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Abstract.  For analysis of the plates and membranes by numerical or analytical methods, the question of 
choice of the system of functions satisfying the different boundary conditions remains a major challenge to 
address. It is to this issue that is dedicated this work based on an approach of choice of combinations of 
trigonometric functions, which are shape functions of a bended beam with the boundary conditions 
corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength 
analysis of the rectangular plates by Kantorovich-Vlasov’s method is considered.Using the properties of 
quasi-orthogonality of those functions allowed assessing to differential equation for every member of the 
series. Therefore it’s proposed some new forms of integration of the beam functions, in order to simplify the 
problem. 
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1. Introduction 
 

Rectangular plates are one on of the most important structural elements that are of interest in 

the field of mechanics, civil engineering and structural engineering. The study of their free 

vibration behaviour is very important in the structural designers. Many researches for dynamic 

analyses of thin rectangular plates are available in the literature. Misra (2012) studied the free 

vibration analysis of isotropic plate using multiquadric radial basis function.The symplectic duel 

method which gives exact solutions for the free vibration analysis of rectangular thin plates was 

used by Yufeng and Liu (2009) to study SSSS plate problems. Ezeh et al. (2013) have presented a 

variational solution for free vibration analysis of thin rectangular flat isotropic SSSS plate based 

on classical plate theory, using Taylor series. Since the origin of plate, Fourier and trigonometric 

series has been used to treat plate problems as shape function. There are many employed scholar 

approaches in solving the problem of plates like energy method, numerical method and 

equilibrium method. All these approaches give approximate results in most difficult situations. 

There are several variational approaches for the analysis of the plates of which the best known 

are those for Ritz, Galerkin, Lagrange, etc. Besides these approaches, there are a number of 
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approximate ways of solving variational problem of plates related to boundary value problems. In 

this work, we are interested in the Kantorovich-Vlasov’s method in order to propose a method that 

can contribute to accuracy improvement of solution procedure that falls between the exact solution 

of Sophie Germain plate differential equation and variational approaches. The Kantorovich-Vlasov 

variational method, which is a modification of the Ritz method, allows reducing the initial three-

dimensional elasticity problem or bidimensional problem of the theory of thick plates, to one-

dimensional problem involving a system of ordinary differential equations. In Kantorovich-

Vlasov’s method, the rectangular plate is modeled by two beams. In the direction Ox beam allows 

to choose the functions       and in the direction Oy it allows to find functions       through 

solution of Cauchy problem for beams bending. 

Different approaches are used to analyze forced beam vibration at high amplitudes (Caddemi et 

al. 2013, Ning et al. 2013, Bors et al. 2013). Analytical models based on use of harmonic balance 

method and Galerkin method (with a single mode) (Azzar et al. 2002, Daya et al. 2004) have been 

developed. Although, for the study of the elasto-dynamic behaviour of continuous systems, the 

discrete form based on Galerkin method is an approach at first sight, more powerful than 

formulation based on the discrete write of the differential equations of movement, he quickly 

suggests its limitations in presence of complex geometries, its main disadvantage resides in fact 

that shape functions that characterize the real and virtual displacement approached fields, are 

defined globally on the whole studied area. Kazakov (2012) proposed study related to 

elastodynamic infinite elements, based on modified Bessel shape functions, appropriate for Soil-

Srtucture Interaction. In this work it is demonstrated that, the application of the elastodynamical 

infinite elements is the easier and appropriate way to achieve an adequate simulation including 

basic aspects of Soil-Structure Interaction. Other interesting work, related to the vibration 

behaviour of the beams, are presented in Curnier (2005), Ekwaro-Osire et al. (2001), Han et al. 

(1999), Rakotomanana (2004). Many authors have used the Timoshenko beam (Jelenic et al. 2011, 

Triantafyllou et al. 2011) to describe vibration phenomena of the 1D structures. Interesting results 

were obtained also for the study of Rayleigh cantilever bridges Xi (2013). But the difficulty of the 

Rayleigh method is to choose the vector or the shape function to test. It is actually forced to seek a 

solution in a space of solutions to one dimension: vectors proportional to the chosen vector, shape 

functions proportional to the chosen shape function. 

The purpose of this work is to propose a method of construction of shape functions of beam 

vibrations for strength analysis of a rectangular plate by Kantorovich-Vlasov’s approach. 

 
 
2. Materials and method  

 

We will use the system of dynamic beams functions which are the shape functions of the beam 

vibrations. Indeed, these functions are based on the system of Krylov’s functions (Timoshenko 

1985). 

Krylov’s functions: 

Consider the homogeneous differential equation 

 
    

                                                                      (1) 

The analytical solution of Eq. (1) will have the following form (Krylov 1931, Iakimov 1971) 

                                                             (2) 
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Here,   √
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  ,   ,    et    are the Krylov’s functions that can be expressed as follows 
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One can simplify writing these functions by expressing variables without unit. For that, 

let’s writing: 
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 ; a and b are the dimensions of the rectangular plate. In unitless coordinates, the 

Krylov’s functions are then wrote as follows 
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m- the number of terms of the series, 

  - are the eigenvalues of the differential equation of the beam vibrations i.e., coefficients 

depending on the beam boundary conditions and the number m of the terms of the series. 

Dynamic beams functions are determined by the following formula (5) 

                                                                            (5)  

i, j are selected so that they satisfy the beam boundary conditions at its left end (η = 0),     is 

chosen so that it satisfies one of the beam boundary conditions at its right end (η = 1). This last 

boundary condition satisfaction leads to a transcendent functional equation from which one can 

determine the coefficients      
The orthogonality and quasi-orthogonality properties of shape functions for beam vibrations are 

known (Timoshenko 1985). 
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In case of beams having supports at the ends, the quasi-orthogonality property allows 

approximating integral (6) in form of : |∫   
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For the calculation of the plates by variational methods, because of quasi-orthogonality of the 
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dynamic beams functions, the non-diagonal terms of the system become negligible and thus, yield 

a system of algebraic equations or system of differential equations. In this case, several 

opportunities for using this property become possible for analysis of plates by Kantorovich-

Vlasov’s method. 

Indeed, consider the following differential equation for bending of plates 

    
 

 
                                                                 (7) 

where q=q(x,y) represents the distributed load and D the flexural stiffness. 

One can find the solution by single trigonometric series (Levy’s Method). The solution of  plate 

problems by a single trigonometric series may be considered as a specific application of  the 

rigorous solutions. To obtain a particular solution by Levy’s method, it is required that two 

opposite edges of the plate be simply supported and it is assume that the plate is infinitely long in 

the other direction.We assume that the edges at x=0 and x=a are simply supported and that the 

origin of the coordinate system is moved to x=0 and   
 

 
 . 

If we introduce coordinates without units by writing: 

  
 

 
     

 

 
  and    

 

 
 (a and b are the dimensions of the rectangular plate), the Eq. (7) in no 

dimensional coordinates (without units) will have the following form 
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 =0                                                               (8) 
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In this case, the Levy’s method allows us to find the solution of eqn (8) in the following form, 

(the boundary conditions being satisfied at longitudinal edges b of the plate 
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 , η=y/b, in no dimensional coordinates (      ;     a value corresponding to any 

load ;        the beams functions satisfying the conditions to the longitudinal plate 

boundaries;        the function from the resolution of the differential equation based on 

Kantorovich-Vlasov’s  method taking into account the quasi orthogonality properties of beam 

functions (5) 
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3. Results and discussion 
 

From differential Eq. (10) derive characteristic roots 

                                                                        (11) 
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where,       √    
 

 
 ,          √    

 

 
  .   

Except in the cases where supports are rolled to the longitudinal boundaries of the plate, the 

roots (11) are complex (  
    when the Kantorovich-Vlasov’s method solution coincides with 

that of Levy’s method. 

The main difficulty is related to calculation of integrals of quadratic beams functions and their 

products by the derivatives of these functions. 

When m≠n, the resolution passes by integration by parts, and in particular one can show the 

orthogonality of the dynamic beams functions. 

It is shown in Timoshenko (1985), since a limit transition yields the integral of quadratic beams 

functions in the following form 
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so the quadratic form of the beams functions is expressed using the values of these functions and 

their derivatives at the left end of the beam. By this same limit transition, we can calculate the 

integral of the product of the beam function by its second derivative. 

In this way, it can be calculate quadratic dynamic beams functions. In all cases, this presents no 

difficulty for calculations on computer. However, the use of analytical methods for the study of 

these functions is not always convenient because they represent rather complicated combinations 

of Krylov’s functions. 

It therefore arises the question of why the integrals are expressed by the values of the functions 

on the right end of the beam and not on the left end. The answer is simple. In particular, for the 

beams to the symmetric boundary conditions, from symmetry conditions (or reverse symmetry), 

combinations of the values of the dynamic beam functions to left (ξ=0) and right (ξ=0) boundaries 

of the beam, in the formula (12) are equal. 

We can consider that this condition is justified for all conditions  for which there exist a beam 

support. We have 
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This last formula allows, thinking to the simple Krylov’s functions values, when ξ = 0, to get 

quickly with some reliability, expressions of their quadratures. 

For example, in considering a beam embedded in the left end with support rolled at the right 

end, we have the following boundary conditions: 
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The shape function of beam vibrations are determined by the following formula: 

                        
      

      
 . 

  
    =                  ,    

        
                 , 

The   
 

 coefficient satisfies the functional equation: 
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We get the quadrature value by formula (13): 
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The use of formula (12) would lead to much more tedious calculations. The integral of the 

product of the dynamic beam function by its second derivative may be calculated by the following 

formula 
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Even if formula (14) seems more complicated than the formula (13) and still has values of the 

function at the right end of the beam, it can be further simplified. For symmetrical conditions of 

support, it can be written in the following form 
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Using formulas (14) and (15), one can get formulas for different types of supports, expressed 

from the Krylov’s functions. 

For m>3, they can be replaced by simplified asymptotic functions. Thus, for the studied beam, 

taking into account the boundary conditions we have 
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For m> 2, we can use the following asymptotic formula: 
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4. Conclusions 
 

From this work, we can retain the following: 

1. It was suggested a method of construction of shape functions of beam vibrations for strength 

analysis of thin rectangular plates using Kantorovich-Vlasov’s approach. 

2. It has shown that to build the shape functions of beam vibrations for strength analysis of thin 

plates, one can use the system of the Krylov’s functions (1). 

3. The use of the properties of quasi orthogonality of the shape functions of beam vibrations 
allows to neglect the non-diagonal terms of the system and to establish a system of independent 

algebraic or differential equations. 

4. It is proposed new forms of integration of the dynamic beam functions. 

5. The proposed method is a contribution to the development of Fourier transform method of  

separation of variables, it allows obtaining an analytical approached solution to problems at  

boundaries of differential equations in partial derivatives. 

6. It is finally shown that, one can significantly simplify the method of applying a number of 

terms of the series, under various boundary conditions, using simple asymptotic formulas. 
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