristics of three-span continuous beam bridge have been studied. 
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Appendix A 
 

The definition of different matrices used in Eq. (18) is as 

 

 

 

1 1

2 2

0

0

i

i

i

m

m
A

m 
 

 

 

 


 
 

 
  
 

  

,

11 1 1 1 1 1

21 2 1 2 1 2

1 1 1

0

0

0

i i

i i

i i

k k k k

k k k k

B

k k k k





     

 

 

  

    
 
   
 
 
 
 
     

,

1

2

1

q

q
q

q 

 
 
 
 
 
  

, 

11 12 1

21 22 2

1 2

m m m

m m m
C

m m m





    

   
 
  
 
 
 
    

,

1 11 12 1

21 2 22 2

1 2

1 2

0

0

0

0

i i i

m m m m

m m m m

D
m m m

m m m







    

    
 

   
 
 

  
   

 
 

    

,

1 1

2 2

1

i i i

i i i

i i i

k m

k m
p

k m  








   
 
  
 
 
 
    

. 

 

 

Appendix B 
 

The definition of different matrices used in Eq. (33) to solve the odd-order modal parameters of 

the non-uniform beam is as 

 

 

 

1 1

3 3

1 1

2 2

0

0

i

i

s

i

m

m
A

m   

 

 

   


 
 

 
  
 

  

,

11 1 2 1 2 1

31 3 2 3 2 3

1 11 2 2

2 2

0

0

0

i i

i i

s

i i

k k k k

k k k k

B

k k k k





    

 

 

   

    
 
   
 
 
 
 
     

,

11 13 1

31 33 3

1 11 3

2 2

s

m m m

m m m
C

m m m





     


   
 
  
 
 
 
    

,
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 

    

,

1
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1
1

2

s

q

q
q

q  


 
 
 
 
 
  

,

1 1

3 3

1
1

2

i i i

i i i

s

i i i

k m

k m
p

k m  





 


   
 
  
 
 
 
    

. where i=1, 3, 5, ···. 

The definition of different matrices used in Eq. (33) to solve the even-order modal parameters 

of the non-uniform beam is as 
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 

 

 

2 2
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i
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 

 

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  
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    
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    
 
   
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 
 
     

,

2

4

1
2

s

q

q
q
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 
 
 
 
 
  

 

22 24 2
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
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   
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 
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





    

    
 

   
 
 

  
   

 
 

    

,
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4 4

1
2

i i i

i i i

s

i i i

k m

k m
p

k m  








   
 
  
 
 
 
    

. 

where i=2, 4, 6, ···. 

 
 
Appendix C 

 
The model of the uniform beam with complete elastic supports is shown in Fig. 1(d). Eq. (9) 

can be solved using the transfer matrix method. The i
th
 span modal function of the uniform beam 

with complete elastic supports can be written as 

         i i i i iY x A sin ax B cos ax C sinh ax D cosh ax                   (c.1) 

where a
4
=mω

2
/EI, ω is the circular frequency, Ai, Bi, Ci and Di are the constants of the i

th
 span. 

According to the deformation compatibility condition in each elastic support, we can get 

In the first elastic support 

 

   

1

1 1 1

0 0

0 0

' '

' ' '

Y

k Y EIY

 


  

                           (c.2) 

In the last elastic support 

 

   1

0' '

n n

' ' '

n n n n n

Y L

k Y L EIY L

 


 

                           (c.3) 

In the 2
nd

-n
th

 elastic support 

   

   

   

     

1 1

1 1

1 1

1 1

0

0

0

0 0

i i i

' '

i i i

' ' ' '

i i i

' ' ' ' ' '

i i i i i

Y L Y

Y L Y

Y L Y

EIY L EIY k Y

 

 

 

 

 


 


 


  

                           (c.4) 

Substitution of Eq. (c.1) into Eq. (c.4) yields 

 
T

i i i iA B C D =UiHi-1  1 1 1 1

T

i i i iA B C D   
                     (c.5) 
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where Ui=

3

3

1 1
0

2 22

1 1
0 0

2 2

1 1
0

2 22

1 1
0 0

2 2

i

i

k

a EI

k

a EI

 
 
 
 
 
 
 

 
 
 
  

, Hi-1=

       

       

       

       

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

i i i i

i i i i

i i i i

i i i i

sin aL cos aL sinh aL cosh aL

cos aL sin aL cosh aL sinh aL

sin aL cos aL sinh aL cosh aL

cos aL sin aL cosh aL sinh aL

   

   

   

   

 
 

 
 

  
    

. 

Recycling using the Eq. (c.5), we can get 

 
T

n n n nA B C D =UnNn-1Un-1Nn-2···U2N1 1 1 1 1

T
A B C D             (c.6) 

Substituting Eq. (c.1) into Eq. (c.2) and Eq. (c.3), we have 

Φ 
T

n n n nA B C D =0                          (c.7) 

 1 1 1 1

T
A B C D =Ψ 1 1

T
B C                        (c.8) 

where Ψ=
1

3

2
1 0 1

1 0 1 0

T
k

a EI

 
 
 
  

, 

Φ=
       

               1 1 1 1

3 3 3 3

n n n n

n n n n

n n n n n n n n

sin aL cos aL sinh aL cosh aL

k k k k
sin aL cos aL cos aL sin aL sinh aL cosh aL cosh aL sinh aL

a EI a EI a EI a EI

   

  
 
    
  

 

Substituting Eq. (c.7) and Eq. (c.8) into Eq. (c.6), we can obtain the frequency Eq. (c.9) of the 

uniform beam with complete elastic supports. 

det(ΦUnNn-1Un-1Nn-2···U2N1Ψ)=0                       (c.9) 

Using Eq. (c.9), we can get the natural frequencies of the n spans uniform beam with complete 

elastic supports. Substituting natural frequencies into Eq. (30) and recycling using the Eq. (c.5), 

we can obtain the constant values Ai, Bi, Ci and Di. Substitution of constant values Ai, Bi, Ci and Di 

into Eq. (c.1), we can get the vibration model function of the uniform beam with complete elastic 

supports. The dynamic characteristics of non-uniform beam with added masses and elastic 

supports can be obtained by this paper method using the natural frequencies and the vibration 

model function of the uniform beam with complete elastic supports. 
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