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Abstract.  The main purpose of this study is to determine the effect of overlay on the crack propagation. In 
order to simplify the problem, a cement concrete pavement is modeled as an elastic plate on Winkler 
foundation. To derive the singular integral equations, the Fourier transform and dislocation density function 
are used. Lobatto-Chebyshev integration formula, as a numerical method, is used to solve the singular 
integral equations. The numerical solution of stress intensity factor at the crack tip is derived. In order to 
examine the effect of overlay for resisting crack propagation, numerical analyses are carried out for a cement 
concrete pavement with an embedded crack and a concrete pavement with an asphalt overlay. Results show 
the significant factors that influence the crack propagation. 
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1. Introduction 
 

Cement concrete pavement is a common structure of pavement. Since more and more cars and 

trucks are traveling on the road each day, damages in the form of cracks could be induced in the 

cement concrete pavement. Therefore, theoretical analysis of cement concrete pavement with 

embedded cracks or any other types of cracks is a significant and urgent research. 

In 1950s, fracture mechanics was proposed as a discipline studying the strength of materials 

and structures containing cracks and it was a branch of solid mechanics (Ding 1997). Based on the 

fracture mechanics theory, complex function and integral transform are effective methods to solve 

these problems. For instance, Zak and William (1963) studied the stress intensity factor of two 

infinite planes with infinite crack and the crack terminated on the interface by using the complex 

function method. Erdogan and Gupta (1971) have obtained the analytic solution of composite 

materials containing crack in the interlayer by using integral transform. Integral transform was 

adopted by Sei and Tatsuya (2002) to solve the problem on multilayered composite with a crack 

perpendicular to the boundary and with the normal and symmetric uniform load distributed on the 

crack. However, complex function and integral transform methods can not solve problem in all 

conditions. Such as a perfect theory model for a cement concrete pavement with crack  
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Fig. 1 Model of cement concrete pavement with a crack 

 

 
Fig. 2 Model of cement concrete pavement with an overlay containing a crack 

 

 

perpendicular to the interface has not been built. At present, the pavement with a crack can be 

mostly analyzed by the finite element method (Long et al. 2008, Yang et al. 2009 ). Ghauch (2003) 

evaluated the response at the bottom of the hot-mix asphalt overlay on top of a concrete pavement. 

In order to identify the parameters involved in the deterioration of overlay, the effects of vehile 

speed, overlay thickness, and pavement temperature were investigated. Ameri et al. (2011) 

investigated an asphalt pavement containing a transverse top-down crack under traffic loading 

using 3D finite element analysis and the stress intensity factors were calculated for different 

distances between the crack and the vehicle wheels. Compared with the finite element method, the 

computational complexity and accuracy of the theoretical method is better.  

In this paper, Fourier transform and dislocation density function are used to drive the singular 

integral equations. Lobatto-Chebyshev integration formula, as a numerical method, is used to 

solve the singular integral equations. The numerical results of stress anywhere of the plate and 

stress intensity factor at the crack tip are given. In order to examine the usefulness of the method, a 

cement concrete pavement with an embedded crack is considered. The results of the example are 

discussed and the factors that affect the stress and stress intensity factors are analyzed. 

 

 

2. Description of the problem 
 

The cement concrete pavement with a crack perpendicular to the interface is considered as a 
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plate on an elastic foundation. Fig. 1 and Fig. 2 show the concrete pavement models without and 

with the overlay respectively. There is an embedded crack perpendicular to the boundaries of the 

plate as shown in the figures. In this study, only the plane strain is concerned, thus the effect of 

volume force is ignored. And the analytical solution for the model in Fig. 2, which is more 

complicated, is discussed in detail. 

In order to simplify the problem shown in Fig. 2, based on the linear-elastic superposition 

principle, it is considered as three sub-problems, shown in Fig. 3, Fig. 4 and Fig. 5. The model of 

cement concrete pavement with an overlay containing a crack is equal to superposing the three 

sub-problems. The first part is simpler than the second one for obtaining the analytic solution and 

the formula deduction of third part is similar to the second one. Therefore, in this paper, the 

analytic solution of the second part is discussed mainly. 

The boundary conditions of sub-problem 1 shown in Fig. 3 

       1 10, , ; 0, 0,xx xyy P y l y l L y y                        (1) 

      2 1 2 1 2 1, , , , 0,xx xyh h y u h h y h h y y          
            

 (2) 

        1 1 2 1 1 1 2 1, , , , , ,u h y u h y v h y v h y y       (3) 

        1 1 2 1 1 1 2 1, , , , , ,xx xx xy xyh y h y h y h y y          (4) 

 

 

 
Fig. 3 Computational model of sub-problem 1 

 

 
Fig. 4 Computational model of sub-problem 2 
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Fig. 5 Computational model of sub-problem 3 

 

 
The boundary conditions of sub-problem 2 shown in Fig. 4 

    1 10, 0, 0, 0,xx xyy y y    
                   

  (5) 

    1 1 1,0 0, ,0 0,0xy x v x x h    
                      

 (6) 

  2 1 1,0 0,xy x h x h h                               (7) 

  2 1 1 1 1,0 0,   v x h x a h or b h x h h       
                 

 (8) 

    2 1 1,0 ,yy x p x a h x b h     
                     

 (9) 

     2 1 2 1 2 1, , , , 0,xx xyh h y u h h y h h y y                     (10) 

        1 1 2 1 1 1 2 1, , , , , ,u h y u h y v h y v h y y                   (11) 

        1 1 2 1 1 1 2 1, , , , , ,xx xx xy xyh y h y h y h y y        
         

 (12) 

The boundary conditions of sub-problem 3 shown in Fig. 5 

    1 10, 0, 0, 0,xx xyy y y    
                   

 (13) 

    1 1 1,0 0, ,0 0,0yy x u x x h    
                     

 (14) 

  2 1 1,0 0,yy x h x h h                               (15) 

  2 1 1 1 1,0 0,   u x h x a h or b h x h h       
                 

(16) 

    2 1 1,0 ,xy x q x a h x b h                            (17) 

              2 1 2 1 2 1, , , , 0,xx xyh h y u h h y h h y y          
         

 (18) 
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        1 1 2 1 1 1 2 1, , , , , ,u h y u h y v h y v h y y     
             

 (19) 

        1 1 2 1 1 1 2 1, , , , , ,xx xx xy xyh y h y h y h y y        
         

 (20) 

Where σxxn and σyyn are the x and y components of the stress vector in the n layer, respectively. 

σxyn is the shearing stress in the n layer. un and vn are the x and y components of the displacement 

vector in the n layer, respectively. n=1,2. γ is the stiffness of the foundation. 

 

 

3. Solution of p(x) and q(x)  
 

In sub-problem 1, in order to simplify this problem, coordinate translation method is adopted. 

The y coordinate axis is moved “l+L” units to right, the model is reduced from a plane strain 

problem with Asymmetric load vertical to the boundary to symmetric load. In terms of theory of 

linear-elastic superposition, p(x) and q(x) in sub-problem 2 and sub-problem 3 can be expressed in 

the following forms 

       , ; ,yy xyp x x l L q x x l L                      (21) 

 

 

4. Theoretical analysis of sub-problem 2 
 

The governing equations of plane elasticity may be expressed as (Li 2000) 

 
2 2 2 2

2 2
(1 ) (3 ) ( 1)( ) 0

u v u v
k k k

x x y y x y

   
      

     
              (22) 

 
2 2 2 2

2 2
(3 ) (1 ) ( 1)( ) 0

u v v u
k k k

x y y x x y

   
      

                    

(23) 

where k=(3−v)/(1+v) for plane stress, k=3−v for plane strain and u, v are the x, y components of the 

displacement vector, respectively. v is Poisson’s ratio. In this paper, k=3−4v is selected 

corresponding to the case of plane strain. 

From Hooke’s Law, the stress components can be expressed as 

   

   

[ 1 3 ]
1

[ 3 1 ]
1

( )

xx

yy

xy

G u v
k k

k x y

G u v
k k

k x y

u v
G

y x







 
   

  

 
   

  

 
 

 

                    (24) 

where G is the shear modulus of the material.  

In order to achieve the solutions of the displacement components, the displacement un and vn 

in the n layer can be expressed with Fourier integral formulas (Zhao 1998) 
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       1 1
0

2 1
, , cos ,

2

i x

n n nu x y f x y d g y e d    
 

 


             (25) 

       2 2
0

2 1
, , sin ,

2

i x

n n nv x y f x y d g y e d    
 

 


  

         
 (26) 

Substituting Eqs. (25) and (26) into Eqs. (22) and (23), one can obtain the expressions of 

displacements un and vn. 

 1 2 3 4 3 4
0

2 1
( , ) [ ( ) ( )]cos ( )

2

i x yx x

n n n n n n nu x y e A A x e A A x y d e B B y d
     

 

  


         (27) 

 

1 2
0

3 4 3 4

2 1
( , ) { [ ( )]

1
         ( ) }sin( ) [ ( ) ]

2

x x

n n n

i x y

n n n n

v x y e A x k A e

ie
A x k A y d B k y B d

 

 

 
 

      
 









    

    




 

 (28) 

where Bn3 
and Bn4 are the functions of ξ and An1, An2, An3 and An4 are the functions of η. 

Substituting Eqs. (27) and (28) into Eq. (24), the components of stress are given by 

 

       

1 2 3 4
0

2 2

3 4 4

2
{ [2 1 2 ] [ 2 ( 1 2 ) ]}

cos 2 1 4 3
2









        

      
 





x xn
xxn n n n n

i x y

n n n

G
e A k x A e A k x A

ie
y d k B B y k k B d

 

 

    



    

 

   (29) 

   

       

1 2 3 4
0

2 2 2

3 4 4

2
{ [ 2 3 2 ] [2 3 2 ]}

cos 2 1 2 1 1
2









        

      
 





x xn
yyn n n n n

i x y

n n n

G
e A k x A e A k x A

ie
y d k B k yB k B d

 

 

    



     

 

  (30) 

 

     

1 2 3 4
0

4 3 4

2
{ [ 2 1 2 ] [ 2 ( 1 2 ) ]}

         sin 1 2
2

x xn
xyn n n n n

i x y

n n n

G
e A k x A e A k x A

y d e k B B B y d

 

 

    



   






 



         

      





  (31) 

For convenience, dislocation density function is introduced, which is defined as (Zhao 1998) 

 
 ,0v x

x
x







；   0x  ，0   x a or b x h    ；   0
b

a
x dx  。 

Based on Eqs. (6) and (7) and the theory of residue, B13, B14, B23 and B24 are expressed 

respectively as 

 

 
 

 
 13 14 23 24

1 2
0, 0, ,

1 1

i x i x
b b

a a

k e e
B B B t dt B t dt

k k

 

 


 
   

  
         

 (32) 
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while the boundary conditions (5), (10)-(12) are expressed as the following in terms of inverse 

Fourier transform and residue theorem 

    11 12 13 142 1 2 1 0A k A A k A                        (33) 

   11 12 13 142 1 2 1 0A k A A k A                         (34) 

 

     

1

1
1

1

21 1 1 22

23 1 1 24 1 1

{(2 1) [ ( 1 2 2 ) ( )] }

{( 2 1) [ ( 1 2 2 ) ( )] } ,

h h

b hh h

a h

e A k h h h h A

e A k h h h h A F t f t dt





   

    



 



      

          
   

(35) 

 

   

2 2

1

1

21 1 22 23 1 24

2 1

[ 2 1 2 2 ] [ 2 ( 1 2 2 ) ]

,

h h

b h

a h

e A k h h A e A k h h A

F t f t dt

      









          

 
      (36) 

   

       

1 1

1
1 1

1

11 12 1 13 14 1

21 22 1 23 24 1 3 1,

h h

b h
h h

a h

e A A h e A A h

e A A h e A A h F t f t dt

 

  








  

     
       (37) 

   

   

   

1 1

1 1

1

1

11 1 12 13 1 14

21 1 22 23 1 24

4 1

1
{ [ ] [ ]}

1
{ [ ] [ ]}

,

h h

h h

b h

a h

e A h k A e A h k A

e A h k A e A h k A

F t f t dt

 

 

   


   












     

      

 
         

(38) 

   

   

   

1 1

1 1

1

1

11 1 12 13 1 14

21 1 22 23 1 24

5 1

{ [2 1 2 ] [ 2 1 2 ]}

{ [2 1 2 ] [ 2 1 2 ]}

,

h h

h h

b h

a h

e A k h A e A k h A

e A k h A e A k h A

F t f t dt

 

 

    

   











       

        

 
      

(39) 

   

   

   

1 1

1 1

1

1

11 1 12 13 1 14

21 1 22 23 1 24

6 1

{ [ 2 1 2 ] [ 2 1 2 ]}

{ [ 2 1 2 ] [ 2 1 2 ]}

,

h h

h h

b h

a h

e A k h A e A k h A

e A k h A e A k h A

F t f t dt

 

 

    

   











        

         

 
      

(40) 

where 1

2

G

G
 

 

and 2G



 . G1 is the shear modulus of the material in the first layer, G2 is the 

shear modulus of the material in the second layer. 

 
1( ) 2

1 1
1

{8 ( ) [2( 1) 4 ( )]}
,

4 1

t h h
e h h t k h h t

F t
k

  




 
      


（ ）

;
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 
1( )

1
2

2 [ ( ) 1]
,

1

t h h
e h h t

F t
k

 


 
  


（ ）

;  
   

 

   

 

1 1

1

3

1
,

2 1 1

t h t h
k e h t e

F t
k k

 




 
 

 
 

;

 
     

 

11

1

4

1
, 1

2 1

t ht h h t ee
F t

k






  
      

;  
   

 

1

1

5

2
,

1

t h
h t e

F t
k









 


;

 
   

 

1

1

6

2 1
,

1

t h
h t e

F t
k







   
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

 

Solving Eqs. (33)-(40) for A11, A12, A13, A14, A21, A22, A23 and A24 in terms of ϕ(t)
 
and substituting 

A21, A22, A23, A24, B23 and B24 into the boundary condition Eq. (9), it yields 

       
 

 1 2

2

1
, ,

4

b b

a a

k
K x t t dt K x t t dt p x

G


 


               (41) 

where    
1

1
,

2

i x ti
K x t e d






 



 
   

 
 . With the assistance of the result 

    2
sgn

i x t
i e d

x t


 

 


 

 , one can obtain:  1

1
,K x t

t x



. φ(x,t,η) and p(x) can be solved by 

Gauss-Laguerre quadrature. 

To solve the integral equation numerically by using a collocation technique, the interval (a, b) 

in Eq. (41) is normalized and expressed as 

 
 

   
 

 
1 1

1 1

1
,

4

g r k
dr K s r g r dr f s

r s G



 


 

 
               

(42) 

For an embedded crack, the solution of the integral Eq. (42) can be expressed as: 

    21g r F r r  . 

Lobatto-Chebyshev integration formula is then used to solve the singular integral equations. 

The singular integral equation is converted to a system of linear equations by means of this 

numerical method. The expression of Eq. (42) can be written as 

 
1

1 ( 1)
( )[ ( , )] ( )

4

n

j j j i i

j j i

k
F r K r s f s

r s







 


  (43) 

In Eq. (43), there are n-1 equations and the last equation comes from the property of dislocation 

density function which is expressed as  
1

1
g r dr 0


  

for the embedded crack. It is also written as 

  
1

0
n

j j

j

F r


  (44) 

where ωj is the weight function ωj=π/(n−1), j=2,…,n−1, ω1=ω1=π/2(n−1); rj=cos((j−1)π/(n−1)), 

j=1,…,n; si=cos((2i−1)π/(2n−1)), i=1,…,n−1. 
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The stress intensity factors are defined and evaluated as (Kadioğlu et al. 1998) 

   2 2lim 2( ) ,0 , lim 2( ) ,0Ia yy Ib yy
x a x b

K a x x K x b x 
 

   
         

 (45) 

Substituting the numerical solution into Eq. (45), one can obtain 

   4 ( 1) 2 1 , 4 ( 1) 2 1Ia IbK k b a F K k b a F        
         

(46) 

Substituting A11, A12, A13, A14, A21, A22, A23, A24, B13, B14, B23 and B24 into Eqs. (27)-(31), stress 

and displacement at any positions shown in Fig. 4 can be derived. The same method can also be 

used to solve the model shown in Fig. 5.  

 

 

5. Numerical examples and discussion 
 

In order to verify the achieved formulation and compare the stress intensity factors of model 1 

(as shown in Fig. 1) and model 2 (as shown in Fig. 2). The parameters for the model 1 are: 

P=700000 N/m, L=0.15 m, E=3.1×1010 N/m2, G=1.1482×1010 Mpa, γ=1.3×109 N/m3, h=0.25 m, 

ν=0.35. In the case of plane strain problem, k=1.6, β=G/γ=8.832, length of crack d=b-a. The 

parameters for the model 2 are: P=700000 N/m, L=0.15 m, E1=4.32×109 N/m2, G1=1.6×109 N/m2, 

h1=0.1 m, ν1=0.35, k1=1.6, E2=3.1×1010 N/m2, G2=1.1482×1010 N/m2, γ=1.3×109 N/m3, h2=0.25 

m, ν2=0.35, k2=1.6, β=G2/γ=8.832. 

 

 

 

Fig. 6 Comparison of stress intensity factors KIb 
of the crack tip (b) with and without overlay on old 

cement concrete pavement (old cement concrete pavement containing perpendicular crack) 
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Fig. 7 Comparison of stress intensity factors KIIbof the crack tip (b) with and without overlay on old 

cement concrete pavement (old cement concrete pavement containing perpendicular crack) 

 

 
Fig. 8 Result of stress intensity factor KIb 

of the crack tips (b) with different thickness (thickness from 7 

cm to 15 cm) of overlay on old cement concrete pavement (old cement concrete pavement containing 

perpendicular crack) 

 

 

For comparing the old cement concrete pavement with and without asphalt overlay, the stress 

intensity factors of the crack tips are calculated for model 1 and model 2, and the results are shown 

in Figs. 6 and 7. As the thickness of the overlay and the shear modulus of the material are 

important factors which affect the stress intensity factors, the results calculated with different 

thickness and shear modulus are shown in Figs. 8-11. 
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Fig. 9 Result of stress intensity factor KIIb 

of the crack tips (b) with different thickness (thickness from 

7 cm to 15 cm) of overlay on old cement concrete pavement (old cement concrete pavement containing 

perpendicular crack) 
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Fig. 10 Result of stress intensity factor KIb 

of the crack tips (b) with different shear modulus shear 

modulus from 1.0 GPa to 1.6 GPa) of overlay on old cement concrete pavement (old cement concrete 

pavement containing perpendicular crack) horizontal distance between the edge of load and crack 

 

 

The effect of asphalt overlay is investigated by comparing the values of stress intensity factors 

of crack tip in pavement with and without an 10cm thickness overlay, while keeping all other 

parameters fixed. Fig. 6 and Fig. 7 show, no matter I type crack or II type crack, the stress intensity 

factors of the crack tips (b) in the pavement with overlay are smaller than that in pavement without  
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Fig. 11 Result of stress intensity factor KIIb 

of the crack tips (b) with different shear modulus (shear 

modulus from 1.0GPa to 1.6GPa) of overlay on old cement concrete pavement (old cement concrete 

pavement containing perpendicular crack) 

 

 
overlay. Furthermore, the stress intensity factors of I type crack decrease dramatically. The values 

of stress intensity factors of I type crack tips (b) in the pavement with overlay are reduced to 

approximate 50% of without overlay, with the same load position and identical crack length. It 

indicates that using the overlay is an effective way for lowering the crack extension. 

The effect of overlay thickness is examined using different overlay thickness, with all other 

parameters fixed. Fig. 8 and Fig. 9 show, with the thickness of the overlay increasing from 7 cm to 

15 cm, the stress intensity factors of I type crack decrease slightly, while the stress intensity factors 

of II type crack do not presence obvious change. Therefore, it is not wise choice to increase the 

thickness of overly directly. Grid or other Geosynthetic could be considered as a Interlayer to 

reinforce on mitigating reflection cracking in asphalt overlays and theoretical analysis of these 

structure will be conducted in the later research.  

The effect of shear modulus of overlay is also examined. From the 4 overlapping curves almost 

in Fig. 11, with the increasing of shear modulus of overlay from 1.0 GPa to 1.6 GPa, the stress 

intensity factors of II type crack have not change. In Fig. 10, stress intensity factors of I type crack 

are decreased slightly as the shear modulus of overlay increase, while the horizontal distance 

between the edge of load and crack exceed 0.25m. It denotes that the shear modulus of overlay is 

not a significant factor that influences the crack propagation in old cement concrete pavement and 

it is not appropriate method to improve the effect of overlaying by changing the overly modulus. 

 

 

6. Conclusions 
 

Based on the theory of fracture mechanics, the method of Fourier transform and dislocation 

density function in association with solving the singular integral equations are introduced to 

calculate the stress and stress intensity factors in a cement concrete pavement which contains a 
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crack perpendicular to the interface and with asphalt overlay on it. This method can be used to 

analyze effect of asphalt overlay for resisting crack propagation. Current numerical simulation 

indicates that the asphalt overlay on top of the old concrete pavement plays an important role for 

protecting the structure from the crack damage. The thickness and the shear modulus of the 

overlay are not the two significant factors that affect the overlay. 
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