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Abstract.  Starting with Hamilton’s variational principle, the governing field equations for the steady state
response of thin-walled beams under harmonic forces are derived. The formulation captures shear
deformation effects due to bending and warping, translational and rotary inertia effects and as well as
torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist
of four coupled differential equations in the unknown displacement field variables. A general closed form
solution is then developed for the coupled system of equations. The solution is subsequently used to develop
a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A
super-convergent finite element is then formulated based on the exact shape functions. Key features of the
element developed include its ability to (a) isolate the steady state response component of the response to
make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section
mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding
shear locking phenomena, and () eliminate the need for time discretization. The results based on the present
solution are found to be in excellent agreement with those based on finite element solutions at a small
fraction of the computational and modelling cost involved.
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1. Introduction

Thin-walled structural members are used as stiffeners in aircraft structures, propellant and
turbine blades, steel structures, ships, marine structures and vehicle axles. In these applications,
they are commonly subjected to harmonic loading. Sources of harmonic loads include
aerodynamics forces, hydro-dynamic wave motion and forces arising from unbalance in rotating
machinery, propellants and reciprocating machines. In such applications, thin-walled members are
prone to fatigue failures. Under harmonic forces, member response has two components; (1) a
transient component which is induced at the beginning of the excitation, and (2) a steady state
component which is sustained for a long time. The transient response attenuates quickly due to
damping and is thus of no importance for fatigue design. In contrast, the sustained steady state
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component of the response is of key for fatigue design, and is the prime focus of the present study.

Thus, the present study aims at developing an efficient solution which isolates the steady state
response of thin-walled beams when subjected to harmonic forces. For doubly-symmetric cross-
sections, the longitudinal, transverse, lateral response is fully uncoupled from the lateral response.
The associated solutions are provided in (Hjaji and Mohareb 2011a, b) under a shear deformable
thin-walled beam theory and in (Hjaji and Mohareb 2013a, b) under a shear non-deformable
theory. In contrast, for beams with mono-symmetric cross-sections (e.g., I-section with unequal
flanges, channel section), the flexural response in the direction normal to the axis of symmetry is
observed to be coupled with the torsional response. Under the conventional Vlasov theory (Hjaji
and Mohareb 2014a, b), the coupling involves two displacement fields while under the shear
deformable theory in the present study, the coupling involves four displacement fields. The
challenges associated with formulating a closed form solution of the four-field coupled system are
the focus of the present work. The closed form solution is subsequently exploited to develop an
efficient finite element for the analysis of beams of mono-symmetric sections under harmonic
forces.

2. Literature review

Methods of analysis of thin walled beams under dynamic loads consist of analytical solutions
and summarized in Section 2.1 and those based on finite element analysis as summarized in
Section 2.2.

2.1 Literature review on analytical solutions

The classical thin-walled beam theory developed by Vlasov (1961) assumes that the beam
cross-section does not deform in its own plane, and the transverse shear strains at the middle
surface are negligible. The theory has been extensively used in dynamic analysis of thin-walled
beams as exemplified by the studies of Friberg (1985), Bishop et al. (1989), Leung (1991), Chen
and Tamma (1994), Banerjee et al. (1996), Li et al. (2004a), Kim et al. (2007). Bishop and Price
(1985) studied the free vibration of thin-walled members with channel-shaped sections. More
advanced theories capturing shear deformation effects were also developed by several authors.
This includes the work of Dokumaci (1987) who studied the coupled flexural-torsional vibration
of thin-walled beams whose study captured warping effects. Tanaka and Bercin (1997) studied the
coupled flexural-torsional free vibrations of thin-walled open members. Their solution captured
rotatory inertia effects. Using the dynamic transfer matrix method, and the mode superposition
technique, Li et al. (2004a) formulated a solution for determining the coupled bending-torsion
response of thin-walled beams under external random excitations. Their solution accounts for
warping and rotary inertia. In a subsequent study, Li et al. (2004b) extended their formulations to
include the influence of uniform axial forces. Laudiero and Savoia (1991) studied the flexural-
torsional vibrations of thin-walled beams with open and closed cross-sections. Their study
accounted for the effect of bending and non-uniform torsion, secondary warping and shear lag
effects. Tanaka and Bercin (1998) extended their former work (Tanaka and Bercin 1997) to
asymmetric sections. Kollar (2001) developed a theory of free vibration analysis of thin- walled
open section composite beams including closed-form solutions for the coupled flexural- torsional
natural frequencies for simply-supported beams. Cortinez and Piovan (2001) developed an
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analytical solution for the free vibration analysis of composite thin-walled beams of open and
closed cross-sections. Kim ef al. (2003) formulated the exact dynamic and static stiffness matrices
for the free vibration and stability analysis of thin-walled beams. Their theory accounts for shear
deformation effects due to bending and warping torsion and captures the coupling between both
effects. Also, they incorporated the rotary inertia effects and the flexural-torsional coupling effects
due to the asymmetry of the cross-sections. In a subsequent study, Kim and Kim (2005) adopted
the theory in Kim et al. (2003) to develop the dynamic stiffness matrix element for the flexural-
torsional free vibration of asymmetric thin-walled beams. By applying the Hellinger-Reissner
variational principle, the governing equations of motion were derived for the coupled vibration
response of thin-walled beams with asymmetric cross-sections and the force-deformation relations.
Using the principle of virtual work, Prokic (2006) derived the differential equations for the
coupled vibrations of a general thin-walled beam theory capturing shear deformation effects due to
bending based on multiple degrees of freedom to express the warping deformation. Closed-form
solution for the natural frequencies was derived for the case of simply supported beams. Vo and
Lee (2009b) developed a solution based on a shear deformable beam theory for the study of
flexural-torsional buckling and vibration analysis of open thin-walled composite beams. Based on
a modified Vlasov theory which accounts for shear deformation, Ambrosini (2004) presented a
general theory for the coupled flexural-torsional vibration of thin-walled beams of open cross-
sections. De Borbon and Ambrosini (2010) extended the theory of Ambrosini (2004) to incorporate
the effect of the axial forces. Guinta et al. (2014) developed a unified hierarchical treatment for
formulating beam theories including shear deformable effects. Based the Vlasov beam theory, and
the lamination theory, Prokic et al. (2014) developed a technique for determining geometric and
material properties of composite thin-walled beams.

2.2 Literature review on finite element formulations

Most finite elements for the dynamic analysis of thin-walled members are based on two
approaches. In the first approach, formulations are based on approximate shape functions such as
the work of Tanaka and Bercin (1997), Lee and Kim (2002a, b), Voros (2008, 2009), etc. In the
second approach, shape functions are based on the solution of the homogeneous solution of the
static equilibrium equations, such as the work of Mei (1970), Chen and Tamma (1994), Hu et al.
(1996). Finite element formulations which omit shear deformation effects includes the work of
Mei (1970), Chen and Tamma (1994), Hu et al. (1996), Tanaka and Bercin (1998), Hashemi and
Richard (2000a, b), Lee and Kim (2002a, b), Voros (2008, 2009). Based on exact shape functions,
Mei (1970) developed a finite element for the coupled free vibration analysis of thin-walled beams
which incorporated warping effects. Chen and Tamma (1994) formulated a finite element to study
the dynamic coupled vibrations of thin-walled open members with arbitrary cross-sections
including the influence of constant transverse loads. Their formulation was based on assumed
linear and cubic displacement shape functions in conjunction with an implicit self-starting
unconditionally stable integration scheme. Hu et al. (1996) studied the coupled bending-torsional
dynamic behavior of thin-walled beams of asymmetric cross-sections. The shear deformation and
bending-torsional coupling effects due to cross-section non-symmetry were fully incorporated in
the solution. Hashemi and Richard (2000a) studied the coupled bending-torsional vibration
analysis of thin-walled beams by developing a dynamic finite element. The exact solutions of the
governing dynamic equations of equilibrium were obtained and, subsequently, frequency-
dependent hyperbolic interpolation functions were adopted to formulate the stiffness and mass
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matrices of the structure. Later on, Hashemi and Richard (2000b) extended their work to include
the effect of axial force. By using linear and cubic Hermitian shape functions, Lee and Kim
(2002a, b) investigated the coupled free vibration of thin-walled composite beams with doubly
symmetric and channel-shaped cross-sections. The influence of lateral forces on the coupled
bending-torsional free vibration of thin-walled open members was studied by Voros (2008, 2009)
who formulated a two-noded beam element with fourteen degrees of freedom. Recently, Vo and
Lee (2009a, 2010), Vo et al. (2010, 2011) studied the coupled flexural-torsional free vibration of
thin-walled open composite beams under constant axial forces and end moments by developing a
displacement-based one dimensional finite element model. Finite element formulations including
shear deformation effects include the work of Kim and Kim (2005) who formulated an
isoparametric element to capture the coupled flexural-torsional free vibration of asymmetric thin-
walled shear deformable beams. Recently, Vo and Lee (2009¢c), Vo et al. (2009) extended their
previous studies for the coupled flexural-torsional composite members to incorporate the shear
deformation effects in a finite element formulation based on one-dimensional shear-deformable
finite beam element using linear and cubic Hermite shape functions.

A feature common to the above studies is use of approximate shape functions involving spatial
discretization errors, and thus requiring fine meshes to converge to the actual solution. In contrast,
the present study avoids discretization errors by formulating shape functions which exactly satisfy
the homogeneous form of the dynamic equilibrium equations. Another commonality between the
above studies is the fact they focus on extracting the free vibration characteristics including
extracting the natural frequencies and mode shapes. In contrast, the present study aims at directly
extracting the steady state response without the need for extracting the natural frequencies and
mode shapes.

3. Basic assumptions

The formulation is based on the following assumptions:

1. Cross-section is open and mono-symmetric with the x axis taken as the axis of mono-
symmetry,

2. Member is assumed prismatic,

3. Deformations are assumed small enough for the material to remain within the elastic range of
deformation,

4. Strains and rotations are assumed small,

5. Cross-section is assumed to remain undistorted (rigid) in its own plane in a manner
consistent with Vlasov’s first assumption (Vlasov 1961),

6. For loading not involving twist, a planar cross-section originally normal to the centriodal
axis is assumed to remain plane but not perpendicular to the cross-section after deformation, i.e.,
the transverse shear deformations of the middle-surface of the cross-section are incorporated in the
assumed kinematics (in a manner analogous to the Timoshenko beam theory). The assumption is
further generalized to twist/warping deformations (i.e., the shear strains induced by warping at the
middle surface are non-zero and are characterized by a generalized displacement function
multiplied by the sectorial coordinate).

The assumed kinematics can be conceived as a combination of Vlasov and Timoshenko
theories. Similar kinematics were assumed in Laudiero and Savoia (1991), Kim et al. (2003), Vo



Torsional flexural steady state response of monosymmetric thin-walled beams... 791

(a)

Fig. 1 (a) Local coordinate system and displacement components of a point p(x,y) on the cross-
section, (b) tangential and normal displacements

and Lee (2009c), Back and will (1998), Cortinez and Piovan (2001), Li et al. (2004c), Machado
and Cortinez (2007), Machado (2007), Wu and Mohareb (2011), Librescu and Song (2006).

4. Displacement fields
Based on the above assumptions, the longitudinal displacement w,(z,s,f) and the in-plane

displacements u,(z,s,f) and v,(z,s,f) of a general point p(x(s), y(s)) located on the mid-surface of the
cross-section (Fig. 1) are respectively given by (e.g., Back and Will 1998)

w, (z,s,t)=w(z,t)+ y(s)é’x (z,t)—x(s)@y (z,t)+a)(s)w(z,t) (1)
u, (z,s,t)Zu(z,t)-y(s)HZ (z,t) 2)
v, (z,s,t)zv(z,t)-ir[x(s)-xs ]<9Z (z.1) (3)

in which w(z,f) is the average longitudinal displacement along the longitudinal axis z, u(z,f)and
v(z,t) are the displacement components of the shear centre (x,, y,~0) along the principal directions
X and Y, Oy(z,t) and 6,(z,t) are the rotations of the cross-section about X and Y axes, 0.(z,f) is the
twist angle of the cross-section about the longitudinal axis, y(z,f) is a function which characterizes
the magnitude of the warping deformation, w(s) is the warping function, x(s) and y(s) are the
coordinates of a point denoted by a curvilinear coordinates lying on the middle surface of the
section and x; is the coordinate of the shear centre along the axis of symmetry.

The in-plane displacements u,(z,s,f) and v,(z,s,f) of the general point p are resolved into
tangential and normal displacement components &(z,s,f) and #(z,s,f) along the tangential ¢ and
normal » directions, respectively, (Fig. 1(b)), yielding

f(z,s,t) Zu(z,t)cos& +v(z,t)sin07+h(s)92 (z,t) 4)
n(z,s,t) =v(z,t)coso? -u(z,t)sin&Jrr(s)Hz (z,t) 5)
where A(s)=x(s)sina-y(s)cosa , r(s)=x(s)cosa+ y(s)sino? , sina=dy(s) / ds , cosa=dx(s) / ds ,
h(s)=dw(s)/ds, and a(s)is the angle between the tangent of the cross-section of point p and the X
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axis (Fig. 1(b)). The member is assumed to be subjected to general applied harmonic forces within
the member

q, (z,t),qy (z,t),qz (z,t),mx (z,t),my (Z,t),mz (z,t),mw (z,t)
. ©
=17.(z).q,().a.(z)m (z).m, (z).m (z)m, (z)]e
and the end harmonic forces
N (o )V (2 )V, (2t )M (2 0) M (2, 0) M (2,0). M, (z,.0)
(7

N )V T, )T, (2.0, () 0. (2. ). 0, (2] for =, =0.¢

in which Q is the circular frequency of the applied loads, i=+-1 is the imaginary constant,
q.(z,t), qz.t), q-(z,t) are distributed harmonic forces, m.(z,f), m,(z,t), m.(z,t) are the distributed
harmonic moments, m,(z,?) is the distributed harmonic bimoment, N.(z..f), Vi(z..t), Vi(z..t) are the
longitudinal, transverse and lateral harmonic forces at member ends z.=0, €, M(z..t), M,(z..t),
M.(z,,t) are harmonic end moments and M,,(z,,f) are harmonic end bimoments. The applied forces
are assumed to have the same sign convention as those of the end displacement components (Fig.
1(a)). Under the above applied harmonic forces, the steady state component of the response is
assumed to take the form

<w(z, t), u(z, t), v(z, t), 0. (Z, t), t9y (z, t), 0. (z, t), l//(z, t)>
= (W(2)t(2)9(2).6,(2).6,(2).6.(z). 7 (z)) e (®)

in which W(z)ﬁ(z)?(z)é_’x(z)é(z)tz (Z) and /(z) are space functions for longitudinal,
transverse, and lateral translations, rotations about the x,y,z axes and warping deformation,
respectively. In line with the objective of the paper focusing on steady state response, the

displacement fields postulated in Eq. (8) neglect the transient component of the response.

5. Variational formulation

The variational form of the Hamiltonian functional & H is taken to be stationary, i.e.
SH=["8(T"-U")dt+["6W"dr=0 9)
] ]

in which 67" is the variation of the kinetic energy, U is the variation of internal strain energy and
SW'is the variation of the work done by the applied forces. In Eq. (9), integration is performed
between arbitrary time limits #, and #,. The energy variations are given as (e.g., Librescu and Song
2006)

o1’ =j [ (i, 511, +9, 69, +3is, 5%, )dAdz (10)
04

5U*=_/[ [Ee..0e. dAdz+f [Gr.07, dAdz+jGJ9;59; dz , and (11)
04 04 0
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=N, (z2)6w (z.t) +V, (2)Su(zt), +V, (21) & (zt)] + M, (2.) 56, (1),
¢
M, (21)50, (21)] +M_ (2.) 66, (z.1), + M, (2.0)5y (1), +[[q. (2.1)5u (12)

+q, (20)0 +q. (2.0)5w +m, (2.1)00, +m, (2.0)50, +m_(2,1)30, +m, (2.1 dz

where p is the material density, £ is the modulus of elasticity, G is the shear modulus, J is the
Saint-Venant torsional constant, and A is the cross-sectional area. All primes denote derivatives
with respect to space coordinate z while dots denote the derivatives with respect to time. The strain
displacement relations based on the small strain assumption are given by

gZ z

(13)

From Egs. (1)-(8), and by substituting into energy Eqs. (10)-(12), and the resulting expressions
into Hamilton’s principle (Eq. (9)), performing integration by parts and enforcing the orthogonality
conditions; <L [x(5),1(5), X(8)(5), x(5)o(s), y(s)(5), a)(s)]dA> =(0), the governing equations

are found to take the form

I:le]m [O]lxz [O]1x4 —{—_-1— ZZ}M— {gl(i)}ﬁl
[0]2x1 [Zzzjzxz [O]2x4 {:2 Z)} 2 {Qz(z)}le (14
[0]4><1 [0]4><2 |:Z33:|4><4 { 3(2 }4X1 {Q3(Z)}4x1
where
(@E) 1E) [T ) =7 E6) 6.6)7) a) o) 7(:)
(@) o) o) )= 6z 6) )l ) -7, () . () )
o e g ~pa2*+GD D) ~-GD,_ D
[Zn]m_[PAQZ_EA@ ] I:ZZZ:IZXZ_|: _GD._D (EIW.QZ 6D, +Elyy(D2) » and
| -pAQ’-GD D! -GD, D pAQ’x -GD, D’ ~GD, D |
Pl 2" -GD
* ~GD, D -GD,,
[Z_ ] _ +EI_D*
B 4 Symm —pAQr -G(J+D, )D°| -GD, D
pC, *-GD,,
I +EC,D* |

(15a-e)
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o

where 72 =(1/4) j (h*+1*) dA= X, +(1 +1, /A is the polar radius of gyration about the shear

centre, D is differential operator D=d /dz and D*=d 2/dz . The cross-sectional properties
arising in Eq. (14) are defined as

A’Ixx >y ’C xx’ »y ’Dhy ’D(uw ly x (() [dxj ’(dyj (dwjtdyj (da)] dA (16)
v ds ds ds \ds )\ ds

The boundary terms arising from integration parts of the Hamiltonian functional provide the
possible boundary conditions of the problem. They take the form

yyoy

[(EAW'—]VZ)&AT]2=0, [(GDH[E’—@]—V:)&T};=O, ((E1,,8,-M )50, }2:0,
(6D, (7+8.)+GD,, (8+7)7, )& ] =0, [(E1,.8+¥7 )58, ], -

[(GD,W (7+0,)+G(D,,,+/ )8 +GD,,i7—M . )50, I):o, [(£c, 1/7’+]\/_[w)51/7]2=0 (17a-g)

The first partition in Eq. (14) provides the governing equation for longitudinal deformation of
the member, which is uncoupled from the remaining field equations and can be solved
independently. The second partition governs the lateral deflection and associated angle of rotation
while the last partition consists of four coupled equations which govern the torsional-flexural
response and associated angle of rotation and warping deformations. The first two partitions are
observed to be identical to those of the case of doubly symmetric section and the reader is referred
to Hjaji and Mohareb (2011a, b) for the solution for such systems. The present study focuses on
developing the solution for the response governed by the four coupled torsional-flexural equations
provided in third partition [233]{(73(2)} = {Q(z)} :

It is noted that the above governing equations are similar to those derived by Laudiero and
Savoia (1991) when the shear lag effects and secondary warping terms are omitted, and after
replacing the natural frequency terms with the exciting frequency. The present treatment differs
from that in Laudiero and Savoia in three respects: (1) Laudiero and Savoia developed an
approximate solution based on trigonometric series expansions for the field equations for the case
of simply-supported members. In contrast, the present solution explicitly solves the coupled
differential equations (in Section 7) and provides solutions applicable to other boundary
conditions, (2) while Laudiero and Savoia investigated the free vibration analysis of thin-walled
members, the current solution provides the steady state response under general harmonic forces
with a given exciting frequency, and (3) in the current study, the closed form solutions derived are
used to formulate exact shape functions (Section 7.1) and then develop a super-convergence finite
element (Section 7.2). This contrasts with the study in Laudiero and Savoia (1991) which provided
only an analytical series solution.

6. Closed form solution

6.1 Homogeneous solution
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The homogeneous solution of the system [ZJ{L_]}(Z)} ={Q3(z)} is obtained by setting the right
hand side to zero, i.e., {Q3(z)}:{0}. The homogeneous solution of the space displacement

functions {U i (z)} is then assumed to take the exponential form

Eh(z) bl

_ 0. (z b

R A
l/7h(z) b4 i

From Eq. (18), by substituting into [233]4><4 {U s (z)} Wi {O} 4 » ONC Obtains

—pAQ*-GD, m’| -GD,m, |pAQ’x -GD,m’| -GD,m |

[ 2°-GD

p:xE] m? " _GD’W m _GD’W b,

xx 'Y I;-

—pAQ*r? 2L =10
Symm —G/ZJ-FDO o -GD, m, b, {0
(2] mi o
4 ].
+EC, m’

(19)
where <b>IT =(b, b, b, b,) isa vector of unknown constants corresponding to root 7. For a
non-trivial solution {b}, the determinant of the bracketed matrix in Eq. (19) is set to vanish
leading to the bi-quartic equation of the form B4mi8 + B3mf’ + Bsz + Blml.2 + B, =0 ,which
constants By through B, are constants arising from the expansion of the determinant of the 4x4
matrix in Eq. (19) and depend upon cross-sectional properties, material constants, and the exciting
frequency and are listed in Appendix A. The above characteristic equation has eight distinct roots
m; (i=1,2,....,8). For each root m;, there corresponds a set of constants. By back-substitution into

the original system of equations [ZB]M{U w(2)},,={0},, > one can relate constants (b,b,,b,), to

constant b,, through

b[ GI
byt =1G, ¢ by, (20)
b3 i 3

in which
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G_l,i :%[G 2Dhy m i2 (Dyy D,, _thy )_Dhy B (IOIXX Q° +EI . .m iz)
' +(,0A .sz s -GD hy m iz )(D},y wa —E]” wam :‘2 -G plxx wa'Qz -GD hzy ):|
. = (a2 0, YD, 6003+, ..
+GD,,D,,,m*(pA2*+GD  m?)-pAd 2°D, ﬂl]
a., :G—’tf[c; D, m}(D, -D, D,,)-D, (Pl 2 +EI_ m) pAx ~GD, m}) @1a5)
~(pA2*+GD, m?)D,,,,+GD} )]
where

B,=pl 2 +El_m}-GD, , f,=pAQ°r;+G(J+D,,)m’ ,and
B, =(pA2°x -GD, m})2G*D, D, m}~B,pA2°x +GB,D, m})
H(pAd2*+GD m)G*DLm?+p, 5]+ A(GD, m,)

Eq. (20) reduces the number of unknown constants from 32 to 8 independent constants. From

Eq. (20) by substituting into Eq. (18), the homogeneous solution is obtained as
B! =[G]| |E B (22)

U2}, ~[2)],. 18, =[G, [ B2) ], |5},

in which

o
)

(6],

o
W
=)

— QI QI QI
— Q1 QI Q
— Q1 Q1 Q)
— QI QI QI

is a diagonal matrix consisting of the exponential functions ¢"* (i =1,2,....,8),

8x8

matrix [E( z)]

conditions of the problem, and the matrix [Z(z)]uz[(_;]“[f(z)] relating the homogeneous
X X 8x8

solution to the integration constants has been introduced.

6.2 Special case: particular solution for uniform member loads

For a member under uniform distributed loads,
[q_) (z)m (z)m (z)m,(z )]em‘ Z[q_y BTN TN ]e’”’ , the corresponding particular solution

{U,p(2)},, isgivenas
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rozq_y +x . m,
pA .(22()652 —roz)
(pC,2°-GD,,,)in, -GD, i,

v_p
{(7 } _ %ﬁ _ GZthy _(plxx e _GDW )(pr og _GDW) (23)
3P J 45 gzp xsq—y _H,ﬁz
_1’ 4x1 pA Qz(sz_roz)

GD,, i ~(pl,, 2°~GD, )i,
G’D;, —(pl, 2°-GD,, )(pC, 2°-GD,,)

4x1

6.3 Total solution for uniform member loads

The total steady state response is obtained by adding the homogeneous solution in Eq. (22) to
the particular solution in Eq. (23), yielding

U.),, =), (B, T, (24)

Integration constants {B_ } appearing in Eq. (24) are determined from the boundary conditions.
As an example, Appendix B provides the vector {B_ } for the case of a cantilever subjected to

uniform member loads and concentrated tip loads as an example.

7. Finite element formulation

The finite element sought has two nodes with four degrees of freedom per node. Displacement

fields <(73H(z)>lrx4=<\7h(z)§xh(z)@h(z)17h(z)> , are thus to be expressed in terms of nodal

1x
. T
displacements (UN>lxg = (vﬁxﬂzlyllvzﬁxzezzy/z>1Xg .

7.1 Formulating shape functions

Shape functions which exactly satisfy the homogeneous part of the coupled field equations are
formulated through

{UN }8><1 = {{Uw @i } = {[Z(O)]MS }{E}m =[Llg.s {§}8x1 (25)

UsnDdaa ) L Lx(D]as

Eq. (25) is solved for vector {E } and then substituted into Eq. (24), yielding

(T (2)},, (2] [T U =1 H@ ] { Uk, (26)
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in which [H (z)]4Xg :[ ;((z)]4Xg [L ];Xg is a matrix of shape functions which exactly satisfy the

homogeneous form of the equilibrium equations. Such shape functions will be shown to avoid
mesh discretization errors appearing in most finite elements. Also, it yields an element that is free
of shear locking.

7.2 Matrix formulation
Egs. (1)-(4) are substituted into Eq. (13) to express the longitudinal and shear strain relations in

terms of displacement fields. The resulting expressions are substituted into Eqs. (6)-(8) to express
the variation of energy expressions given in Egs. (10)-(12). Eq. (26) is substituted into Eq. (9) and

the orthogonality conditions .[A [x ,V XY ,X 0, O, a)]dA =0 are evoked yielding

([K, Jgs -y [M, Js.0) Uy dga =1F, }sa (27)

in which the stiffness matrix [K, ]sxg is given by

(K, Jss = J.(j ([H ,(Z)]gxél [Y, 1y s H'(2) ]yg +[H (Z)]gxll (Y, JaxalH (2) )45 )z (28)

where

[H,L, =[lH, @) 1, o) 1ol 1o, ]

[Ya]4x4 =Diag[0 | EI | GJ | ECW] , and

GD, GD, GD, GD,

7] GD,, GD,, GD,

s Symm GD,, GD,,

GD,, 4x4
Also, in Eq. (27), the mass matrix [M,]s«g is given by
!
(M.l = || (' Rl X, ol HE L +H (s d2 (29)
in which
pd 0 —x 0

0 p, O 0
-x, 0 pdri; 0

s

0 0 0 PG i

and the energy equivalent load vector {E (z)} o IS given by

(F@h, =] [He].06), ¢ (30)

0

[Xm ]4><4
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8. Examples and discussion

While the above formulation provides the response under harmonic loads, it can also approach
the response under static loads when adopting a very low exciting frequency Q compared to the
first natural frequency ®;of the system (e.g., Q<0.01 @,). Three examples are investigated for

beams with a variety of cross-sections, loading and boundary conditions. Material is assumed to be
steel with (E=200 GPa, G=77 GPa and p=7850 kg/m’). The finite element solution developed in
the present study is based on the shapes functions which exactly satisfy the homogeneous form of
the governing field equations. This treatment eliminates mesh discretization errors in conventional
finite element solutions based on polynomial shape functions. As a result, it was observed that
solutions based on a single finite element per span yielded results exactly matching those based on
closed-from solutions provided in Appendix B up to five significant digits. Additional solutions
were provided for comparison. These are:

(1) A Vlasov beam theory solution which neglects shear deformation and distortional effects,

(ii)) An Abaqus two-noded B310S beam element with seven degrees of freedom per node
(i.e.,three translation, three rotations and warping deformation) which accounts for shear
deformation due to only bending but omits (a) shear deformation effects due to warping
deformation and (b) distortional effects, and

(iii)) An Abaqus S4R shell element solution (shell element with four nodes with six degrees of
freedom per node, i.e., three translation and three rotations, and reduced integration) which
captures shear deformation and distortional effects.

8.1 Example 1 — long cantilever under uniformly distributed torsion

A 4m span cantilever beam with monosymmetric I-section is subjected to uniformly distributed
harmonic torsion m.(z,f)=1.80¢™* kNm/m is considered (Fig. 2). The dimensions of the cross-
section are; flange thickness #=20 mm, web thickness #,~15 mm, upper flange width 5,100 mm,
lower flange width /=200 mm and a middle surface height /=200 mm. It is required to (1)
conduct a steady state analysis and extract the natural frequencies, (2) conduct a quasi-state
analysis by adopting an exciting frequency Q~0.01 &, =0.4415 rad/sec, and (3) conducting a steady

state dynamic response Q=1.423 @, ~62.83 rad/sec.

The shear centre S, coordinate along the axis of symmetry is x,=—55.56 mm, and the coordinate
of the centroid in the direction of the principle axis of symmetry is C,=77.78 mm. The section
properties are: 4=0.56x10* mm®, 7,=15.0x10° mm*, J=1.025x10° mm*, C,=59.26x10° mm®,
D,,=0.60x10* mm®, D;,=26.67x10° mm’, D,,,~65.19x10° mm*.

m, (z,t)=1.80 M kNm/ m

T L 111

bbbbvvbvbM
(=4.0m :

f
‘
\

Fig. 2 Cantilever with mono-symmetric I-section under distributed harmonic Torsion
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Fig. 3 Steady state response of cantilever monosymmetric under distributed harmonic torsion (a)
Lateral displacement v, , (b) Angle of twist g,

Table 1 Natural frequencies of cantilever beam of monosymmetric I-section

Mode Abaqus Present Abaqus Vlasov Dli)frfzsrzllitce D]igfi‘elr(e)jce Di\gg:;:}ce

S4R [1] Solution [2] B310S [3] Solution [4] —[1-2]/1 —[1-3)/1 —[1-4)/1
1 7.041 7.082 7.093 7.098 -0.58% -0.74% -0.81%
2 24.02 24.69 24.70 24.73 -2.79% -2.83% -2.96%
3 41.95 42.28 42.56 42.69 -0.79% -1.45% -1.76%
4 79.93 81.51 81.70 82.05 -1.98% -2.21% -2.65%
5 103.1 105.2 105.7 106.5 -2.04% -2.52% -3.30%
6 164.0 165.8 167.1 168.8 -1.10% -1.89% -2.93%
7 181.4 185.8 186.5 188.6 -2.43% -2.81% -3.97%

In the Abaqus model, a total of 3,520 S4R shell elements are used (i.e., 4 elements per upper
flange, 8 elements per bottom flange, 10 elements along the web height and 160 elements along
the longitudinal axis) while in the case of Abaqus B310S beam element, a total of 100 elements
along the cantilever axis are used.

8.1.1 Steady state analysis

Under uniformly distributed harmonic twisting moment, mz(z,t)=1.806’m kNm/m, the natural
frequencies related to coupled lateral-torsional response can be extracted from the steady state
response analysis as illustrated in Fig. 3(a)-(b). Fig. 3(a)-(b) show the peak lateral displacement
and angle of twist at the cantilever tip as a function of the exciting frequency. The solution is based
on the element developed in the present study. Overlaid on the same plots are solutions based on
(1) the Vlasov theory, (2) Abaqus B310S beam element using 100 elements and (3) Abaqus S4R
shell element using 3,520 elements for comparison. The exciting frequency was varied from nearly
zero to 200 Hz. Peaks on both diagrams indicate resonance and are thus indicators of the natural
frequencies of the beam. It is noted that lateral displacement peaks are synchronized with the angle
of twist peaks indicating that the mode shape is indeed coupled lateral-torsional. Excellent
agreement is obtained between all solutions.

Table 1 provides the first seven natural frequencies extracted from the analysis. Close
agreement is observed between all four solutions, particularly at lower natural frequencies. For
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Table 2 Quasi-static analysis of cantilever with monosymmetric I-section

Abaqus Present Abaqus Vlasov Present B310S Vlasov

Variable S4R Solution B310S Solution  Difference Difference Difference

[1] (2] [3] [4] =[1-2]/1 =[1-3)/1  =[1-4]/1

v, (mm) -28.53 -26.87 -26.85 -26.77 5.82% 5.89% 6.17%

6. (107 rad) 159.3 151.4 151.2 150.1 4.96% 5.08% 5.78%
7 (10°rad/mm) 11.03 9.061 8.954 8.796 17.85% 18.82% 20.25%

higher natural frequencies, predictions by the Vlasov theory were the highest followed by the
B310S solution, followed by the present solution, while the frequencies predicted by ABAQUS
were the lowest. This is a natural outcome of the fact that the Vlasov beams provides the stiffest
representation of the beam (since it ignores shear deformation and distortional effects) while that
based on ABAQUS shell analysis provides the most flexible one given the large number of degrees
of freedom involved. The frequencies predicted by the present solution differed from 0.58% to
2.43% from those based on ABAQUS and provides the closest agreement with the shell solution.

8.1.2 Quasi-static solution

Table 2 shows the quasi-static response results for maximum lateral displacement v 4 of point A
(Fig. 2), associated bending rotation 0, , twist angle 0. and the warping deformation function
i/ . Results are based on (a) the solutions (closed form and finite element) developed in the present
study, (b) Vlasov beam theory and (c) Abaqus B310S-beam and S4R-shell elements. Results
based on the present study are observed to nearly coincide with those based on the Vlasov beam
theory and Abaqus-B310S beam element, but slightly depart from the Abaqus shell element. The
lateral displacement v, and twist angle 0. were respectively found 5.82% , 4.96% lower than
those based on Abaqus S4R-shell model. The differences are attributed to cross-section distortional
effects which are captured in Abaqus shell element solution but not in the other three solutions.

In order to extract the bending rotation 0, and warping deformation i/ from the finite
element model at a given section z, the top flange rotation &; and bottom flange rotation &5 (z)
about the x axis were extracted from the model. Eq. (1) is then applied at the bottom flange (by
setting x=h;, h, being the distance from the shear centre to the bottom flange), leading to
Wi(z,0)=W(z,0) Y0z, t)—hp0(z,0) +hpyw(z,t). Eq. (8) is then used to express the steady state
component of the displacement response leading to w, (z x )=w (z )+y 0. (z)-h, Ey ) +hyyp(z).
The bottom flange rotation is then obtained by differentiation with respect to coordinate y yielding
0, (z)=0w,/ox =6, (z)+h,7(z) . A similar treatment for the top flange yields
o, (z)=0w, Jox =0, (z)-h,y(z), h, being the distance from the shear centre to the top flange.
Knowing @ (z)and @, (z) from the finite element model and the distances %, and A, one can

calculate the angle of rotation 6,(z) and the warping deformation (z ) for the section of interest

z as predicted by finite element. The above procedure has led to the warping deformation entry
v in the last row of Column [1] which is subsequently used as a basis to compare the warping

deformations obtained in other beam solutions. Again, the closest prediction to FEA results is that
based on the present study which underestimated the warping deformation & by 17.85%. This
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compares to a 20.25% difference for the Vlasov theory. Under the applied quasi-static loading,
0. (z) was observed to vanish in all four solutions. Under the Vlasov and the B310S solutions

subject to static twisting moments, 6, (z) are expected to vanish since there is no coupling

between the flexural and twisting mode. Under the present theory, the presence of non-zero terms
on the off-diagonal terms of the field equations (Eq. (15e)) suggest that, in principle, coupling
should exist between twist and lateral deformation. The coupling is due to two factors: (1) shear
deformation effects (evidenced by the presence of the term GD,, on the off-diagonal term), and (2)
the presence of harmonic forces (given the dependence of the off-diagonal terms on the exciting
frequency). As a general observation, the present solution is successful at capturing the static
response of the system.

8.1.3 Steady state dynamic response

For the exciting frequency 2=1.423@w ~62.83rad/sec , Fig. 4(a)-(d) show the lateral
displacement v, (z), associated bending rotation 6, (z), angle of twist @, (z) and warping
deformation ¢(z). Results are in excellent agreement with the Vlasov beam theory and Abaqus

B310S but slightly differ from Abaqus S4R shell model which exhibits a slightly more flexible
response. Again, the difference is attributed to cross-sectional distortional effects.

0.030 0.012
’é Present Solution 5 =
o o Vlasov Solution s 0.01
o) 0:023 & Abaqus-B310S ioo ‘ xXxXEARAAAAR
= 0020 ||__x Abaqus-S4R = 0.008
= S
S L
£ 0015 2 0.006
g <
& 0010 .§ 0.004 Present Solution
o g o Vlasov Solution
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Svs x  Abaqus-S4R

0.000 &= 0.000

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0
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Fig. 4 Steady state response for cantilever monosymmetric I-section under distributed harmonic torsion
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Fig. 5 (a) Lateral displacement, (b) bending rotation, (c) twist angle, (d) warping deformation function
responses for cantilever monosymmetric I-section

The peak displacement responses corresponding to three frequencies (2 =1.10a ,
2, =0.5(@w +@,)and €, =1.10m,are plotted in Fig. 5. Given the proximity of the exciting
frequencies (2 to the first natural frequency and (2 to the third natural frequency, the
corresponding deformation responses assume a shape close to the first two natural modes of
vibration. The exciting frequency (2, =0.5(@, + @, ) lies between both natural frequencies. Thus,
the corresponding deformation response can be conceived essentially as a linear combination of
the first and second modes of vibrations as depicted on the figure. Also, since the exciting
frequency (2, is far from both natural frequencies @, @, , resonance does not take place and the
magnitude of the displacements are generally smaller than those based on the exciting frequencies
=110 and 2,=1.10w,.

8.2 Example 2 - effect of shear deformation

The purpose of this example is to illustrate the ability of the element developed in the present
study to capture shear deformation effects in the coupled lateral-torsional response of short
cantilever spanning 0.8 m. The cantilever has the same cross-section as that given in Example 1
and is subjected to a uniformly distributed harmonic torsion m.(z,f)=1.50¢* kNm/m  acting along

the beam axis as shown in Fig. 6. Two exciting frequencies £2=0.001m rad/sec and
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m, (Z,t)=15.Oei“Qt kNm/ m A
NN NN N NN NN _\mZ(Z,t)
5 R R
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) 1=0.8m g

Fig. 6 Cantilever with monosymmetric I-section under member harmonic torsion
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Fig. 7 Natural frequency analysis of short cantilever monosymmetric I-section; (a) Lateral
displacement v, and (b) Angle of twist g,

0=~1.37w rad / sec are considered to investigate the quasi-static and steady state dynamic analyses
of the short beam. The first natural frequency of the short cantilever is @, =131.4 Hz. In order to
validate of the present solutions (i.e. closed-form solution and finite element formulation based on
a single element), Abaqus model solutions based on B310S-beam and S4R-shell elements are
presented while the influence of shear deformation is exhibited by comparison with classical
Vlasov beam solution.

8.2.1 Natural frequency extraction

A steady state analysis is conducted based on the present solution (with a single element).
Results based on Vlasov theory, the Abaqus B310S beam element (with 40 elements) and shell
element (with 880 elements) are provided for comparison. The lateral displacement at the
cantilever tip is plotted versus the exciting frequency in Fig. 7(a). Also, the angle of twist versus
the exciting frequency is plotted in Fig. 7(b). Again, since the response is coupled, the peak lateral
displacements are observed to be synchronized with those of the natural frequency values of the
beam (Table 3). All four solutions closely predict the location the first peak corresponding to the
fundamental frequency. For higher frequencies, some discrepancy in the location of the peak
response becomes apparent between the four solutions. For the third mode of vibration, the Abaqus
shell model predicts the lowest natural frequency, followed by the present solution, followed by
Abaqus B310S while the highest frequency is predicted by Vlasov solution. This is expected since
(a) for higher modes, shear deformation is known to have a higher influence (Chen and Lui 1997),
and (b) distortional effects become more prominent. Compared to the shell solution, the present
solution overpredicts the third natural frequency by 7.59%, followed by B310S by 9.54% since
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Table 3 Natural frequencies of cantilever monosymmetric I-section under member harmonic torsion

Present B310S Vlasov
Mode Abaqus Present Abaqus Vlasov Difference  Difference  Difference
S4R [1] Solution [2] B310S[3] Solution [4] —[1-2]/1 —[1-3]/1 —[1-4]/1
1 131.4 136.6 137.3 138.5 -3.96% -4.49% -5.40%
2 229.3 230.1 236.5 244.6 -0.35% -3.14% -6.67%
3 602.5 648.2 660.0 680.3 -7.59% -9.54% -12.91%

Table 4 Static response of short cantilever monosymmetric I-section under distributed harmonic torsion
Abaqus Present Abaqus Vlasov Present B310S Vlasov

Variable S4R Solution B310S Solution Difference Difference Difference
(1] 2] (3] [4] =[1-2]/1 =[1-3]/1 =[1-4]/1
v, (mm) 5.299 4.655 4.557 4.462 12.15% 14.00% 15.80%
g, (107 rad) 27.15 25.97 25.77 25.19 4.86% 5.08% 7.26%
7 (10°rad/mm)  35.72 33.78 33.85 33.34 5.43% 5.24% 6.66%

Table 5 Steady state response of cantilever monosymmetric I-section under distributed harmonic torsion
Abaqus Present  Abaqus Vlasov Present B310S Vlasov

Variable S4R Solution  B310S  Solution Difference Difference Difference
(1] 2] (3] [4] =[1-2]/1 =[1-3)/1  =[1-4]/1
v, (mm) 5.784 5.605 5.421 4.801 3.09% 6.28% 17.00%
0.(10” rad) 8.995 8.963 8.822 8.268 0.36% 1.92% 8.08%
0. (107 rad) 4.693 4.454 4.375 3.818 5.09% 6.78% 18.64%
7 (10°rad/mm)  -6.406 -6.152 -5.470 -4.863 3.97% 14.61% 24.09%

both do not capture distortional effects, while the Vlasov solution overpredicts the solution by
12.91% since it captures neither distortion nor shear deformation.

8.2.2 Comparison of displacement responses

A comparison between the displacement responses of all four solutions are provided in Table 4
for the quasi-static case and Table 5 for the dynamic case. In both cases, the best agreement with
the Abaqus shell solution is obtained in the case of the present solution. For the static case, the
difference is 12.15% for the lateral displacement, 4.86% for the angle of twist, and 5.43% for the
warping deformation. Again, the bending rotation 67X nearly vanished in all four solutions. For the

steady state dynamic case, the present study predicts displacement v, bending rotation @, angle
of twist #. and warping deformation { that are respectively 3.09%, 0.36%, 5.09% and 3.97%
lower than those based on the Abaqus shell element model. These percentages respectively
correspond to 17.00%, 8.08%, 18.64% and 24.09% for the Vlasov theory (as listed in the last
column of the table). Thus, the present theory provides a significantly more accurate response
compared to that of Abaqus. The differences are due to the effects of shear deformation which are
incorporated in the present theory but not in Vlasov theory. The results provided in Tables 4 and 5
show that shear deformation effects are more important in the steady state dynamic response
analysis than they are for static analysis.

Fig. 8 shows the displacement response for the case of harmonic loading. The present
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Fig. 8 Dynamic analysis of short cantilever under member harmonic torsion; (a) lateral displacement, (b)
bending rotation, (c) twist angle, and (d) warping deformation

theory/finite element is observed to be in excellent agreement with the Abaqus S4R shell solution.
The omission of shear deformation effects in the other two solutions (either fully in the Vlasov
theory or partially in the Abaqus B310S) results in some discrepancy in the predicted
displacement response. This was observed to particularly be the case of short beams under
harmonic forces.

8.3 Example 3 — continuous span beam

A three-span beam (Fig. 9) with a channel-section subjected to three harmonic forces;
concentrated transverse force Py(z,t)=16.OeiQt kN, concentrated torsion M.=15.4¢* kN/m and
uniformly distributed transverse force qy=8.OeiQ’ kN/m is considered. The exciting frequency is
assumed to take two values Q<0.001 @, (quasi-static) and Q=2.38 @,, where the first natural
frequency in the present problem is @, =58.06 rad/sec. The dimensions of the C-section are: =20
mm, #,~12 mm, b=80 mm, HA=20 mm, x,~—54.86 mm, C,=22.86 mm, C,=100 mm, and the C-
section properties are: 4=0.56x10* mm?, 7,=40.0x10° mm®, J=0.54x10° mm*, C,=27.31x10° mm®,
Dyy=0.24X104 mmz, D;,y=76.60><103 mm’® and D,,,=34.46x10° mm®*, It is required to compare the
static and steady state responses based on the finite element with the beam solution.

Only five elements were needed to model the problem. This is a natural outcome of the use of
exact shape functions in the formulation (which eliminate any mesh discretization errors). In
contrast, the Abaqus B310S solution model, one hundred beam elements were needed to eliminate
discretization errors.
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Fig. 9 Continuous beam with channel-section under harmonic forces
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The corresponding generalized displacement diagrams are shown in Fig. 10(a)-(d), in which the
quasi-static response is denoted (SR) and the steady state response based on Q=2.38 @, is denoted
(SSR). It is observed that the present finite element formulation results based on five beam

elements provide an excellent agreement with that based on the Abaqus solution at a fraction of the
computational and modelling cost.
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9. Conclusions

* A super-convergent finite element formulation was developed for beams with mono-
symmetric sections. The element is based on shape functions which exactly satisfy the
homogeneous form of the equilibrium equations and thus eliminates the discretization errors
encountered under other interpolation schemes. The solution captures shear deformation effects,
warping, translational and rotary inertial effects.

* The solution is able to efficiently capture the static and steady state response of beams under
harmonic loads. The steady state response is obtained without the need to extract the eigen-modes.
The solution is capable of extracting the eigen-frequencies and eigen-modes, when needed.

* The formulation successfully captures the coupled lateral-torsional response of mono-
symmetric cross-sections.

* It was shown that shear deformation effects are influential when predicting the response of
short span cantilevers. They were also found to be important when predicting the response under
steady state analyses.

* The solution provides excellent agreement with shell finite elements at a fraction of the
computational and modeling effort.

* The finite element provides superior response predictions than Abaqus B310S beam element
and Vlasov solution with a significantly smaller number of degrees of freedom.

References

Ambrosini, D. (2004), “On free vibration of nonsymmetrical thin-walled beams”, Thin Wall. Struct., 47(6-7),
629-636.

Back, S.Y. and Will, K.M. (1998), “A shear-flexible element with warping for thin-walled open beams”, Int.
J. Numer. Meth. Eng., 43(7), 1173-1191.

Banerjee, J.R., Guo, S. and Howson, W.P. (1996), “Exact dynamic stiffness matrix of a bending-torsion
coupled beam including warping”, Comput. Struct., 59(4), 613-621.

Bishop, R.E., Cannon, S. and Miao, S. (1989), “On coupled bending and torsional vibration of uniform
beams”, J. Sound Vib., 131(3), 457-464.

Bishop, R.E. and Price, W.G. (1985), “A note on the dynamical behavior of uniform beams having open
channel section”, J. Sound Vib., 99(2), 155-167.

Chen, X. and Tamma, K. (1994), “Dynamic response of elastic thin-walled structures influenced by coupling
effects”, Comput. Struct., 51(1), 91-105.

Chen, W.F. and Lui, E.M. (1997), Handbook of Structural Engineering, CRC Press, New York, USA.

Cortinez, V.H. and Piovan, M.T. (2001), “Vibration and buckling of composite thin-walled beams with shear
deformability”, J. Sound Vib., 258(4), 701-723.

De Bordon, F. and Ambrosini, D. (2010), “On free vibration analysis of thin-walled beams axially loaded”,
Thin Wall. Struct., 48(12), 915-920.

Dokumaci, E. (1987), “An exact solution for coupled flexural and torsional vibrations of uniform beams
having single cross-sectional symmetry”, J. Sound Vib., 119(3), 443-449.

Friberg, P.O. (1985), “Beam element matrices derived from Vlasov’s theory of open thin-walled elastic
beams”, Int. J. Numer. Meth. Eng., 21(7), 1205-1228.

Giunta, G., Belouettar, S., Biscani, F. and Carrera, E. (2014), “Hierarchical theories for a linearised stability
analysis of thin-walled beams with open and closed cross-section”, Adv. Aircraft Spacecraft Sci., 1(3),
253-271

Hashemi, S.M. and Richard, M.J. (2000a), “A dynamic finite element method for free vibrations of bending-



Torsional flexural steady state response of monosymmetric thin-walled beams... 809

torsion coupled beams”, Aerosp. Sci. Tech., 4(1), 41-55.

Hashemi, S.M. and Richard, M.J. (2000b), “Free vibrational analysis of axially loaded bending-torsion
coupled beams - a dynamic finite element”, Comput. Struct., 77(6), 711-724.

Hjaji, M.A. and Mohareb, M. (2011a), “Steady state response of doubly symmetric thin-walled members
under harmonic excitations - Closed-form solution”, Second International Engineering Mechanics and
Materials Specialty Conference, Ottawa, Canada, June.

Hjaji, M.A. and Mohareb, M. (2011b), “Steady state response of doubly symmetric thin-walled members
under harmonic excitations - Finite element formulation”, Second International Engineering Mechanics
and Materials Specialty Conference, Ottawa, Canada, June.

Hjaji, M.A. and Mohareb, M. (2013a), “Harmonic response of doubly symmetric thin-walled members
based on the Vlasov theory- 1. Analytical solution”, 3rd Specialty Conference on Material Engineering &
Applied Mechanics, Montreal, Canada, May.

Hjaji, M.A. and Mohareb, M. (2013b), “Harmonic response of doubly symmetric thin-walled members
based on the Vlasov theory - II. Finite element formulation”, 3rd Specialty Conference on Material
Engineering & Applied Mechanics, Montreal, Canada, May.

Hjaji, M.A. and Mohareb, M. (2014a), “Coupled flexural-torsional response of harmonically excited mono-
symmetric thin-walled Vlasov beams - II. Finite element solution”, 4th International Structural Specialty
Conference, Halifax, Nova Scotia, Canada, May

Hjaji, M.A. and Mohareb, M. (2014b), “Coupled flexural-torsional response of harmonically excited mono-
symmetric thin-walled Vlasov beams - 1. Closed form solution”, 4th International Structural Specialty
Conference, Halifax, Nova Scotia, Canada, May.

Hu, Y., Jin, X. and Chen, B. (1996), “A finite element model for static and dynamic analysis of thin-walled
beams with asymmetric cross-sections”, Comput. Struct., 61(5), 897-908.

Kim, M.Y., Kim, N. and Yun, H.T. (2003), “Exact dynamic and static stiffness matrices of shear deformable
thin-walled beam-columns”, J. Sound Vib., 267(1), 29-55.

Kim, N.I. and Kim, M.N. (2005), “Exact dynamic/static stiffness matrices of non-symmetric thin-walled
beams considering coupled shear deformation effects”, Thin Wall. Struct., 43(5), 701-734.

Kim, N., Chung, C.F. and Kim, M.Y. (2007), “Stiffness matrices for flexural-torsional/lateral buckling and
vibration analysis of thin-walled beam”, J. Sound Vib., 299(4-5), 739-756.

Kollar, J.P. (2001), “Flexural-torsional vibration of open section composite columns with shear
deformation”, Int. J. Solid. Struct., 38(42-43), 7543-7558.

Laudiero, F. and Savoia, M. (1991), The shear strain influence on the dynamics of thin-walled beams”, Thin
Wall. Struct., 11(5), 375-407.

Leung, A.Y.T. (1991), “Natural shape functions of a compressed Vlasov element”, Thin Wall. Struct., 11(5),
431-438.

Lee, J. and Kim, S.E. (2002a), “Free vibration of thin-walled composite beams with I-shaped cross-
sections”, Comput. Struct., 55(2), 205-215.

Lee, J. and Kim, S.E. (2002b), “Flexural-torsional coupled vibration of thin-walled composite beams with
channel sections”, Comput. Struct., 80(2), 133-144.

Librescu, L. and Song, O. (2006), Thin-Walled Composite Beams - Theory and Application, Springer,
Netherland.

Li, J., Hua, H., Shen, R. and Jin, X. (2004a), “Dynamic response of axially loaded monosymmetrical thin-
walled Bernoulli-Euler beams”, Thin Wall. Struct., 42(12), 1689-1707.

Li, J., Shen, R., Hua, H. and Jin, X. (2004b), “Response of monosymmetric thin-walled Timoshenko beams
to random excitations”, Int. J. Solid. Struct., 41(22-23), 6023-6040.

Li, J, Shen, R., Hua, N. and Jin, X. (2004c), “Coupled bending and torsional vibration of axially loaded thin-
walled Timoshenko beams”, Mech. Int. J. Mech. Sci., 46(2), 299-320.

Machado, S.P. and Cortinez, V.H. (2007), “Free vibration of thin-walled composite beams with static initial
stresses and deformations”, Eng. Struct., 29(3), 372-382.

Machado, S.P. (2007), “Geometrically non-linear approximations on stability and free vibration of
composite beams”, Eng. Struct., 29(12), 3567-3578.



810 Mohammed A. Hjaji and Magdi Mohareb

Mei, C. (1970), “Coupled vibrations of thin-walled beams of open section using the finite element method”,
Int. J. Mech. Sci., 12(10), 883-891.

Prokic, A. (2006), “On fivefold coupled vibrations of Timoshenko thin-walled beams”, Eng. Struct., 28(1),
54-62.

Prokic, A., Lukic D. and Ladjinovic, D. (2014), “Automatic analysis of thin-walled laminated composite
sections”, Steel Compos. Struct., 16(3), 233-252.

Tanaka, M. and Bercin, A.N. (1997), “Finite element modeling of the coupled bending and torsional free
vibration of uniform beams with an arbitrary cross-section”, Appl. Math. Model., 21(6), 339-344.

Tanaka, M. and Bercin, A.N. (1998), “Free vibration solution for uniform beams of nonsymmetrical cross-
section using mathematica”, Comput. Struct., 71(1), 1-8.

Vlasov, V. (1961), Thin-Walled Elastic Beams, Isracl Program for Scientific Translation, Jerusalem.

Voros, G.M. (2008), “On coupled vibrations of beams with lateral loads”, J. Comput. Appl. Mech., 9, 1-14.

Voros, G.M. (2009), “On coupled bending-torsional vibrations of beams with initial loads”, Mech. Res.
Commun., 36(5), 603-611.

Vo, T.P. and Lee, J. (2009a), “Free vibration of axially loaded thin-walled composite box beams”, Compos.
Struct., 90(2) 233-241.

Vo, T.P. and Lee, J. (2009b), “On six-fold coupled buckling of thin-walled composite beams”, Compos.
Struct., 90(3), 295-303.

Vo, T.P. and Lee, J. (2009¢c), “Flexural-torsional coupled vibration and buckling of thin-walled open section
composite beams using shear-deformable beam theory”, Int. J. Mech. Sci., 51(9-10), 631-641.

Vo, T.P,, Lee, J. and Ahn, N. (2009), “On sixfold coupled vibrations of thin-walled composite box beams”,
Compos. Struct., 89(4), 524-535.

Vo, T.P. and Lee, J. (2010), “Interaction curves for vibration and buckling of thin-walled composite box
beams under axial loads and end moments”, Appl. Math. Model., 34, 3142-3157.

Vo, T.P, Lee, J. and Lee, K. (2010), “On triply coupled vibrations of axially loaded thin-walled composite
beams”, Compos. Struct., 88(3-4), 144-153.

Vo, T.P, Lee, J., Lee, K. and Ahn, N. (2011), “Vibration analysis of thin-walled composite beams with I-
shaped cross-sections”, Compos. Struct., 93(2), 812-820.

Wu, L. and Mohareb, M. (2011), “Buckling of shear deformable thin-walled members - 1. variational
principle and analytical solutions”, Thin Wall. Struct., 49(1), 197-207.

cc

Symbols

A Cross-sectional area

b Flange width

C Centroid of the cross-section

Cy Warping constant

d Cross-section height

Dy, Dy, Dy, D, Section properties defined by Eq. (16)
E Modulus of elasticity

G Shear modulus

h(s) Normal distance between the shear centre and the tangent to mid-surface

Beam cross-section height the flanges mid-surfaces
Moment of inertias of the cross-section about the principal X and Y axes
St. Venant torsional constant

\é\m
2~
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L Length of the member

my(z,f) Distributed harmonic moments about j-th direction (for j=x,y,z)

m,(z,t) Distributed harmonic bimoment

n,s,z Local curvilinear coordinate system

N, Concentrated end forces along longitudinal axis

qi(z,t) Distributed harmonic forces along x,y,z directions (for j=x,y,z)

s) D-istarllce between the shear centre to the point of interest along the tangential

direction

s Curvilinear coordinate along mid-surface of the section

S, Shear centre of the cross-section

t Time in seconds

t, b Time intervals

T Kinetic energy

u,v Displacements of the shear centre along the principal axes X, ¥

Up, Vp Displacements of a point p on the mid-surface of the section along X, Y, Z axes
" Internal strain energy

Vi(z,t) Shear forces along x,y axes (for j=x,y)

w Average longitudinal displacement of the cross-section

w Work done by applied forces

X,z Cartesian coordinate system

X, Y, Z Principal coordinate system

x(s), y(s) Coordinate of arbitrary point on mid-surface of the section along X and Y axes

Xs Coordinate of the shear centre along the axis of symmetry

z Longitudinal coordinate

&y Longitudinal normal strain

Vs Shear strain at the mid-surface of the cross-section

p Density of the material

7o Polar radius of gyration about the shear centre

é&n Tangential and normal displacements of a point p along s and » directions

6., 6,, 6. Rotations angles around the X, Y, Z axes, respectively

a(s) Angle between the tangent to the cross-section and the principal X axis

W Warping deformation function

Q Exciting frequency

w(s) Warping function of the cross-section
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Appendix A. Coefficients of the characteristic polynomial

The characteristic equation based on the expansion of the determinant of Eq. (19) takes the
form B,m + B,m’ + B,m’ + Bm’ + B, =0 in which

By=EI,C,.G*| D(J+Dy,)~Dp, |,

XX ww

B, =[G v +Dmm){EIxx GD,, (pC,, 22 ~GD,, |+ EI ,G*D}, }+EG *D,, (1.D2,+C, D}, )

+pQ*ElC {EAG(rOZDyy +2v,D,, |+GD,, +EA)} :

wxCo
~EGD}, (6(Dol s ~Cu Dy J4201,,C,, 22} |

B,=GD,, [(pr ? —GDa,w){pA Q1 Bl +G(J+D )Pl 2°-GD,, )
4G2(Dy T +D,, Dy )Pl 2Dy, [D,, \GDy, ~2EAx, )}
+pl . 226D, |l pd Q*2EC, +G*D2,1+G D, (D,,, —J)}
+(pl 226D, ) G*Dj (/=D )+2pA 2 (EC,,GD,, |
+pA QZ[G v +wa){EIxx (e, @*=GD,,,)+EC, (1. 2*-GD,, )} |
HEG?{1,, Do 4C,y Dip |+ pAQPEL,C, 17—
+EG?1) (1, Dy, +C,, D}, J2x [EG*D,, (C, D, +1., wa)}

+G?D,, [G *p,, D2, +2D}, (G*J-D,,}-EC, )J

5 =pic?|[on a2 6D, .2 -GD, -1
+G’D,, {2xs (6D, DDy )+2GD,,, (12D, D, )} :
+[( oC,, 2 —GDM){ PADPEL, (1] x ] 4G (J +D ) L 22 -GD,, )
+G 2D (12 +1)+2x,G2D,, D), } +pl . 2*-GD,, \pA @*r2EC, +G*D,|
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Appendix B. Integration constants for cantilever under uniform member loads and
tip loads

A cantilever is subjected to (i) uniformly distributed generalized harmonic forces: lateral force
g(z,0=q, ¢, distributed moments about the axis of symmetry m,(z,f)=, e, twisting moments
my(z,ty=m, ¢ and bimoments m,,(z,f)= m, ¢, and (ii) concentrated harmonic forces acting at the
tip consisting of a lateral force Py(¢,t)= Fy (0)e™, bending moment M.(£,1)=M . (0)e™, concentrated
torque M.(£,0)= M, ()™ and concentrated bimoment M, ((,H)=M . (O™, Tt is required to
determine the integration constants {B}s,, for the problem.

At the fixed end (i.e., z=0), the boundary conditions are v(0)=@,(0)=6,(0)=(0)=0 which are
expressed in a matrix form as

':G:|4><8{B}8><] :_{U3P }4X1 (B'l)
Also, at the free end z=¢, the natural boundary conditions are
GD,® GD,  GD,D GD,, [ v(2) V,(0)
0 EL.D 0 0 H_x(Z) _ Mx () (B.2)
GD, D GD,, (GD, +GJ)D GD,, ||6.(z) M_(0)
0 0 0 EC.D ||y(z) , M (1)
which can be shown to lead to the matrix identity
I:P:|4><8 {B}le Z{F(E)}4><l (B3)
in which
[Plxg =[{p1} {pz} ....... {pg}],
G,.GD, m,+G, GD, +G,GD, +GD, v, ()
{pi }: 3 3 G2,1E£xx m; m; ! , and {F(f)} _ A{x (f) .
G,GD, m,+G,,GD, +G,, (GDWW +GJ )mi +GD,,, s M _(0)
EC, m, M, ()

By consolidating Eqgs. (B.1) and (B.3) into a single matrix equation and solving for {B}s,,, one
obtains

_ [(_;]4><8 B _{U3P } 4]
~ [P:| 4x8 {F(ﬂ)} 4x1

{5}

(B.4)





