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Abstract.  The structures of concern in this study are subject to two types of forces: dead loads from the 

acceleration imposed on the structures as well as the installed operation machines and the additional 

adjustable forces. We wish to determine the critical values of the adjustable forces when buckling of the 

structures occurs. The mathematical statement of such a problem gives rise to a constrained eigenvalue 

problem (CEVP) in which the dominant eigenvalue is subject to an equality constraint. A numerical 

algorithm for solving the CEVP is proposed in which an iterative method is employed to identify an interval 

embracing the target eigenvalue. The algorithm is applied to four engineering application examples finding 

the critical loads of a fixed-free beam subject to its own body force, two plane structures and one wide-

flange beam using shell elements when acceleration force is present. The accuracy is demonstrated using the 

first example whose classical solution exists. The significance of the equality constraint in the EVP is shown 

by comparing the solutions without the constraint on the eigenvalue. Effectiveness and accuracy of the 

numerical algorithm are presented. 
 

Keywords:  buckling; equality constraint; eigenvalue; acceleration; dead loads; participation factor; finite 

element; stability 

 
 
1. Introduction 
 

Buckling has been one of the main concerns in structure design against catastrophic failure for 

a long time. Naturally the topic has attracted a large group of researchers and engineers in the past 

rendering a rich source of articles in the area. A few textbooks in theoretical settings as well as 

numerical practices have been published and used in academia, such as Chajes (1974), 

Timoshenko and Gere (2009), Bathe (1996), Cook et al. (2007), which provide a good source of 

references in the related fields. Further, the numerical procedures of finding the buckling loads 

have been implemented in a few commercial codes for engineering practices, for example, 

ANSYS (ANSYS Inc. 2012), ADINA (ADINA R & D Inc. 2012), MARC (MSC Software 2013), 

and ABAQUS (Simulia 2011). The study regarding the buckling of the elastic object subject to 

gravity as well as other applied loads has received much less attention. Roberts and Azizian 
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(1984), Roberts and Burt (1985) investigate the lateral buckling of an elastic I-beam subject to 

uniformly distributed load using energy method. Influence of such parameters as sectional warping 

rigidity, location of applied load with respect to the shear center is thoroughly studied. Dougherty 

(1990, 1991) considers the lateral buckling of an elastic beam subject to uniformly distributed load 

as well as a central point load and end moments. In the studies, gravity load of the beam is 

modeled as a uniformly distributed load applied on the top surface of the beam.  A numerical 

approach is employed to solve for the critical load for the beam. 

The loads applied on the beam in the studies by Kerstens (2005), Cheng et al. (2005) appear to 

be proportional in that the point force and the uniformly distributed load, for example, vary at the 

same rate, if necessary. In the current study, gravitational load and other applied forces are non-

proportional. Thus the buckling problem under the influence of gravity is formulated as a 

constrained eigenvalue problem. Kerstens (2005) provides a review of methods employed in 

solving constrained eigenvalue problems. Cheng et al. (2005) present a classic study of the 

buckling of a thin circular plate. In the study, Ritz method is employed to solve the first buckling 

load of the circular plate with boundary fixed. The only load considered is the in-plane gravity. 

Kumar and Healey (2010) present a study of stability of elastic rods. The generalized eigenvalue 

problem consists of a set of constraint equations imposed on the nodal displacements of the model. 

There is no constraint on the eigenvalue itself. Efficient numerical methods are presented to solve 

the first few lowest natural eigenvalues. Zhou (1995) examines an algorithm for the design 

optimization of structure systems subject to both displacement as well as eigenvalue (natural 

frequency) constraints. An iterative algorithm based on Rayleigh Quotient approximation is shown 

to be efficient in solving the dual constraint eigenvalue problems. 

More recently, Wang et al. (2007) investigate the buckling of multi-walled carbon nanotube 

structure subject to a combined loading of torsion and axial loading. It is found in their study that 

the buckling mode is different from those under axial compressive force only. Yanagisawa et al. 

(2008) present experimental as well as analytical results of the vibration of a fixed-hinged beam 

under a compressive axial force and a periodic lateral acceleration. Numerical methods are 

employed to solve the nonlinear differential equations for chaotic response of the beam yielding 

results close to the experimental observations. The chaos is believed to be closely related to the 

buckling load of the beam under an axial compressive load. In the experimental study by Yamada 

et al. (2013) to gain insight of the post buckling of rectangular hollow section (RHS) columns, 

tests of the columns subject to constant axial force and cyclic bi-directional horizontal loading in 

analogy to a seismic excitation are conducted. Experimental results are compared with those 

obtained analytically. Hernandez-Urrea et al. (2014) present a parametric stability study of a 

cantilever structure with multiple masses attached at the ends and axially loaded. It is pointed out 

from their findings that the attached lumped masses play an important role on the structure 

stability. The work dealt by Carrera et al. (2011) shows the finite element formulations of the 

vibration and buckling of plates subject to combined in-plane axial and shearing loading. Good 

accuracy of numerical results comparing with classical solution for thin plates is reported. On the 

biomimetic front, Cui and Shen (2011) model the plant stems as a stiffened multi-walled 

cylindrical shell. The model is then subject to various combined loadings including wind pressure, 

axial compression and bending moment. To determine the buckling load, a commercial FE 

software package is employed. They conclude that wind pressure has a more profound effect on 

the buckling of the plant stems subject to bending than axial compression. Silvestre et al. (2012) 

recently propose a multilevel approach to evaluate the buckling of carbon nanotubes embedded in 

composites. For the buckling analysis they employ the semi-analytical finite strip method. In the 
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Buckling analysis of structures under combined loading with acceleration forces 

aforementioned studies multiple loads are applied and increased proportionally until buckling 

occurs. 

In this paper, the problem to be tackled is formulated in mathematical form in Section 2. The 

deviation of the current problem from the others is disclosed. It is shown that addressing the 

current problem using the usual treatment would lead to significant errors. Section 3 presents a 

simple algorithm for solving the problem efficiently. The proposed algorithm is tested using four 

numerical examples in Section 4. It is seen from the examples that the proposed algorithm has 

achieved excellent accuracy. 

 

 

2. Mathematical statement of the current problem 
 

Conventionally the buckling load of a structure can be determined by solving the following 

eigenvalue problem. 

            [     ]   . (1) 

where K is the usual stiffness matrix of the structure, λ the eigenvalue or load factor (LF), U the 

nodal displacement vector, and Kf the stiffness matrix of the same structure due to stress stiffening 

from an externally applied force f set at an arbitrary reference magnitude. The stress stiffening 

matrix is given as follows. 

              ∫       (2) 

where G and S are, respectively, modified strain-displacement and stress matrices (Bathe 1996, 

Cook et al. 2007). Note that in case of line elements, the stress matrix contains only a component 

S = [x] where x is the axial stress in the elements. Thus, Eq. (2) becomes 

              ∫        (3) 

Likewise, the higher-order Green-strain-displacement matrix for line elements is given as below. 

        
 

  
  (4) 

where the shape function matrix N contains the usual linear and cubic Hermitian interpolation 

functions for bar and beam elements, respectively (Cook et al. 2007). 

It is understood that for a non-trivial solution to exist, the determinant of the multiplier matrix 

in Eq. (1) must be zero. 

                                                                       ‖     ‖   . (5) 

Once the eigenvalues are found, the critical buckling load fc of the structure is given as follows. 

                  (6) 

where λ1 is the lowest eigenvalue known as critical load factor. 

As depicted in Fig. 1, a deformable object is loaded with a reference force f while being subject 

to a given acceleration motion a0. As a result, there are two stress stiffening matrices due to the 

applied load and the acceleration force, Kf and    , respectively. It is our goal to determine the  
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Fig. 1 Schematic of the present problem involving a flexible structure subject to both 

external force f and acceleration a 

 

 

buckling load of the structure while it is under the given acceleration. Thus for the current problem 

an eigenvalue system to be solved may be given below. 

             [   (      )]    (7) 

After the eigenvalue problem is solved, the critical buckling load of the structure can be 

determined using Eq. (6). Meanwhile, there would be a “critical acceleration” which in 

combination with the critical load would put the structure in an unstable state. The acceleration 

under the critical condition ac is determined via the following relation. 

                                                                                      . (8) 

Unless λ1=1, we have      . Clearly, the above methodology does not provide the correct 

solution to the problem. To resolve the issue, it is suggested by ANSYS (ANSYS Inc. 2012) that 

the problem, Eq. (7), be solved by using the actual acceleration a0 and iterating the magnitude of f 

until the load factor is equal to 1, or, λ1=1. 

Consequently a proper method is required to solve the eigenvalue problem so that the 

acceleration remains at the fixed value a0 when buckling occurs. Consider the following 

constrained eigenvalue problem (CEVP). 

       [   (      )]    (9) 

subject to 

                  (10) 

where K, Kf are the same matrices as before,    the stress stiffening matrix using a reference 

acceleration a, and α an unknown participation factor. Of concern is the buckling load fc of the 

structure while the acceleration remains at a0. Since a is a reference number, we may choose a=1 

for convenience. 

Note that other constrained eigenvalue problem exists in the form given below (Kerstens 2005, 

Kumar and Healey 2010). 

                                                   [   

  
] ,

 
 
-   *

  
  

+ ,
 
 
-. (11) 
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Buckling analysis of structures under combined loading with acceleration forces 

Or 

                  (12) 

subject to 

                                                                                    . (13) 

The above problem sees its applications in determination of the vibration modes of a structure 

when there are a few equality constraints imposed on the eigenvectors so some nodal 

displacements in the model are deformed in a specific way. As opposed to this type of problem, 

the constraint is on the eigenvalue for the current CEVP. 

 
 
3. Numerical algorithm 

 

For a given structure, the total stiffness matrix K can be readily formed first. The stress 

stiffening matrix Kf can be obtained by using the stress stemming from an arbitrarily chosen 

reference force f corresponding to the applied load which remains the same throughout the 

following numerical scheme. To obtain the stress stiffening matrix   due to acceleration, we may 

choose a=1 for convenience. In the following numerical scheme, a series of values for the 

participation factor αi is used in solving the following eigenvalue problem. 

          [   (       )]    (14) 

Therefore, a series of acceleration ai is obtained via the following relation. 

                  (15) 

In the scheme seen in Fig. 2, the eigenproblem is solved until the target value a0 falls within the 

interval:           . 

Let us introduce a natural coordinate , 1≤≤+1. From the following linear interpolation, we 

can determine the natural coordinate  corresponding to the target value a0. 

                                                          
 

 
(   )   

 

 
(   )    . (16) 

 

 
 

Fig. 2 The trapping scheme for finding unknown α 
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Select values for parameters f, α0, α 
Guess a starting value for α. 

Form matrices K, Kf,    

LOOP STARTS 

Set α1=α, α2=α, 1=2=0 and 

FOUND = FALSE 

 Solve eigenvalue problem, Eq. (14) 

 If not FOUND 

  α1=α2, 1=2, 2=1 

  If        

   If 1=0 

    α = α/2, α = α/2 
   Else 

    α2=α, 2=1 

    Find  using Eq. (17) 
    Find α using Eq. (18) 

    FOUND = TRUE 

   End If 

  Else 

   α = α + α/2, α2 = α 

  End If 

 Else (FOUND critical α) 

  Calculate buckling force        
  STOP 

 End If 

LOOP ENDS 

Fig. 3 Pseudo code for the proposed numerical algorithm 

 

 

Or 

                                                      (           ) (        )⁄ . (17) 

Upon substituting this natural coordinate into the following interpolation equation, the unknown 

participation factor can be determined. 

                                                         
 

 
(   )   

 

 
(   )    . (18) 

It is worth mentioning that linear interpolation is used in the above calculation with a proper 

selection of the increment used in αi. The result obtained certainly can be improved if quadratic 

interpolation is used. 

The eigenproblem Eq. (9) is solved one more time using the participation factor found from Eq. 

(18). The eigenvalue found together with the participation factor in Eq. (18) constitute the solution 

to the constrained eigenvalue problem. The algorithm of this numerical scheme is given in pseudo 

code in Fig. 3. The proposed algorithm can be easily implemented in ANSYS APDL (ANSYS Inc. 

2012). In the following section, we use four examples to demonstrate the accuracy and efficiency 

of the algorithm presented here. 
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Buckling analysis of structures under combined loading with acceleration forces 

4. Application examples 
 

The first three examples presented in this section are of two-dimensional setting while the 

fourth is a three-dimensional case. A theoretical solution in approximate form exists for the first 

example, which serves as the guide for validating the accuracy of the proposed algorithm. In the 

other two examples, the purpose is to demonstrate the efficiency of the numerical algorithm. It is 

not intended to identify the worst case scenario. Further, the first three examples involve line 

elements and the last one contains shell elements. It is desirable to first form the stress stiffening 

matrix in closed form for line elements. 

 

4.1 Stress stiffening matrices of beam elements due to acceleration 
 

The shape function matrix N contains the usual linear and Hermite polynomials for bar and 

beam elements, respectively. Let L be the element length,  the natural coordinate defined as = 

x/L, and x the axial coordinate. Here only the shape functions for beam elements are given below. 

         ⌊          (        )  (       )  (      )⌋ (19) 

When the beam is subject to constant acceleration a along the axial axis as indicated in Fig. 4, the 

axial stress in the element appears to be a linear function in x as seen below. 

                 
 

 
(
 

 
  ) (20) 

where the inertial force          , m the mass of the element,  the density and A the 

cross-sectional area. Upon substituting the shape function matrix N in Eq. (19) and the axial stress 

x in Eq. (20) into Eqs. (3) and (4), the stress stiffening matrix Ka for an element with nodal 

coordinates x1<x2 and L=x2−x1, is given below. 

    
 

   
[

         
        

        
           

]  
    

   
[

         
           

           
           

] (21) 

where x2 is x evaluated at x=x2 using Eq. (20). Note the negative diagonal components in the first 

matrix stem from the positive acceleration. Moreover, the second matrix in essence is the 

equivalent of stress stiffening on the element by a compressive axial force −x2A applied at node 2. 

If the x-displacement is to be included, the matrix can be augmented with ease (Cook et al. 2007). 

 

 

 

Fig. 4 An elastic beam subject to a constant acceleration force and an axial force P 

L

a

.

A P

x
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4.2 Buckling of a beam subject to constant acceleration 
 

As depicted in Fig. 4, an elastic beam is subjected to a point force P at the free end as well as 

constant acceleration a. The theoretical solution of the buckling load when the acceleration is the 

gravity g is given approximately as follows (Timoshenko and Gere 2009). 

          
    

   
         (22) 

where EI is the beam’s flexural rigidity and L the length of the elastic beam. Note also that the 

beam would buckle due to its own weight if the following equation holds (Timoshenko and Gere 

2009). 

       (    )   
       

  
 (23) 

We first consider a one-element model with node 1 completely fixed and x2=0 in Eq. (21). 

Here, each node has three degrees of freedom: two translational displacements, u and v, and one 

rotation . Therefore 

 

(

 
 
 
 

[
 
 
 
 
 
  

 
  

 
    

  
 

   

  

  
   

  

   

 ]
 
 
 
 
 

  (
 

   
[
   
      
       

]  
  

   
[
   
      
       

])

)

 
 
 
 

{

  

  

  

}

   

(24) 

Upon solving the above eigenvalue problem symbolically using MATLAB (MathWorks 2012), we 

may obtain the dominant eigenvalue 1. Recall Pcr=1P. Thus, the critical buckling force for the 

one-element model is 

                 
√   

  
 

  

 
  

 

 
  (25) 

where 

                                                  ⁄ , and                 . (26) 

Assuming steel is used (E=200 GPa, =7,890 kg/m
3
), acceleration is a=g=9.81 m/s

2
 and the 

geometric properties of a wide-flange beam are: L=5 m, A=1.58×10
-4

 m
2
 and Izz=2.725×10

-9
 m

4
, 

Eq. (25) yields 

                         (27) 

The theoretical solution from Eq. (22) gives           N which represents an error of about 

0.2%. 

It is unrealistic to symbolically solve a model with a large number of elements in the similar 

fashion to Eq. (25). To use the proposed numerical scheme for a twenty-five two-dimensional 

beam elements for the beam in Fig. 4, a MATLAB code is developed. Note that some of codes in 

the text by (Kwon and Bang 2000) come handy for this endeavor. In the calculation, the reference 
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force and acceleration chosen are: P=10 N and a=1 m/s
2
. Table 1 reveals a few calculation steps 

used to contain the target acceleration g=9.81 m/s
2
 between 4

th
 and 5

th
 steps. Therefore, upon using 

a4=9.7455; a5=10.3071 in Eq. (17) the natural coordinate corresponding to the target acceleration g 

is          . The participation factor determined through Eq. (18) is a=2.7787. 

With the combination of P=10 N and α=2.7787, the eigenvalue problem Eq. (9) is solved one 

more time which gives λ1=3.5311. Consequently, the beam is subject to the acceleration a=αλ1= 

2.7787×3.5311=9.812 m/s
2
, which is the gravity. And, the buckling load for the beam is: 

Pcr=Pλ1=35.31 N which is within 0.2% to the exact solution. 

If we used Eq. (7) with the reference force and acceleration, P=10 N and a=1 m/s
2
, to 

determine the buckling load of the beam, we would have obtained λ1 = 4.5338. Thus, the critical 

force at buckling would have been Pcr=λ1×10 N=45.34 N while the beam is subject to acceleration 

a=λ1×1 m/s
2
 =4.5338 m/s

2
, less than half the gravity. 

 
4.3 Buckling of a truss structure 
 

Fig. 5 shows a plane truss of a simplified crane having three point masses at three different 

locations. The mass m1=4,000 kg at point F represents the mass of a counterweight, while m2=m3= 

2,000 kg are the masses of a control unit of the crane at points D and E. The truss is constrained so 

no translational movement at points A and B. Note that all members of the truss and the two cables 

are made of steel (E=200 GPa, =7,890 kg/m
3
) with circular cross-section r1=12.5 mm. It is our 

intent to determine the maximum load Wc that the truss can carry at point C prior to buckling. 

 

 
Table 1 Numerical calculation of finding the buckling load for the elastic beam in Fig. 4 

No. α λ a, m/s
2
 

1 2 3.9121 7.8242 

2 2.25 3.7813 8.5079 

3 2.5 3.6588 9.1470 

4 2.75 3.5438 9.7455 

5 3 3.4357 10.3071 

 

 

Fig. 5 A plane truss with three concentrated masses at points D, E and F carries a payload W at C 

A B

C

D E

W

m3 m1m2

F

G

1

1
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UNIT: M
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Table 2 Numerical calculation of finding the buckling load for the plane truss in Fig. 5 

No. α λ a, m/s
2
 

1 0.03 173.91 5.2173 

2 0.04 167.72 6.7088 

3 0.05 161.93 8.0965 

4 0.06 156.53 9.3918 

5 0.07 151.46 10.6022 

 

 

In this example, 74 link elements are used for the bars and cables. Each node has two 

translational degrees of freedom. Three point-elements are used to model the masses at points D, E 

and F. Table 2 shows the numerical calculation using a code written in MATLAB. Therefore, the 

target acceleration is enclosed in the interval between a4=9.3918 and a5=10.6022. 

Note that the reference load and acceleration are W=10.0 KN and a=1.0 m/s
2
. From Eqs. (17) 

and (18), the natural coordinate corresponding to the gravitational acceleration g and the 

participation factor are, respectively: 

                      . 

The eigenvalue problem Eq. (9) is solved one final time using W=10.0 KN and α=0.06338 

which results in λ1=154.78. The downward acceleration the plane truss subject to is a=αλ1=9.810 

m/s
2
. And, the buckling load for the beam is: Wc=Wλ1=1547.8 KN. Note that upon solving the 

eigenvalue problem from Eq. (1) using the stress stiffening matrix Kf of the truss structure 

stemming from the reference force W=10.0 KN and the gravitational acceleration g=9.810 m/s
2
, 

the eigenvalue is λ1=4.553. This indicates that the buckling load would have to be Wc=Wλ1=45.53 

KN, which is only 3% of the buckling load using the current algorithm. To cause the truss 

structure to buckle at this load the gravitational acceleration would have to be a=gλ1=44.66 m/s
2
 

which is almost four times the actual gravity. 

In case the exercise of obtaining  and  in Table 2 continues until =10, we may have a curve 

of acceleration vs. participation factor as shown in Fig. 6 which exhibits an asymptote at 

amax=45.69 m/s
2
. When a large ≥500 is used in the proposed algorithm, a very small eigenvalue 

or LF is obtained, e.g., λ110
-2

. This indicates that the structure buckles due to the high 

acceleration alone and Wc0 KN. 

 

 

 

Fig. 6 Plot of acceleration vs. participation factor in logarithmic scale 
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Fig. 7 A traveling vehicle with a plane frame carrying two masses m1 and mass m2 and subject to a force FD 

 

 

4.4 Buckling of a plane frame on an accelerating vehicle 
 

In the third example, a plane steel (E=200 GPa, =7,870 kg/m
3
) frame installed on a vehicle is 

subject to a known point force FD=1,500 N at point D. In addition there are two known masses 

m1=200 kg, m2=300 kg at points C and E. The horizontal beams of the frame are of a wide-flange 

cross-section, while the vertical beam is of C-channel. The cross-sections of beams are: A-A: 

A1=484×10
-6

 m
2
 and I1=4.205×10

-8
 m

4
, and B-B: A2=384×10

-6
 m

2
, and I2=9.260×10

-8
 m

4
. It is of 

interest to know the critical horizontal acceleration ac of the vehicle when the 2D frame buckles. 

Note the gravity is g=9.81 m/s
2
 and the frame is hinge-supported at points A and G as shown in 

Fig. 7. 

Let us introduce a scaling factor  so that 

          
  

 
 (28) 

which simply correlates the magnitudes of the two given quantities. Thus, =152.91 for the 

present case. To tackle this example, Eq. (9) is modified to account for the various loads as 

follows. 

           [       (        )      ]     (29) 

where both g1 and a are arbitrarily chosen magnitudes corresponding to gravity and the horizontal 

acceleration and F1=g1. Furthermore, Kg1, KF1 and Ka are, respectively, the individual stress 

stiffening matrices due to g1, F1 and a alone. The constraint Eq. (10) becomes 

                                                                                . (30) 

For the numerical study, the dimensions used for the frame are h=6 m, w=4 m, b1=1.5 m, b2=2 

m and b3=4.5 m. Using g1=1 m/s
2
 and a=1 m/s

2
 in the proposed algorithm, the critical participation 

factor found from Eqs. (17) and (18) is cr=1.713 which is between steps 3 and 4 in Table 3. With 

this cr the eigenvalue problem Eq. (29) gives λ1=5.726. Therefore 

A
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B B
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Table 3 Numerical calculation of finding the buckling load for the plane frame in Fig. 7 

No.  α  λ a, m/s
2
 

1 1.5 6.4605 9.69075 

2 1.6 6.094 9.7504 

3 1.7 5.7667 9.80339 

4 1.8 5.4727 9.85086 

5 1.9 5.2072 9.89368 

 

 

Fig. 8 The first buckle mode of the plane frame in Fig. 7 

 

 

Fig. 9 Plot of acceleration vs. participation factor for the plane frame in Fig. 7 

 

 

                                                                  . (31) 

It is seen that constraint Eq. (30) is satisfied. Buckling of the plane frame occurs when the 

horizontal acceleration is               at which the applied force is exactly as specified, 

FD=1,500 N. The deformed shape of the frame in the first buckling mode is shown in Fig. 8. Note 

that the setting for this model is not symmetric at all. 

Continuation of the computation in Table 3 yields a plot seen in Fig. 9. As expected an 

asymptote exists gmax=10.71 m/s
2
 at which the horizontal acceleration nearly vanishes, amin0. That 

is, the plane frame buckles before the vehicle starts accelerating. Note that the two curves shown 

in Fig. 9 intersect at =1.0 at which both the horizontal and vertical accelerations are 9.234 m/s
2
. 

For the frame to buckle at that moment, the applied force is lower than the prescribed load, i.e., 

FD=1,411.9 N. 
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Fig. 10 A wide-flange beam subject to acceleration and axial force 

 

 

Fig. 11 Finite element model of a wide-flanged beam with clamped end. 

 

 

4.5 Buckling of a wide-flanged beam clamped at one end 
 

The first example is reexamined here using a beam with Wide Flange cross-section as shown in 

Fig. 10. Note that the results given in Eqs. (22) and (23) are derived from elementary beam theory 

(Timoshenko and Gere 2009). The beam in this example is modeled using shell elements with 

three translational and three rotational degrees-of-freedom per node (Bathe 1996, Cook et al. 

2007). 

Fig. 11 shows a finite element mesh of a short (L=0.25 m) wide-flanged beam with an end 

clamped against any movement. In the numerical demonstrations, the length L=5.0 m used for 

example 1 is considered for consistency. In addition, the material used is steel (E=200 GPa, =0.3, 

=7,890 kg/m
3
) and the cross-sectional properties are: w=0.01 m, h=0.03 m, web and flange 

thicknesses t1=0.002 m, and t2=0.003 m. This is the setting yielding the cross-sectional area and 

moment of inertia used in example 1. According to Eq. (23), the beam buckles at the critical 

acceleration acr=27.41 m/s
2
 when the applied force P is absent. To ensure that the finite element 

model is accurate, the ordinary buckling problem with inertial force alone is solved. It is found that 

the critical acceleration acr=26.49 m/s
2
 which represents an error of 3.36%. Two cases are 

considered in the following numerical demonstration. 

 
4.5.1 Case I: acceleration is given as a=9.81 m/s2 
In this case the critical buckling force Pcr is sought when the beam is subject to acceleration 

a=9.81 m/s
2
. The element aspect ratio as seen in Fig. 11 is maintained throughout, which results in 

2685 4-noded shell elements and 3240 nodes. Table 4 shows the numerical calculation following 

the proposed algorithm. Therefore, the target acceleration is enclosed in the interval between  

L

a

.

P

y

x
A

A

SECTION A-A

.

.

.

.

.
h t2

t1

t1

w

1063



 

 

 

 

 

 

Wenjing Wang and Randy Gu 

Table 4 Numerical calculation for finding the participation factor for the beam in Fig. 10 using shell elements 

No.   a, m/s
2
 

1 2.2 3.7706 8.29532 

2 2.4 3.6689 8.80536 

3 2.6 3.5724 9.28824 

4 2.8 3.4807 9.74596 

5 3.0 3.3935 10.1805 

 
Table 5 Numerical calculation for finding the critical buckling acceleration for the beam in Fig. 10 

No.   P, N a, m/s
2
 

1 1.0 13.555 27.11 13.555 

2 1.2 12.331 29.5944 12.331 

3 1.4 11.309 31.6652 11.309 

4 1.6 10.441 33.4112 10.441 

5 1.8 9.6963 34.9067 9.6963 

6 2.0 9.05 36.2 9.05 

 

 

a4=9.74596 and a5=10.1805. From Eqs. (17) and (18) the natural coordinate corresponding to the 

given acceleration and the participation factor are, respectively: 

                      . 

Using the critical participation factor cr=2.8288 and the reference values P=10 N and a=1 

m/s
2
, the eigenvalue problem Eq. (9) is solved. The critical load factor found is λ1=3.4679. Thus 

the constraint equation Eq. (10) is satisfied, craλ1=2.8288×1×3.4679=9.81. The beam then 

buckles at Pcr=Pλ1=34.679 N, which is in good agreement (error=2.2 %) with the theoretical 

solution using elementary beam theory,           N. 

 

4.5.2 Case II: applied axial force is given as P0=30 N 
We will now use the proposed algorithm to determine the critical acceleration acr when the 

applied force at the free end of the beam is P0=30 N. To this end, the CEVP is modified as follows. 

            (      )     (32) 

subject to 

                 (33) 

Now the constraint equation with unknown participation factor is imposed on the applied axial 

force P. 

As in the previous situation, a and P hold arbitrary reference values which are chosen as a=1.0 

m/s
2
 and P=2 N. Further, the value of the participation factor is iterated between 1 12 some of 

which are given in Table 5 below with sufficient steps for computing the participation factor 

corresponding to P0. Here an additional column for a is included in the table. 

Using P2=29.5944 and P3=31.6652 in place of ai in Eqs. (17) and (18) the natural coordinate and 

the participation factor corresponding to the given applied force P0 are, respectively: 

                     . 

Upon solving Eq. (32) using α=1.2362, we have 1=12.133. Thus the constraint Eq. (33) is  
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Fig. 12 First buckling mode of the wide-flanged beam 

 

 

Fig. 13 Critical acceleration vs. applied force predicted by the current algorithm and theoretical solution 

 

 

satisfied, P1=29.998 and the critical acceleration for buckling is acr=a1=12.133 m/s
2
. Note that 

Eq. (22) can be rewritten as below. 

              
 

      
.
    

   
   / (34) 

It allows us to calculate the theoretical solution for the critical acceleration, acr=12.724 m/s
2
. The 

proposed algorithm appears to be in good agreement (error=2.2 %) with the theoretical solution. 

Further, at this critical situation, the beam’s buckling shape is shown in Fig. 12 which coincides 

with the prediction using elementary beam theory. 

Fig. 13 depicts the plot of the last two columns of Table 5 using extended range of , 1 12, 

together with the linear theoretical solution, Eq. (34). It is seen that both lines converge to the 

point representing the critical buckling load of the fixed-free beam without acceleration, Pcr=53.79 

N, the first term in Eq. (22), or the Euler buckling load. 

 
 
5. Conclusions 

 

The determination of the buckling load of an elastic structure in the presence of inertial force is 

formulated as an eigenvalue problem subject to an equality constraint correlating an unknown 

participation factor and the acceleration. A methodology of solving the constrained eigenvalue 

problem is presented. In the numerical algorithm, the eigenvalue problem is solved incrementally 

until the desired participation factor falls within an interval. Interpolation is employed to extract 

the accurate solution for the unknown participation factor. The eigenvalue problem is solved again 
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using the participation factor found. Four examples are used to demonstrate the accuracy of the 

numerical algorithm. Among them, one has an approximate theoretical solution. The solution 

predicted by the proposed algorithm is in excellent agreement with the theoretical solution. From 

the other two examples involving two-dimensional truss and frame, it is shown that the critical 

buckling loads predicted from the proposed algorithm are lower than those from the usual 

procedure by a relatively significant margin. The fourth example contains shell elements used to 

model a wide-flange beam. The procedure involves some laborious manual intervention. It is 

necessary to develop an automatic numerical scheme for the problem in the future. 
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