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Abstract.  Starting with Hamilton’s variational principle, the governing field equations for the steady state 
response of thin-walled beams under harmonic forces are derived. The formulation captures shear 
deformation effects due to bending and warping, translational and rotary inertia effects and as well as 
torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist 
of four coupled differential equations in the unknown displacement field variables. A general closed form 
solution is then developed for the coupled system of equations. The solution is subsequently used to develop 
a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A 
super-convergent finite element is then formulated based on the exact shape functions. Key features of the 
element developed include its ability to (a) isolate the steady state response component of the response to 
make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section 
mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding 
shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present 
solution are found to be in excellent agreement with those based on finite element solutions at a small 
fraction of the computational and modelling cost involved. 
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1. Introduction 
 

Thin-walled structural members are used as stiffeners in aircraft structures, propellant and 

turbine blades, steel structures, ships, marine structures and vehicle axles. In these applications, 

they are commonly subjected to harmonic loading. Sources of harmonic loads include 

aerodynamics forces, hydro-dynamic wave motion and forces arising from unbalance in rotating 

machinery, propellants and reciprocating machines. In such applications, thin-walled members are 

prone to fatigue failures. Under harmonic forces, member response has two components; (1) a 

transient component which is induced at the beginning of the excitation, and (2) a steady state 

component which is sustained for a long time. The transient response attenuates quickly due to 

damping and is thus of no importance for fatigue design. In contrast, the sustained steady state 
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component of the response is of key for fatigue design, and is the prime focus of the present study.   
Thus, the present study aims at developing an efficient solution which isolates the steady state 

response of thin-walled beams when subjected to harmonic forces. For doubly-symmetric cross-
sections, the longitudinal, transverse, lateral response is fully uncoupled from the lateral response. 
The associated solutions are provided in (Hjaji and Mohareb 2011a, b) under a shear deformable 
thin-walled beam theory and in (Hjaji and Mohareb 2013a, b) under a shear non-deformable 
theory. In contrast, for beams with mono-symmetric cross-sections (e.g., I-section with unequal 
flanges, channel section), the flexural response in the direction normal to the axis of symmetry is 
observed to be coupled with the torsional response. Under the conventional Vlasov theory (Hjaji 
and Mohareb 2014a, b), the coupling involves two displacement fields while under the shear 
deformable theory in the present study, the coupling involves four displacement fields. The 
challenges associated with formulating a closed form solution of the four-field coupled system are 
the focus of the present work. The closed form solution is subsequently exploited to develop an 
efficient finite element for the analysis of beams of mono-symmetric sections under harmonic 
forces.  
 
 
2. Literature review  
 

Methods of analysis of thin walled beams under dynamic loads consist of analytical solutions 
and summarized in Section 2.1 and those based on finite element analysis as summarized in 
Section 2.2. 

 
2.1 Literature review on analytical solutions  
 
The classical thin-walled beam theory developed by Vlasov (1961) assumes that the beam 

cross-section does not deform in its own plane, and the transverse shear strains at the middle 
surface are negligible. The theory has been extensively used in dynamic analysis of thin-walled 
beams as exemplified by the studies of Friberg (1985), Bishop et al. (1989), Leung (1991), Chen 
and Tamma (1994), Banerjee et al. (1996), Li et al. (2004a), Kim et al. (2007). Bishop and Price 
(1985) studied the free vibration of thin-walled members with channel-shaped sections. More 
advanced theories capturing shear deformation effects were also developed by several authors. 
This includes the work of Dokumaci (1987) who studied the coupled flexural–torsional vibration 
of thin-walled beams whose study captured warping effects. Tanaka and Bercin (1997) studied the 
coupled flexural-torsional free vibrations of thin-walled open members. Their solution captured 
rotatory inertia effects. Using the dynamic transfer matrix method, and the mode superposition 
technique, Li et al. (2004a) formulated a solution for determining the coupled bending-torsion 
response of thin-walled beams under external random excitations. Their solution accounts for 
warping and rotary inertia. In a subsequent study, Li et al. (2004b) extended their formulations to 
include the influence of uniform axial forces. Laudiero and Savoia (1991) studied the flexural-
torsional vibrations of thin-walled beams with open and closed cross-sections. Their study 
accounted for the effect of bending and non-uniform torsion, secondary warping and shear lag 
effects. Tanaka and Bercin (1998) extended their former work (Tanaka and Bercin 1997) to 
asymmetric sections. Kollar (2001) developed a theory of free vibration analysis of thin- walled 
open section composite beams including closed-form solutions for the coupled flexural- torsional 
natural frequencies for simply-supported beams. Cortinez and Piovan (2001) developed an 
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analytical solution for the free vibration analysis of composite thin-walled beams of open and 
closed cross-sections. Kim et al. (2003) formulated the exact dynamic and static stiffness matrices 
for the free vibration and stability analysis of thin-walled beams. Their theory accounts for shear 
deformation effects due to bending and warping torsion and captures the coupling between both 
effects. Also, they incorporated the rotary inertia effects and the flexural-torsional coupling effects 
due to the asymmetry of the cross-sections. In a subsequent study, Kim and Kim (2005) adopted 
the theory in Kim et al. (2003) to develop the dynamic stiffness matrix element for the flexural-
torsional free vibration of asymmetric thin-walled beams. By applying the Hellinger-Reissner 
variational principle, the governing equations of motion were derived for the coupled vibration 
response of thin-walled beams with asymmetric cross-sections and the force-deformation relations. 
Using the principle of virtual work, Prokic (2006) derived the differential equations for the 
coupled vibrations of a general thin-walled beam theory capturing shear deformation effects due to 
bending based on multiple degrees of freedom to express the warping deformation. Closed-form 
solution for the natural frequencies was derived for the case of simply supported beams. Vo and 
Lee (2009b) developed a solution based on a shear deformable beam theory for the study of 
flexural-torsional buckling and vibration analysis of open thin-walled composite beams. Based on 
a modified Vlasov theory which accounts for shear deformation, Ambrosini (2004) presented a 
general theory for the coupled flexural-torsional vibration of thin-walled beams of open cross-
sections. De Borbon and Ambrosini (2010) extended the theory of Ambrosini (2004) to incorporate 
the effect of the axial forces. Guinta et al. (2014) developed a unified hierarchical treatment for 
formulating beam theories including shear deformable effects. Based the Vlasov beam theory, and 
the lamination theory, Prokic et al. (2014) developed a technique for determining geometric and 
material properties of composite thin-walled beams. 

 
2.2 Literature review on finite element formulations 
 
Most finite elements for the dynamic analysis of thin-walled members are based on two 

approaches. In the first approach, formulations are based on approximate shape functions such as 
the work of Tanaka and Bercin (1997), Lee and Kim (2002a, b), Voros (2008, 2009), etc. In the 
second approach, shape functions are based on the solution of the homogeneous solution of the 
static equilibrium equations, such as the work of Mei (1970), Chen and Tamma (1994), Hu et al. 
(1996). Finite element formulations which omit shear deformation effects includes the work of 
Mei (1970), Chen and Tamma (1994), Hu et al. (1996), Tanaka and Bercin (1998), Hashemi and 
Richard (2000a, b), Lee and Kim (2002a, b), Voros (2008, 2009). Based on exact shape functions, 
Mei (1970) developed a finite element for the coupled free vibration analysis of thin-walled beams 
which incorporated warping effects. Chen and Tamma (1994) formulated a finite element to study 
the dynamic coupled vibrations of thin-walled open members with arbitrary cross-sections 
including the influence of constant transverse loads. Their formulation was based on assumed 
linear and cubic displacement shape functions in conjunction with an implicit self-starting 
unconditionally stable integration scheme. Hu et al. (1996) studied the coupled bending-torsional 
dynamic behavior of thin-walled beams of asymmetric cross-sections. The shear deformation and 
bending-torsional coupling effects due to cross-section non-symmetry were fully incorporated in 
the solution. Hashemi and Richard (2000a) studied the coupled bending-torsional vibration 
analysis of thin-walled beams by developing a dynamic finite element. The exact solutions of the 
governing dynamic equations of equilibrium were obtained and, subsequently, frequency-
dependent hyperbolic interpolation functions were adopted to formulate the stiffness and mass 
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matrices of the structure. Later on, Hashemi and Richard (2000b) extended their work to include 
the effect of axial force. By using linear and cubic Hermitian shape functions, Lee and Kim 
(2002a, b) investigated the coupled free vibration of thin-walled composite beams with doubly 
symmetric and channel-shaped cross-sections. The influence of lateral forces on the coupled 
bending-torsional free vibration of thin-walled open members was studied by Voros (2008, 2009) 
who formulated a two-noded beam element with fourteen degrees of freedom. Recently, Vo and 
Lee (2009a, 2010), Vo et al. (2010, 2011) studied the coupled flexural-torsional free vibration of 
thin-walled open composite beams under constant axial forces and end moments by developing a 
displacement-based one dimensional finite element model. Finite element formulations including 
shear deformation effects include the work of Kim and Kim (2005) who formulated an 
isoparametric element to capture the coupled flexural-torsional free vibration of asymmetric thin-
walled shear deformable beams. Recently, Vo and Lee (2009c), Vo et al. (2009) extended their 
previous studies for the coupled flexural-torsional composite members to incorporate the shear 
deformation effects in a finite element formulation based on one-dimensional shear-deformable 
finite beam element using linear and cubic Hermite shape functions.  

A feature common to the above studies is use of approximate shape functions involving spatial 
discretization errors, and thus requiring fine meshes to converge to the actual solution. In contrast, 
the present study avoids discretization errors by formulating shape functions which exactly satisfy 
the homogeneous form of the dynamic equilibrium equations. Another commonality between the 
above studies is the fact they focus on extracting the free vibration characteristics including 
extracting the natural frequencies and mode shapes. In contrast, the present study aims at directly 
extracting the steady state response without the need for extracting the natural frequencies and 
mode shapes. 
 
 
3. Basic assumptions 

 
The formulation is based on the following assumptions:  
1. Cross-section is open and mono-symmetric with the x axis taken as the axis of mono-

symmetry, 
2. Member is assumed prismatic, 
3. Deformations are assumed small enough for the material to remain within the elastic range of 

deformation,  
4. Strains and rotations are assumed small, 
5. Cross-section is assumed to remain undistorted (rigid) in its own plane in a manner 

consistent with Vlasov’s first assumption (Vlasov 1961),  
6. For loading not involving twist, a planar cross-section originally normal to the centriodal 

axis is assumed to remain plane but not perpendicular to the cross-section after deformation, i.e., 
the transverse shear deformations of the middle-surface of the cross-section are incorporated in the 
assumed kinematics (in a manner analogous to the Timoshenko beam theory). The assumption is 
further generalized to twist/warping deformations (i.e., the shear strains induced by warping at the 
middle surface are non-zero and are characterized by a generalized displacement function 
multiplied by the sectorial coordinate).  

The assumed kinematics can be conceived as a combination of Vlasov and Timoshenko 
theories. Similar kinematics were assumed in Laudiero and Savoia (1991), Kim et al. (2003), Vo  
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Fig. 1 (a) Local coordinate system and displacement components of a point p(x,y) on the cross-
section, (b) tangential and normal displacements 

 
 

and Lee (2009c), Back and will (1998), Cortinez and Piovan (2001), Li et al. (2004c), Machado 
and Cortinez (2007), Machado (2007), Wu and Mohareb (2011), Librescu and Song (2006).  

 
 

4. Displacement fields 
 

Based on the above assumptions, the longitudinal displacement wp(z,s,t) and the in-plane 
displacements up(z,s,t) and vp(z,s,t) of a general point p(x(s), y(s)) located on the mid-surface of the 
cross-section (Fig. 1) are respectively given by (e.g., Back and Will 1998) 

               , ,p x yw z,s,t =w z,t + y s z,t -x s z t + s z t                   (1) 

        ,p zu z,s,t =u z,t - y s z t                          (2) 

       ,p s zv z,s,t =v z,t + x s -x z t                      
    (3) 

in which w(z,t) is the average longitudinal displacement along the longitudinal axis z, u(z,t)and 
v(z,t) are the displacement components of the shear centre (xs, ys=0) along the principal directions 
X and Y, θx(z,t) and θy(z,t) are the rotations of the cross-section about X and Y axes, θz(z,t) is the 
twist angle of the cross-section about the longitudinal axis,

 
ψ(z,t) is a function which characterizes 

the magnitude of the warping deformation, ω(s)
 
is the warping function,

 
x(s) and y(s) are the 

coordinates of a point denoted by a curvilinear coordinates lying on the middle surface of the 
section and xs is the coordinate of the shear centre along the axis of symmetry.  

The in-plane displacements up(z,s,t) and vp(z,s,t) of the general point p are resolved into 
tangential and normal

 
displacement components ξ(z,s,t) and η(z,s,t) along the tangential t and 

normal n directions, respectively, (Fig. 1(b)), yielding 

         sin zz,s,t =u z,t cos +v z,t +h s z,t    
           (4)    

         sin zz,s,t =v z,t cos -u z,t +r s z,t    
           (5) 

where      h s = x s sin -y s cos  
,      r s =x s cos + y s sin  

,  sin =dy s ds ,  cos =dx s ds , 

h(s)=dω(s)/ds, and  s is the angle between the tangent of the cross-section of point p and the X 
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axis (Fig. 1(b)). The member is assumed to be subjected to general applied harmonic forces within 
the member 

             
              e

x y z x y z w

i t
x y z x y z w

q z,t ,q z,t ,q z,t ,m z,t ,m z,t ,m z,t ,m z,t

 q z ,q z ,q z ,m z , m z , m z m z    
 

  
(6) 

and the end harmonic forces  

             
              e for 0

z e x e y e x e y e z e w e

i t
z e x e y e x e y e z e w e e

N z ,t ,V z ,t ,V z ,t ,M z ,t ,M z ,t ,M z ,t ,M z ,t

N z ,V z ,V z ,M z ,M z ,M z ,M z , z ,    
 (7) 

in which Ω is the circular frequency of the applied loads, 1i  is the imaginary constant, 
qx(z,t), qy(z,t), qz(z,t) are distributed harmonic forces, mx(z,t), my(z,t), mz(z,t) are the distributed 
harmonic moments, mw(z,t) is the distributed harmonic bimoment, Nz(ze,t), Vx(ze,t), Vy(ze,t) are the 
longitudinal, transverse and lateral harmonic forces at member ends ze=0, ℓ, Mx(ze,t), My(ze,t), 
Mz(ze,t) are harmonic end moments and Mw(ze,t) are harmonic end bimoments. The applied forces 
are assumed to have the same sign convention as those of the end displacement components (Fig. 
1(a)). Under the above applied harmonic forces, the steady state component of the response is 
assumed to take the form 

             tztztztztzvtzutzw zyx ,,,,,,,,,,,,,   

              ti
zyx ezzzzzvzuzw   ,,,,,,                    (8) 

in which            x y zw z ,u z ,v z , z , z , z   and  z are space functions for longitudinal, 

transverse, and lateral translations, rotations about the x,y,z axes and warping deformation, 
respectively. In line with the objective of the paper focusing on steady state response, the 
displacement fields postulated in Eq. (8) neglect the transient component of the response. 
 
 
5. Variational formulation 
 

The variational form of the Hamiltonian functional H is taken to be stationary, i.e. 

  0
2 2

1 1

t t* * *

t t
H= T -U dt+ W dt=   

                      
(9) 

in which δT*
 is the variation of the kinetic energy, δU* is the variation of internal strain energy and 

δW* is the variation of the work done by the applied forces. In Eq. (9), integration is performed 
between arbitrary time limits t1 and t2. The energy variations are given as (e.g., Librescu and Song 
2006) 

 *
p p p p p p

0 A

T = u u +v v +w w dAdz    


     

                 

(10) 

*
zz zz zs zs z z

0 A 0 A 0

U = E dAdz+ G dAdz+ GJ dz         
  

, and            (11) 
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               
             
           

*
z x y x x0 0 0 0

y y z z w x0 00
0

y z x x y y z z w

W N z,t w z,t V z,t u z,t V z,t v z,t M z,t z,t

M z,t z,t M z,t z,t M z,t z,t q z,t u

q z,t v q z,t w m z,t m z,t m z,t m z,t dz

    

   

     

   

    

      



   


  

(12) 

where ρ is the material density, E is the modulus of elasticity, G is the shear modulus, J is the 
Saint-Venant torsional constant, and A is the cross-sectional area. All primes denote derivatives 
with respect to space coordinate z while dots denote the derivatives with respect to time. The strain 
displacement relations based on the small strain assumption are given by 

p
zz

w

z






 and 

p
zs

w

z s




 
                       

(13) 

From Eqs. (1)-(8), and by substituting into energy Eqs. (10)-(12), and the resulting expressions 
into Hamilton’s principle (Eq. (9)), performing integration by parts and enforcing the orthogonality 

conditions;   0)(),()(),()(),()(),(),( A dAsssyssxsysxsysx  , the governing equations 

are found to take the form 

 

   
   
   

  
  
  

  
  
  

111 1 2 1 4 1 1 11 1 1 1

22 2 22 1 2 4 2 12 2 2 1

333 34 14 1 4 2 4 4 4 1

0 0

0 0

0 0

Q zZ U z

Z U z = Q z

U zZ Q z

   

   

   

                                    

            (14)  

where  

                   1 2 3

T T T

y x zU z U z U z = w z u z z v z z z z     

                   1 2 3

T T T

z x y y x z wQ z Q z Q z = q z q z m z q z m z m z m z  

2 2
11 1 1

Z = A EA 


      D , 
 

 

2 2

22 2 2 2 2

xx xx

xx yy xx yy

A GD GD
Z

GD EI GD EI

 



   
         

D D

D D
, and 

 

2 2 2 2

2

2

33 2 2 24 4

2

2

yy yy s hy hy

xx yy

hy hy

xx

o

w

w

A GD GD A x GD GD
I GD

GD GD
EIZ
Symm A r G J D GD

C GD

EC

 



   
 

 
 



     
   
          

 
  

D D D D

D
D

D D

D

 

 (15a-e) 

793



 
 
 
 
 
 

Mohammed A. Hjaji and Magdi Mohareb 

where    2 2 2 21 )o s xx yyA
r = A (h +r dA=x + I +I A  

is the polar radius of gyration about the shear 

centre, D  is differential operator d dzD and 2 2 2d dzD . The cross-sectional properties 
arising in Eq. (14) are defined as 

2 2 2
2 2 21xx yy w xx yy hy

A

dx dy d dy d
A,I ,I ,C ,D ,D , D ,D ,y ,x , , , , , dA

ds ds ds ds ds
 

                   
          

 (16) 

The boundary terms arising from integration parts of the Hamiltonian functional provide the 
possible boundary conditions of the problem. They take the form 

 
0

0zEAw N w   


,    0xx y x
0

GD u V u       


,    0yy y y y
0

EI M     


, 

     0yy x hy z y
0

GD v GD V v          


,    0xx x x x 0
EI +M =   



, 

     0hy x z z z
0

GD v G D J GD M            


,   0w w 0
EC M =   



 (17a-g) 

The first partition in Eq. (14) provides the governing equation for longitudinal deformation of 
the member, which is uncoupled from the remaining field equations and can be solved 
independently. The second partition governs the lateral deflection and associated angle of rotation 
while the last partition consists of four coupled equations which govern the torsional-flexural 
response and associated angle of rotation and warping deformations. The first two partitions are 
observed to be identical to those of the case of doubly symmetric section and the reader is referred 
to Hjaji and Mohareb (2011a, b) for the solution for such systems. The present study focuses on 
developing the solution for the response governed by the four coupled torsional-flexural equations 
provided in third partition      33 3 3Z U z = Q z   . 

It is noted that the above governing equations are similar to those derived by Laudiero and 
Savoia (1991) when the shear lag effects and secondary warping terms are omitted, and after 
replacing the natural frequency terms with the exciting frequency. The present treatment differs 
from that in Laudiero and Savoia in three respects: (1) Laudiero and Savoia developed an 
approximate solution based on trigonometric series expansions for the field equations for the case 
of simply-supported members. In contrast, the present solution explicitly solves the coupled 
differential equations (in Section 7) and provides solutions applicable to other boundary 
conditions, (2) while Laudiero and Savoia investigated the free vibration analysis of thin-walled 
members, the current solution provides the steady state response under general harmonic forces 
with a given exciting frequency, and (3) in the current study, the closed form solutions derived are 
used to formulate exact shape functions (Section 7.1) and then develop a super-convergence finite 
element (Section 7.2). This contrasts with the study in Laudiero and Savoia (1991) which provided 
only an analytical series solution. 
 
 
6. Closed form solution 
 

6.1 Homogeneous solution  
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The homogeneous solution of the system      33 3 3Z U z = Q z    
is obtained by setting the right 

hand side to zero, i.e.,     3 0Q z  . The homogeneous solution of the space displacement 

functions   3HU z
 

is then assumed to take the exponential form 

  
 
 
 
 
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2
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z b
U z e
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
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
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   
       
   
     

           

             

(18) 

From Eq. (18), by substituting into     33 4 14 14 4
03HZ U z =


   , one obtains  
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(19) 

where 1 2 3 4

T

i i
b b b b b  is a vector of unknown constants corresponding to root mi. For a 

non-trivial solution {b}i, the determinant of the bracketed matrix in Eq. (19) is set to vanish 
leading to the bi-quartic equation of the form 8 6 4 2

4 3 2 1 0 0i i i iB m B m B m B m B     ,which 

constants B0 through B4 are constants arising from the expansion of the determinant of the 4×4 
matrix in Eq. (19) and depend upon cross-sectional properties, material constants, and the exciting 
frequency and are listed in Appendix A. The above characteristic equation has eight distinct roots 
mi (i=1,2,….,8). For each root mi, there corresponds a set of constants. By back-substitution into 
the original system of equations     33 4 14 14 4

03HZ U z =


   , one can relate constants  1 2 3, ,
i

b b b to 

constant 4ib through 

4

1 1

2 2 ,i

3 3i i

b G

b = G b

b G

  
   
   
   
                                

 (20) 

in which  
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   
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(21a-c) 

where  

2 2
o xx xx i yyI EI m GD     ,  2 2 2
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Eq. (20) reduces the number of unknown constants from 32 to 8 independent constants. From 
Eq. (20) by substituting into Eq. (18), the homogeneous solution is obtained as  

          3 4 84 1 4 8 8 88 1 8 1
HU z = z B G E z B

   
                         

(22) 

in which 

1,1 1,2 1,3 1,8

2,1 2,2 2,3 2,8

4 8
3,1 3,2 3,3 3,8

1 1 1 1

G G G G

G G G G
G .......

G G G G

        
        
                                             

, 

matrix  
8 8

E z


    
is a diagonal matrix consisting of the exponential functions im ze ( 1,2,....,8)i  , 

the vector of constants 
4,1 4,2 4,3 4,81 8

, , ,......,
T

B b b b b

 is to be determined from the boundary 

conditions of the problem, and the matrix    
4 8 4 8 8 8

z G E z
  

         relating the homogeneous 

solution to the integration constants has been introduced. 
 

6.2 Special case: particular solution for uniform member loads 
 

For a member under uniform distributed loads, 

        i t i t
y x z w y x z wq z ,m z ,m z ,m z e = q ,m ,m ,m e        , the corresponding particular solution 

  3 4 1P ×
U z

 
is given as 
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         (23) 

 
6.3 Total solution for uniform member loads 
 
The total steady state response is obtained by adding the homogeneous solution in Eq. (22) to 

the particular solution in Eq. (23), yielding 

        34 84 1 4 18 13 P× ××
U z = z B + U


                            (24) 

Integration constants  B
 

appearing in Eq. (24) are determined from the boundary conditions. 

As an example, Appendix B provides the vector  B
 

for the case of a cantilever subjected to 

uniform member loads and concentrated tip loads as an example. 
 
 
7. Finite element formulation 

 
The finite element sought has two nodes with four degrees of freedom per node. Displacement 

fields 41413 )()()()()(


 zzzzvzU hzhxhh

T

H  are thus to be expressed in terms of nodal 

displacements 
812222111181 

  zxzx
T

N vvU . 

 
7.1 Formulating shape functions 

 
Shape functions which exactly satisfy the homogeneous part of the coupled field equations are 

formulated through 
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 BLB
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N 


            (25) 

Eq. (25) is solved for vector  B
 

and then substituted into Eq. (24), yielding 

            -1

3 8 1 8 18 8 4 84 84 1
( )H N N 

U z z L U H z U
  

          (26) 
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in which       -1

4 8 8 84 8
( )

 
H z z L

 
    

is a matrix of shape functions which exactly satisfy the 

homogeneous form of the equilibrium equations. Such shape functions will be shown to avoid 
mesh discretization errors appearing in most finite elements. Also, it yields an element that is free 
of shear locking. 

 
7.2 Matrix formulation 
 
Eqs. (1)-(4) are substituted into Eq. (13) to express the longitudinal and shear strain relations in 

terms of displacement fields. The resulting expressions are substituted into Eqs. (6)-(8) to express 
the variation of energy expressions given in Eqs. (10)-(12). Eq. (26) is substituted into Eq. (9) and 

the orthogonality conditions  , , , , , 0
A

x y xy x y dA     
are evoked yielding 

181888
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in which the stiffness matrix [Ke]8×8 
is given by 
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Also, in Eq. (27), the mass matrix [Me]8×8 
is given by 
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and the energy equivalent load vector  8 1
( )eF z


is given by 

     38 1 8 4 4 10
( ) ( ) ( )

T

eF z H z Q z dz
  
 



                     
(30) 
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8. Examples and discussion  
 

While the above formulation provides the response under harmonic loads, it can also approach 
the response under static loads when adopting a very low exciting frequency Ω compared to the 
first natural frequency 1ω of the system (e.g., Ω≈0.01 1 ). Three examples are investigated for 

beams with a variety of cross-sections, loading and boundary conditions. Material is assumed to be 
steel with (E=200 GPa, G=77 GPa and ρ=7850 kg/m3). The finite element solution developed in 
the present study is based on the shapes functions which exactly satisfy the homogeneous form of 
the governing field equations. This treatment eliminates mesh discretization errors in conventional 
finite element solutions based on polynomial shape functions. As a result, it was observed that 
solutions based on a single finite element per span yielded results exactly matching those based on 
closed-from solutions provided in Appendix B up to five significant digits. Additional solutions 
were provided for comparison. These are: 

(i) A Vlasov beam theory solution which neglects shear deformation and distortional effects,  
(ii) An Abaqus two-noded B31OS beam element with seven degrees of freedom per node 

(i.e.,three translation, three rotations and warping deformation) which accounts for shear 
deformation due to only bending but omits (a) shear deformation effects due to warping 
deformation and (b) distortional effects, and  

(iii) An Abaqus S4R shell element solution (shell element with four nodes with six degrees of 
freedom per node, i.e., three translation and three rotations, and reduced integration) which 
captures shear deformation and distortional effects. 

 
8.1 Example 1 – long cantilever under uniformly distributed torsion 
 
A 4m span cantilever beam with monosymmetric I-section is subjected to uniformly distributed 

harmonic torsion mz(z,t)=1.80eiΩt kNm/m is considered (Fig. 2). The dimensions of the cross-
section are; flange thickness tf=20 mm, web thickness tw=15 mm, upper flange width bu=100 mm, 
lower flange width bl=200 mm and a middle surface height H=200 mm. It is required to (1) 
conduct a steady state analysis and extract the natural frequencies, (2) conduct a quasi-state 
analysis by adopting an exciting frequency Ω≈0.01 1 =0.4415 rad/sec, and (3) conducting a steady 

state dynamic response Ω=1.423 1 ≈62.83 rad/sec. 
The shear centre Sc coordinate along the axis of symmetry is xs=−55.56 mm, and the coordinate 

of the centroid in the direction of the principle axis of symmetry is Cx=77.78 mm. The section 
properties are: A=0.56×104 mm2, Ixx=15.0×106 mm4, J=1.025×106 mm4, Cw=59.26×109 mm6, 
Dyy=0.60×104 mm2, Dhy=26.67×103 mm3, Dωω=65.19×106 mm4. 

 
 

 
Fig. 2 Cantilever with mono-symmetric I-section under distributed harmonic Torsion 
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Table 2 Quasi-static analysis of cantilever with monosymmetric I-section 

Variable 
Abaqus 

S4R 
[1] 

Present 
Solution

[2] 

Abaqus 
B31OS 

[3] 

Vlasov 
Solution

[4] 

Present 
Difference
=[1-2]/1 

B31OS 
Difference 
=[1-3]/1 

Vlasov 
Difference
=[1-4]/1

Av (mm) -28.53 -26.87 -26.85 -26.77 5.82% 5.89% 6.17% 

z  (10-3 rad) 159.3 151.4 151.2 150.1 4.96% 5.08% 5.78% 

  (10-6 rad/mm) 11.03 9.061 8.954 8.796 17.85% 18.82% 20.25% 

 
 

higher natural frequencies, predictions by the Vlasov theory were the highest followed by the 
B31OS solution, followed by the present solution, while the frequencies predicted by ABAQUS 
were the lowest. This is a natural outcome of the fact that the Vlasov beams provides the stiffest 
representation of the beam (since it ignores shear deformation and distortional effects) while that 
based on ABAQUS shell analysis provides the most flexible one given the large number of degrees 
of freedom involved. The frequencies predicted by the present solution differed from 0.58% to 
2.43% from those based on ABAQUS and provides the closest agreement with the shell solution. 

 
8.1.2 Quasi-static solution 
Table 2 shows the quasi-static response results for maximum lateral displacement Av of point A 

(Fig. 2), associated bending rotation x , twist angle z and the warping deformation function 
 . Results are based on (a) the solutions (closed form and finite element) developed in the present  
study, (b) Vlasov beam theory and (c) Abaqus B31OS-beam and S4R-shell elements. Results 
based on the present study are observed to nearly coincide with those based on the Vlasov beam 
theory and Abaqus-B31OS beam element, but slightly depart from the Abaqus shell element. The  
lateral displacement Av , and twist angle z were respectively found 5.82% , 4.96% lower than  
those based on Abaqus S4R-shell model. The differences are attributed to cross-section distortional 
effects which are captured in Abaqus shell element solution but not in the other three solutions.  

In order to extract the bending rotation x and warping deformation  from the finite 
element model at a given section z, the top flange rotation t and bottom flange rotation ( )b z  
about the x axis were extracted from the model. Eq. (1) is then applied at the bottom flange (by 
setting x=hb, hb being the distance from the shear centre to the bottom flange), leading to 
wb(z,y,t)=w(z,t)+yθx(z,t)−hbθy(z,t)+hbyψ(z,t). Eq. (8) is then used to express the steady state 
component of the displacement response leading to ( , ) ( ) ( ) ( ) ( )x yb b bw z x w z y z h z h y z      . 

The bottom flange rotation is then obtained by differentiation with respect to coordinate y yielding 

( ) ( ) ( )b b x bz w x z h z      . A similar treatment for the top flange yields 

( ) ( ) ( )t t x tz w x z h z      , ht being the distance from the shear centre to the top flange. 

Knowing ( )t z and ( )b z from the finite element model and the distances ht and hb, one can 

calculate the angle of rotation ( )x z  and the warping deformation ( )z for the section of interest 

z as predicted by finite element. The above procedure has led to the warping deformation entry 
 in the last row of Column [1] which is subsequently used as a basis to compare the warping 
deformations obtained in other beam solutions. Again, the closest prediction to FEA results is that 
based on the present study which underestimated the warping deformation   by 17.85%. This 
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compares to a 20.25% difference for the Vlasov theory. Under the applied quasi-static loading, 
( )x z was observed to vanish in all four solutions. Under the Vlasov and the B31OS solutions 

subject to static twisting moments, ( )x z are expected to vanish since there is no coupling 
between the flexural and twisting mode. Under the present theory, the presence of non-zero terms 
on the off-diagonal terms of the field equations (Eq. (15e)) suggest that, in principle, coupling 
should exist between twist and lateral deformation. The coupling is due to two factors: (1) shear 
deformation effects (evidenced by the presence of the term GDhy on the off-diagonal term), and (2) 
the presence of harmonic forces (given the dependence of the off-diagonal terms on the exciting 
frequency). As a general observation, the present solution is successful at capturing the static 
response of the system. 

 
8.1.3 Steady state dynamic response 
For the exciting frequency 11.423 62.83rad / sec   , Fig. 4(a)-(d) show the lateral 

displacement ( )Av z , associated bending rotation ( )x z , angle of twist ( )z z and warping 

deformation ( )z . Results are in excellent agreement with the Vlasov beam theory and Abaqus 
B31OS but slightly differ from Abaqus S4R shell model which exhibits a slightly more flexible 
response. Again, the difference is attributed to cross-sectional distortional effects.  

 
 

Fig. 4 Steady state response for cantilever monosymmetric I-section under distributed harmonic torsion 
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Fig. 5 (a) Lateral displacement, (b) bending rotation, (c) twist angle, (d) warping deformation function 
responses for cantilever monosymmetric I-section 

 
 

The peak displacement responses corresponding to three frequencies 1 11.10  , 

2 1 20.5( )    and 3 21.10  are plotted in Fig. 5. Given the proximity of the exciting 
frequencies 1 to the first natural frequency and 3 to the third natural frequency, the 
corresponding deformation responses assume a shape close to the first two natural modes of 
vibration. The exciting frequency 2 1 20.5( )    lies between both natural frequencies. Thus, 
the corresponding deformation response can be conceived essentially as a linear combination of 
the first and second modes of vibrations as depicted on the figure. Also, since the exciting 
frequency 2  is far from both natural frequencies 1 , 2 , resonance does not take place and the 
magnitude of the displacements are generally smaller than those based on the exciting frequencies 

1 11.10   and 3 21.10  . 
 

8.2 Example 2 - effect of shear deformation 
 
The purpose of this example is to illustrate the ability of the element developed in the present 

study to capture shear deformation effects in the coupled lateral-torsional response of short 
cantilever spanning 0.8 m. The cantilever has the same cross-section as that given in Example 1 
and is subjected to a uniformly distributed harmonic torsion mz(z,t)=1.50eiΩt kNm/m  acting along 
the beam axis as shown in Fig. 6. Two exciting frequencies 10.001 rad / sec  and  
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Table 3 Natural frequencies of cantilever monosymmetric I-section under member harmonic torsion 

Mode 
Abaqus 
S4R [1] 

Present 
Solution [2] 

Abaqus 
B31OS [3]

Vlasov 
Solution [4]

Present 
Difference
=[1-2]/1 

B31OS 
Difference 
=[1-3]/1 

Vlasov 
Difference
=[1-4]/1 

1 131.4 136.6 137.3 138.5 -3.96% -4.49% -5.40% 
2 229.3 230.1 236.5 244.6 -0.35% -3.14% -6.67% 
3 602.5 648.2 660.0 680.3 -7.59% -9.54% -12.91% 
 

Table 4 Static response of short cantilever monosymmetric I-section under distributed harmonic torsion 

Variable 
Abaqus 

S4R 
[1] 

Present 
Solution

[2] 

Abaqus
B31OS 

[3] 

Vlasov 
Solution

[4] 

Present 
Difference
=[1-2]/1 

B31OS 
Difference 
=[1-3]/1 

Vlasov 
Difference
=[1-4]/1 

Av (mm) 5.299 4.655 4.557 4.462 12.15% 14.00% 15.80% 

z (10-3 rad) 27.15 25.97 25.77 25.19 4.86% 5.08% 7.26% 
 (10-6 rad/mm)  35.72 33.78 33.85 33.34 5.43% 5.24% 6.66% 

 
Table 5 Steady state response of cantilever monosymmetric I-section under distributed harmonic torsion 

Variable 
Abaqus 

S4R 
[1] 

Present 
Solution

[2] 

Abaqus
B31OS

[3] 

Vlasov 
Solution

[4] 

Present 
Difference
=[1-2]/1 

B31OS 
Difference 
=[1-3]/1 

Vlasov 
Difference
=[1-4]/1 

Av (mm) 5.784 5.605 5.421 4.801 3.09% 6.28% 17.00% 

x (10-3 rad) 8.995 8.963 8.822 8.268 0.36% 1.92% 8.08% 

z (10-3 rad) 4.693 4.454 4.375 3.818 5.09% 6.78% 18.64% 

 (10-6 rad/mm) -6.406 -6.152 -5.470 -4.863 3.97% 14.61% 24.09% 

 
 

both do not capture distortional effects, while the Vlasov solution overpredicts the solution by 
12.91% since it captures neither distortion nor shear deformation.  
 

8.2.2 Comparison of displacement responses  
A comparison between the displacement responses of all four solutions are provided in Table 4 

for the quasi-static case and Table 5 for the dynamic case. In both cases, the best agreement with 
the Abaqus shell solution is obtained in the case of the present solution. For the static case, the 
difference is 12.15% for the lateral displacement, 4.86% for the angle of twist, and 5.43% for the  
warping deformation. Again, the bending rotation x  nearly vanished in all four solutions. For the 
steady state dynamic case, the present study predicts displacement Av , bending rotation x , angle 
of twist z  and warping deformation   that are respectively 3.09%, 0.36%, 5.09% and 3.97%  
lower than those based on the Abaqus shell element model. These percentages respectively 
correspond to 17.00%, 8.08%, 18.64% and 24.09% for the Vlasov theory (as listed in the last 
column of the table). Thus, the present theory provides a significantly more accurate response 
compared to that of Abaqus. The differences are due to the effects of shear deformation which are 
incorporated in the present theory but not in Vlasov theory. The results provided in Tables 4 and 5 
show that shear deformation effects are more important in the steady state dynamic response 
analysis than they are for static analysis. 

Fig. 8 shows the displacement response for the case of harmonic loading. The present  
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Fig. 8 Dynamic analysis of short cantilever under member harmonic torsion; (a) lateral displacement, (b) 
bending rotation, (c) twist angle, and (d) warping deformation 

 
 

theory/finite element is observed to be in excellent agreement with the Abaqus S4R shell solution. 
The omission of shear deformation effects in the other two solutions (either fully in the Vlasov 
theory or partially in the Abaqus B31OS) results in some discrepancy in the predicted 
displacement response. This was observed to particularly be the case of short beams under 
harmonic forces.  
 

8.3 Example 3 – continuous span beam 
 
A three-span beam (Fig. 9) with a channel-section subjected to three harmonic forces; 

concentrated transverse force Py(z,t)=16.0eiΩt kN, concentrated torsion Mz=15.4eiΩt kN/m  and 
uniformly distributed transverse force qy=8.0eiΩt kN/m is considered. The exciting frequency is 
assumed to take two values Ω≈0.001 1  (quasi-static) and Ω≈2.38 1 , where the first natural 

frequency in the present problem is 1 =58.06 rad/sec. The dimensions of the C-section are: tf=20 
mm, tw=12 mm, b=80 mm, H=20 mm, xs=−54.86 mm, Cx=22.86 mm, Cy=100 mm, and the C-
section properties are: A=0.56×104 mm2, Ixx=40.0×106 mm4, J=0.54×106 mm4, Cw=27.31×109 mm6, 
Dyy=0.24×104 mm2, Dhy=76.60×103 mm3

 and Dωω=34.46×106 mm4. It is required to compare the 
static and steady state responses based on the finite element with the beam solution.  

Only five elements were needed to model the problem. This is a natural outcome of the use of 
exact shape functions in the formulation (which eliminate any mesh discretization errors). In 
contrast, the Abaqus B31OS solution model, one hundred beam elements were needed to eliminate 
discretization errors.  
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Fig. 9 Continuous beam with channel-section under harmonic forces 

 

Fig. 10 Static and dynamic analyses of three-span continuous beam under general harmonic forces 
 
 

The corresponding generalized displacement diagrams are shown in Fig. 10(a)-(d), in which the 
quasi-static response is denoted (SR) and the steady state response based on Ω=2.38 1  is denoted 
(SSR). It is observed that the present finite element formulation results based on five beam 
elements provide an excellent agreement with that based on the Abaqus solution at a fraction of the 
computational and modelling cost.  
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9. Conclusions 
 

• A super-convergent finite element formulation was developed for beams with mono-
symmetric sections. The element is based on shape functions which exactly satisfy the 
homogeneous form of the equilibrium equations and thus eliminates the discretization errors 
encountered under other interpolation schemes. The solution captures shear deformation effects, 
warping, translational and rotary inertial effects. 

• The solution is able to efficiently capture the static and steady state response of beams under 
harmonic loads. The steady state response is obtained without the need to extract the eigen-modes. 
The solution is capable of extracting the eigen-frequencies and eigen-modes, when needed. 

• The formulation successfully captures the coupled lateral-torsional response of mono-
symmetric cross-sections. 

• It was shown that shear deformation effects are influential when predicting the response of 
short span cantilevers. They were also found to be important when predicting the response under 
steady state analyses. 

• The solution provides excellent agreement with shell finite elements at a fraction of the 
computational and modeling effort. 

• The finite element provides superior response predictions than Abaqus B31OS beam element 
and Vlasov solution with a significantly smaller number of degrees of freedom. 
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CC 
 
 
Symbols 
 
A Cross-sectional area 
b Flange width 
C Centroid of the cross-section 
Cw Warping constant 
d Cross-section height 
Dxx, Dyy, Dhy, Dωω Section properties defined by Eq. (16) 
E Modulus of elasticity 
G Shear modulus 
h(s) Normal distance between the shear centre and the tangent to mid-surface 
H Beam cross-section height the flanges mid-surfaces 
Ixx, Iyy Moment of inertias of the cross-section about the principal X and Y axes 
J St. Venant torsional constant 
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ℓ Length of the member 
mj(z,t) Distributed harmonic moments about j-th direction (for j=x,y,z) 
mw(z,t) Distributed harmonic bimoment 
n,s,z Local curvilinear coordinate system 
Nz Concentrated end forces along longitudinal axis 
qj(z,t) Distributed harmonic forces along x,y,z directions (for j=x,y,z) 

r(s) 
Distance between the shear centre to the point of interest along the tangential
direction 

s Curvilinear coordinate along mid-surface of the section 
Sc Shear centre of the cross-section 
t Time in seconds 
t1, t2 Time intervals 

T* Kinetic energy 
u,v Displacements of the shear centre along the principal axes X, Y 
up, vp Displacements of a point p on the mid-surface of the section along X, Y, Z axes
U* Internal strain energy 
Vj(z,t) Shear forces along x,y axes (for j=x,y) 
w Average longitudinal displacement of the cross-section 
W* Work done by applied forces 
x,y,z Cartesian coordinate system 
X, Y, Z Principal coordinate system 
x(s), y(s) Coordinate of arbitrary point on mid-surface of the section along X and Y axes
xs Coordinate of the shear centre along the axis of symmetry 
z Longitudinal coordinate 
ɛzz Longitudinal normal strain 
γzs Shear strain at the mid-surface of the cross-section 
ρ Density of the material 
r0 Polar radius of gyration about the shear centre 
ξ, η Tangential and normal displacements of a point p along s and n directions 
θx, θy, θz Rotations angles around the X, Y, Z axes, respectively 

)(ˆ s  Angle between the tangent to the cross-section and the principal X axis 
ψ Warping deformation function 
Ω Exciting frequency 
ω(s) Warping function of the cross-section 
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Appendix A. Coefficients of the characteristic polynomial 
 

The characteristic equation based on the expansion of the determinant of Eq. (19) takes the 
form 8 6 4 2

4 3 2 1 0 0i i i iB m B m B m B m B      in which  
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Appendix B. Integration constants for cantilever under uniform member loads and 
tip loads 

 
A cantilever is subjected to (i) uniformly distributed generalized harmonic forces: lateral force 

qy(z,t)= yq eiΩt, distributed moments about the axis of symmetry mx(z,t)= xm eiΩt, twisting moments 

mz(z,t)= zm eiΩt

 and bimoments mw(z,t)= wm eiΩt, and (ii) concentrated harmonic forces acting at the 

tip consisting of a lateral force Py(ℓ,t)= yP (ℓ)eiΩt, bending moment Mx(ℓ,t)= xM (ℓ)eiΩt, concentrated 

torque Mz(ℓ,t)= zM (ℓ)eiΩt

 and concentrated  bimoment Mw(ℓ,t)= wM (ℓ)eiΩt. It is required to 

determine the integration constants 18}{ B  for the problem. 

At the fixed end (i.e., z=0), the boundary conditions are (0) (0) (0) (0) 0x zv        which are 

expressed in a matrix form as 
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                             

(B.1) 
 

Also, at the free end z=ℓ, the natural boundary conditions are 
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(B.2) 

which can be shown to lead to the matrix identity 
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in which 
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By consolidating Eqs. (B.1) and (B.3) into a single matrix equation and solving for 18}{ B , one 
obtains 
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