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Abstract.  The Lyapunov exponent and moment Lyapunov exponents of Hill’s equation with frequency 
and damping coefficient fluctuated by correlated wideband random processes are studied in this paper. The 
method of stochastic averaging, both the first-order and the second-order, is applied. The averaged Itô 
differential equation governing the pth norm is established and the pth moment Lyapunov exponents and 
Lyapunov exponent are then obtained. This method is applied to the study of the almost-sure and the 
moment stability of the stationary solution of the thin simply supported beam subjected to time-varying axial 
compressions and damping which are small intensity correlated stochastic excitations. The validity of the 
approximate results is checked by the numerical Monte Carlo simulation method for this stochastic system. 
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1. Introduction 
 

The dynamic stability of elastic systems under two non-correlated random excitations has been 

investigated by many authors. There are numerous engineering structures that are subjected to the 

action of such loadings. The dynamic stability of these engineering structures is governed in 

general by the stability of the trivial solution of the stochastic differential equation of the form 

 ̈( )   ,   ( )- ̇( )  ,   ( )- ( )                                                 ( ) 

where  ( ) and  ( ) are the stochastic processes and   is the damping coefficient. 

Kapitaniak (1986) studied the non–Markovian process defined by Hill’s Eq. (1) with frequency 

and damping coefficient fluctuated by a non-white noise stochastic process. The stability of the 

first and second-order moments of the solution process was given by the well-known condition of 

stability of the differential equation with constant coefficients. Kozin and Wu (1973) obtained 

numerically sufficient almost-sure asymptotic stability boundaries when only one of stochastic 

processes  ( ) and  ( ) was present. Ariaratnam and Ly (1989) obtained optimal results when 
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both  ( ) and  ( ) were present, by solving the envelope of the boundaries. The regions of the 

almost-sure asymptotic stability were obtained for arbitrary ergodic processes as well as for 

ergodic Gaussian processes. The moment Lyapunov exponents, which are defined by 

  ( )     
   

 

 
    0‖ (      ̇ )‖

 
1                                                ( ) 

characterize the moment stability of a stochastic dynamical system with state vector  (      ̇ )  

{ (      ̇ )  ̇(      ̇ )}
 

, where  , -  denotes the expected value and     denotes a suitable 

vector norm. The pth moment of the response of the system is asymptotically stable if   ( )   . 

Moreover,   ( ) is a convex function of p and    ́( ) is equal to the largest Lyapunov exponent 

  , which is defined by 

      
   

 

 
   ‖ (      ̇ )‖                                                          ( ) 

and describes the almost-sure or simple stability of the system. Generally speaking, the Lyapunov 

exponent is easier to obtain. However, in general, the almost-sure stability cannot assure the 

moment stability. Therefore, it is important to obtain the moment Lyapunov exponents of 

stochastic systems so that the complete properties of dynamic stability can be described. The 

method of averaging for stochastic dynamic systems was proposed by Stratonovich (1963) and 

developed by Khasminskii (1966). The purpose is to approximate the solution of a stochastic 

dynamic system by a Markov diffusion process which satisfies the Itô stochastic differential 

equation when the excitation is a wideband process. After this approximation, it may be easier to 

obtain the solution or its dynamic properties of the approximated or averaged system. Ariaratnam 

and Tam (1979) applied a method of stochastic averaging to obtain the steady-state values of the 

response amplitude considering a linear second-order oscillator subjected to both parametric and 

forced excitations of small intensity. The moments of the solutions of the averaged equations were 

evaluated and conditions for stability in the moments were obtained. It was found that only those 

values of the spectral densities of the parametric excitations which correspond to zero frequency 

and are twice the system natural frequency influence the stability. Ling et al. (2011) investigated 

the response and stability of a single degree-of-freedom viscoelastic system with strongly 

nonlinear stiffness under excitations of wide band noise. Firstly, terms associated with the 

viscoelasticity were approximately equivalent to damping and stiffness forces; the viscoelastic 

system was approximately transformed to a single degree-of-freedom system without 

viscoelasticity. Then, with the application of the method of stochastic averaging of the first order, 

the averaged Itô differential equation was obtained. The stationary response and the largest 

Lyapunov exponent can be analytically expressed. Bai and Zhang (2012) applied the stochastic 

averaging method of the first order for quasi-integrable-Hamiltonian systems to obtain the 

averaged equations and formulated the expression for the largest Lyapunov exponent. The 

necessary and sufficient conditions for the almost sure asymptotic stability of the rotor system 

were presented approximately. The largest Lyapunov exponent was evaluated and employed to 

determine the region of almost sure asymptotic stability of rotor systems with random axial loads. 

In the paper Liu et al. (2013), the asymptotic Lyapunov stability with probability one of n-degree-

of-freedom quasi non-integrable Hamiltonian systems subjected to weakly parametric excitations 

of combined Gaussian and Poisson white noises was studied by using the largest Lyapunov 

exponent. Hijawi et al. (1997a, b) developed a unified second-order stochastic averaging approach 

526



 

 

 

 

 

 

Moment Lyapunov exponents of the parametrical hill’s equation... 

 

 

to treat dynamic systems with weak stiffness and inertia nonlinearities. The mathematical 

modeling of the governing equation and the first and second-order averaging methods were used to 

determine the response statistics and stochastic stability. The results were compared with those 

obtained by Gaussian and non-Gaussian closures and by Monte Carlo simulation. Rozycki and 

Zembaty (2011) presented an analysis of a stochastic eigenvalue problem of plane bar structures. 

Particular attention was paid to the effect of spatial variations of the flexural properties of the 

structure on the first four eigenvalues. The stochastic eigenvalue problem was solved 

independently by the stochastic finite element method and Monte Carlo techniques. In the paper 

Huang and Xie (2008), the method of averaging, both the first order and second order, was used to 

obtain the differential equation governing the pth moment. The moment stability of a viscoelastic 

system can be determined by solving the averaged equation. Kozić et al. (2008) obtained explicit 

expressions for an asymptotic expansion of the moment and almost-sure stability boundaries of the 

simply supported beam which was subjected to the axial compressions and varying damping 

which were two uncorrelated random processes. Papers Li et al. (2013), Xu et al. (2011, 2012, 

2013) investigate the stochastic stability for nonlinear system with Lévy process and correlated 

Gaussian colored noises based on Lyapunov exponents. A method of equivalent linearization is 

proposed to reduce and simplify the original systems. The mean square responses are carried out to 

verify the effectiveness of the proposed approach, then the Lyapunov exponents will be defined 

and derived to explore the stochastic stability. A novel structural damage detection method with a 

new damage index was recently proposed by authors Zhang et al. (2011) based on the statistical 

moments of dynamic responses of shear building structures subject to white noise ground motion. 

The statistical moment based damage detection method was theoretically extended with general 

application. This method is more versatile and can identify damage locations and damage 

severities of many types of building structures under various external excitations. Liu et al. (2012) 

investigated dynamic responses of axially moving viscoelastic beam subjected to a randomly 

disordered periodic excitation. Based on the largest Lyapunov exponent, the almost sure stability 

of the trivial steady-state solution was examined. The authors then obtained the first-order and the 

second-order steady-state moments for the non-trivial steady-state solutions. In the paper Ku et al. 

(2013) provides a three-stage identification procedure as a solution to the problem of harmonic and 

white noise excitations in the acceleration responses of a linear dynamic system. This procedure 

combines the uses of the mode indicator function, the complex mode indication function, the 

enhanced frequency response function, an iterative rational fraction polynomial method and mode 

shape inspection for the correlation-related functions of the force-embedded acceleration 

responses. The procedure is verified via numerical simulation. 

In this paper, the method of stochastic averaging, both the first and the second order, will be 

used to determine the response statistics. The averaged Itô differential equation governing the pth 

norm is determined and the pth moment Lyapunov exponents are then obtained for an elastic 

structure in the first mode subjected to two correlated wideband random processes. The variations 

of the moment Lyapunov exponents with the change of different parameters of the system are 

discussed and compared with the results from the paper Kozić et al. (2008). Furthermore, these 

results are compared with those obtained by the Monte Carlo simulation. 

 
 
2. Discretization of the equation of the motion  
 

We will now present an example which gives the best illustration of the theoretical results. In 
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this sense, consider the elastic beam subjected to stochastically fluctuating axial compressions and 

damping force. It is assumed that the boundaries are simply supported. The motion of the beam 

governed by the partial differential equation, considered by Pavlović et al. (2005), by introducing 

a small parameter , is given by 

 ( )  
   

   
  [   √  ( )]

  

  
 
   

   
 [   √  ( )]

   

   
                    ( ) 

with the following homogeneous boundary conditions 

   
   

3           (   )    
   (   )

   
                                              ( ) 

The quantities   and    in Eq. (4) are the positive constants,  ( ) and  ( ) are the wideband 

stationary correlated noises with zero mean. In order to further simplify Eq. (4), a mode of the 

Galerkin method will be used for reducing Eq. (4) to a corresponding ordinary differential 

equation representing only the time varying part of the solution. Consider the shape function 

     , which satisfies the boundary conditions (5), the first mode of the transverse motion of the 

beam can be described by 

 (   )   ( )                                                                ( ) 

Furthermore, Galerkin’s method requires that 

∫ ( )    

 

 

                                                                    ( ) 

By substituting (4) and (6) into (7) and evaluating the integral as indicated, it follows that the 

given shape function will satisfy the following ordinary differential equation 

 ̈( )      ̇( )    
 [  √   ( )] ( )  √     ( ) ̇( )                      ( ) 

where   
          and 

  ( )  
  

  
  ( )           ( )  

 

  
 ( )                                                 ( ) 

are the wideband stationary correlated stochastic noises with zero mean. 

 

 

3. First-order stochastic averaging  
 

The motion of system (8) can be described by an asymptotic solution in terms of the behavior 

of its amplitude and phase angle. The stationary response possesses an amplitude and phase which 

vary slowly around some average values. In order to use the method of stochastic averaging, the 

following transformation is applied 

 ( )   ( )     ( )      ̇( )       ( )     ( )                         (  ) 

where  ( )       ( ). From Eq. (10), one has 

 ̇( )     ( )   ( ) ̇( )     ( )                                             (  ) 
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Substituting Eq. (10) into Eq. (8) yields 

 ̇( )     ( )   ( ) ̇( )     ( )   

     ( )     ( )  √     ( ) ( )     ( )  √     ( ) ( )     ( )            (12) 

Letting     , it is easy to see that P is the pth norm of system (8). Thus, from Eqs. (11) and 

(12),  ̇( ) and  ̇( ) can be solved and written in the standard form, as 

 ̇( )     
( )(     )  √ 0   

( )(        )     
( )(        )1                       (13) 

 ̇( )      
( )(   )  √ 0   

( )(      )     
( )(      )1, 

where 

                       
( )(     )                                    

( )(   )                                     

   
( )(        )   

    

 
                   

( )(      )          
                 (14) 

              
( )(        )            

                
( )(      )   

  
 
           

Assume that   ( ),   ( ) are stationary wideband random correlated processes with zero means 

and with correlation matrix [   ( )], i,j=1,2. If the coefficients of Eq. (13) are sufficiently smooth, 

the processes   ( ),   ( ) have sufficiently good mixing properties and correlation matrix [   ( )] 

decreases sufficiently quickly when    , as shown in Hijawi et al. (1997a). Then, there is a 

limit Markov diffusion process, as    , which can be described by the well-known Itô stochastic 

differential equations 

  ̅( )    ̅  √  ̅     ( )  √  ̅     ( )                                              (15) 

  ̅( )     ̅  √  ̅     ( )  √  ̅     ( )            

where   ( ) and   ( ) are the two Brownian motion processes. When applying the averaging 

operation,  ( )  and  ( )  are treated as unchanged, i.e. they are replaced by  ̅( )  and  ̅( ) 
directly. The elements of drift vector  ̅  and  ̅ , and of the diffusion matrix  ( ̅  ̅)  

 ( ̅  ̅)  ( ̅  ̅)  are given by the following expressions according to the Khasminskii limit 

theorem, Lin and Cai (1995) 

 ̅     
   

 

 
∫ 2  

( )(     )  

 

 

∑∑ ∫[
    

( )(      ( )  )

  
   
( )(      (   )    )   ( )

 

  

 

   

 

   

 

 
    

( )(      ( )  )

  
   
( )(      (   )    )   ( )]   }                                   

 ̅     
   

 

 
∫ 2  

( )(     )

 

 

 ∑∑ ∫[
    

( )(      ( )  )

  
   
( )
(      (   )    )   ( )
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( )(      ( )  )

  
   
( )(      (   )    )   ( )]   }                         (  ) 

       
   

 

 
∫ {∑∑   

( )(      ( )  )   
( )(      (   )    )   ( )

 

   

 

   

}

 

 

                                 

 ( ̅  ̅)  [ ̅  ]          

Now, substituting Eq. (14) into system (16) and applying Khasminskii’s limit theorem (1966), 

the following expressions for the drift and diffusion coefficients  ̅ ,  ̅  and    ,         and     

are obtained 

 ̅     ̅   ̅  
 8
  

 
  ( )  

 (   )

  
,  (   )    (   )      (   )-9  

 ̅  
  
 

 
,  (   )    (   )      (   )-         

 ̅  
  

 
   ( )            (  ) 

     ̅
            

  
 

 
,  (   )    (   )     ( )      (   )-               

where S and Ψ are the cosine and sine power spectral density function of noises   ( ) and   ( ) 
are given by 

  (  )  ∫    ( )

 

  

            (  )  ∫   ( )

 

  

                              (  ) 

   (  )  ∫    ( )

 

  

             (  )   ∫   ( )

 

  

           

It is clear that  ̅ does not depend on  ̅, thus the first equation of system (15) can be solved 

independently. Considering the property of Brownian motion processes, it is clear that 

expectations of the second and third term are zero. Taking the expected value on both sides of the 

first equation of system (15) gives 

  , ̅( )-    〈     
 {
 

 
  ( )  

   

  
,  (   )    (   )      (   )-}〉  , ̅-        (  ) 

From (19), according to (2), the moment Lyapunov exponents for the averaged system are 

 ( )     
   

    , ̅( )-

 
                                                                                                   

   〈     
 {
 

 
  ( )  

   

  
,  (   )    (   )      (   )-}〉        (  ) 

and the Lyapunov exponent is given by 

  
  ( )

  
|
   

  8   
  
 

 
,  (   )    (   )      (   )-9                        (  ) 

The boundaries for the almost-sure stability and the pth moment stability are determined by λ=0 
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and  (p)=0, respectively. 

 

 

4. Second-order stochastic averaging  
 

The first-order stochastic averaging may not be adequate in some apllications. Similar to 

deterministic systems, higher-order averaging may be applied to obtain better approximations. In 

this section, the second order averaging method from Hijawi et al. (1997a, b) is applied and the 

results are compared with those obtained using the first-order averaging. The terms in   
( )

and 

  
( )

contain products of sine and cosine functions with phase angle Ф(t). The functions with 

higher-order multiple phase angle represent rapid oscillations or higher harmonics in the solution 

for the slowly varying amplitude and phase shift. When considering only the system stationary 

response, the high-frequency oscillations have a localized effect and do not contribute significantly 

to the average behavior of the system over a long period of time. We can therefore eliminate the 

oscillatory effects and simplify the equations of motion by introducing the near-identity 

transformation 

 ( )   ̅( )     ( ̅  ̅  )                                                           (22) 

 ( )   ̅( )     ( ̅  ̅  )  

where  ̅( ) and  ̅( ) are the results of the first-order averaging. Differentiating Eq. (22) with 

respect to time t yields 

{
 ̇( )
 ̇( )

}   8 ̇̅
 ̇̅
9   {

   
  
   
  

}                                                       (  ) 

where 

  

[
 
 
 
    

   
  ̅

 
   
  ̅

 
   

  ̅
   

   
  ̅ ]
 
 
 
 

                                                         (  ) 

It is easy to determine that 

    

[
 
 
 
    

   
  ̅

  
   
  ̅

  
   

  ̅
   

   
  ̅ ]
 
 
 
 

                                                       (  ) 

Substituting Eq. (13) in Eqs. (23) we have that 

8 ̇̅
 ̇̅
9      {

  
( )
 
   
  

  
( )
 
   
  

}  √    {
   
( )
    

( )

   
( )
    

( )
}    
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            {
  
( )
 
   
  

  
( )
 
   
  

}    

{
 

  
   
  ̅

(  
( )
 
   
  
)  

   
  ̅

(  
( )
 
   
  
)

 
   

  ̅
(  

( )
 
   
  
)  

   
  ̅

(  
( )
 
   
  
)
}
 

 

              (  ) 

 √ {
   
( )
    

( )

   
( )
    

( )
}   

 
 

{
 

  
   
  ̅

.   
( )
    

( )
/  

   
  ̅

.   
( )
    

( )
/

 
   

  ̅
.   

( )
    

( )
/  

   
  ̅

.   
( )
    

( )
/
}
 

 

 

i.e. 

8 ̇̅
 ̇̅
9   {

  
 

  
 }   

 {
  
  

  
  }  √ {

   
     

 

   
     

 }   
 

 {
   
      

  

   
      

  }                            (27) 

where 

  
       ̅      ̅  

   
  
       

         ̅  
   
  
     ̅( )       ̅( ) 

  
    

   
  ̅

  
  

   
  ̅

  
      ̅       ̅          

  ̅ 

  
    

   
  ̅

  
  

   
  ̅

  
           ̅ 

   
   

    

 
       ̅            

            
  ̅ 

   
          

  ̅               
   

  
 
                                          (  ) 

   
    

   
  ̅

   
  

   
  ̅

   
  (    ̅       ̅  

     
 

     ̅)    

   
    

   
  ̅

   
  

   
  ̅

   
  (    ̅       ̅          

  ̅)   

   
    

   
  ̅

   
  

   
  ̅

   
           ̅          

    
   
  ̅

   
  

   
  ̅

   
           ̅     

The first-order term in the  ̇̅ of Eq. (27) is given by   
 , which, after averaging, should be the 

same as the result of the first-order averaging. Setting   
  to the averaged result of the deterministic 

term in the P of (13) 

  
     

   

 

 
∫  

( )
  

 

 

                                                               (  ) 

one obtains 

   
   ̅

   
     ̅                                                                   (  ) 
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Similarly, it is clear that 

   
 

   
     ̅                                                                    (  ) 

Substituting Eqs. (30) and (31) into (28), the above stochastic averaging method can be 

performed for Eq. (27). Following the same procedure as the first-order averaging, the averaged 

version of (27) is given by 

  ̅( )   ̅ 
   ̅  

    ( )   ̅  
    ( )                                             (  ) 

  ̅( )    ̅ 
   ̅  

    ( )   ̅  
    ( ) 

where higher-order terms are neglected and where 

 ̅ 
    ̅   

 
 (   )

 
 ̅      (   )    ̅ 

    ̅   
 
   
 

   (   ) 

   
        

 
   ̅    

 
   (   )        

     
        

 
  ̅   
 

  ( )         (  ) 

   
        

 
   
 
,    ( )     (   )- 

  ( ̅  ̅)  [   
 ]    ( ̅  ̅)   ( ̅  ̅)      ( ̅  ̅)  [ ̅  

 ]              

By taking the expected value on both sides of the first equation of system (32), one has 

  , ̅( )-  〈         
 {
 

 
  ( )  

   

  
,  (   )    (   )      (   )-} 

   
 (   )

 
      (   )〉  , ̅-                                              (  ) 

The pth moment Lyapunov exponents are 

 ( )    〈     
 {
 

 
  ( )  

   

  
,  (   )    (   )      (   )-}〉 

    
 (   )

 
      (   )                                                     (  ) 

and the Lyapunov exponent for the second-order stochastic averaging is given by 

  
  ( )

  
|
   

  8   
  
 

 
,  (   )    (   )      (   )-9   

 
   
 
   (   )      (  ) 

 

 

5. Stability regions  
 

Paper Kozić et al. (2008) investigated the sample stability of the system (4) when parametric 

excitations f(t) and g(t) were wideband stochastic processes of constant spectral density. By using 

the transformation of Khasminskii, they converted Eq. (4) into an Itô equation and obtained the 

stability condition for a different constant axial force and damping constant using the perturbation 

method. In order to compare their results with the results presented in paper Kozić et al. (2008), 

we take f(t) and g(t) to be white noise processes with auto-correlation and cross-correlation 

function from Falsone and Settineri (2011) given by 
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   (     )   , (  ) (  )-       (     )     (     )    
  (     ) 

   (     )   , (  ) (  )-    
    (     )     (     )    

  (     )       (  ) 

The correlation functions of the processes   ( ) and   ( ) are 

     (     )   ,  (  )  (  )-     (     )   

     (     )   ,  (  )  (  )-     (     )                                      (  ) 

     (     )   ,  (  )  (  )-      (     )   √     (     ) 

where 0≤ρ≤1 is the correlation coefficient. With respect to (9), cosine power spectral density 

functions of noises   ( ) and   ( ) are 

   
  
 

   
       

  
 

   
          

    

   
                                                 (  ) 

Using the above results for Lyapunov exponent in the first and second order stochastic 

averaging, the system is asymptotically stable only if λ is negative. Then, expression (21) for the 

Lyapunov exponent in the first order stochastic averaging is employed to determine the almost-

sure stability boundary of the system (4) 

     √     
                                                                (  ) 

where     . By the same procedure applied to expression (36), the Lyapunov exponents for the 

second-order averaging are employed to determine the almost-sure stability boundary of the 

system (4) 

          √    
    

 (  
       )                                         (  ) 

It is clear that if ρ=0, then processes  ( ) and  ( ) are non-correlated, and condition (41) is 

reduced to (40). Then, the almost sure stability boundary determined on the basis of the obtained 

expressions from the first and second order stochastic averaging is the same. When ρ≠0, then 

processes of  ( ) and  ( ) are correlated and the almost-sure stability boundary decreases (41), 

the smallest when ρ=1. These values for the almost-sure stability boundary will be compared with 

that of the paper Kozić et al. (2008) obtained by the perturbation method for the same system. 

Based on the results from references (Kozić et al. 2008, Eq. (45)), in which we replace      
  

  , we found the almost-sure stability boundary of the system (4) 

   √    
    

   
                                                          (  ) 

For the purpose of comparison the almost-sure stability boundaries in the first and second-order 

stochastic averaging Eqs. (40), (41) along with those obtained in Kozić et al. (2008) by the 

perturbation method in the first perturbation Eq. (42), for different values of   are shown in Fig. 1. 

We can notice that the curves which define the stability boundaries are quite close to each other 

for small values of the damping coefficient  . Also, see that the condition for almost sure stability 

obtained by stochastic averaging in the second-order is the strictest. 

In order to illustrate of the analytical results of the pth moment stability from the first and 

second-order stochastic averaging Eqs. (20), (35), and the results in Kozić et al. (2008, Eq. (48))  
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Fig. 1 Comparison of stability boundaries for the almost-sure stability for different values of   and for ρ=1 

 

  

 

Fig. 2 Comparison of stability boundaries for the pth moment stability for different values of   and for ρ=1 

 

 

for various values of p=1,2,4 are shown in Fig. 2.  

By comparing stability regions shown in Fig. 2, it can be seen that the moment stability 

boundaries become narrower as p increases. Also indicates that the second-order averaging method 

does not improve the accuracy of approximation significantly. Therefore, the aproximate results 

from the first-order averaging are acceptable in engineering applications. 

 

 

6. Numerical determination of the pth moment Lyapunov exponents 
 

Numerical determination of the pth moment Lyapunov exponents is important in assessing the 
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validity and the ranges of applicability of the approximate analytical results. In many engineering 

applications, the amplitudes of noise excitations are not small and the approximate analytical 

methods, such as the method of perturbation or the method of stochastic averaging, cannot be 

applied. Therefore, numerical approaches have to be employed to evaluate the moment Lyapunov 

exponents. The numerical approach is based on expanding the exact solution of the system of Itô 

stochastic differential equations in powers of the time increment h and the small parameter , as 

proposed in Milstein and Tret’Yakov (1997). The state vector of the system (8) is to be rewritten 

as a system of Itô stochastic differential equations with small noise in the form 

           

    0       .   
 

 
/1    √ 

√ 

  
     ( )  √ √      ( )              (  ) 

where    
 

  
 ( ),    

 

  
  ̇( ) and   ( ),   ( ) are the standard Wiener processes;   and   can 

be determined using the expression (37). For the numerical solutions of the stochastic differential 

equations, the Runge-Kutta approximation may be applied, also with error    (      ). The 

interval discretization is ,    - : *                                +  and the 

time increment is          . The following Runge-Kutta method is obtained for the (k+1)th 

iteration of the state vector   (     ) 

  
(   )

   
( )
.   

( )
 √    

( )
     

( )
/    

( )
.   

( )
 √    

( )
     

( )
/  

  
(   )

   
( )
.   

( )
 √    

( )
     

( )
/    

( )
.   

( )
 √    

( )
     

( )
/              (  ) 

where 
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and random variables  and  are simulated as 
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Having obtained L samples of the solutions of the stochastic differential Eq. (43), the pth moment 

can be determined as follows 
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(a) (b) 

 
(c) 

Fig. 3 Variation of the moment Lyapunov exponents,  (p) with p, for different values σf=1.0, 4.0 and 8.0 
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By the Monte-Carlo technique, we numerically calculate the pth moment Lyapunov exponents for 

all values of p of interest defined as 

 ( )  
 

 
    ,‖ ( )‖ -                                                           (  ) 

Fig. 3 and Fig. 4 show the comparison of approximate analytical resulrs for moment Lyapunov 

exponents in the first and the second-order stochastic averaging given Eqs. (20), (35) and Monte 

Carlo simulation results for different values of                and                 . The 

analytical results for moment Lyapunov exponents in the first perturbation obtained in Kozić et al. 

(2008, Eq. (30)) are also included in this figures. In Monte Carlo simulation, the sample size for 

estimating the expected value is       , time step of integration is           [s] and the 

total length of time for simulation is       [s]. It can be seen that the first-order stochastic 

averaging results agree with the simulation results very well when       and    are small, i.e., the 

intensity of noises is weak, as shown in Fig. 3(a). On the Fig. 3 and Fig. 4 also indicate that the 

second-order stochastic averaging method does not improve the accuracy of approximation 

significantly. Therefore, the approximate results from the first-order stochastic averaging are 

acceptable in engineering applications. 
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(a) (b) 

 
(c) 

Fig. 4 Variation of the moment Lyapunov exponents,  (p) with p, for different values σg=0.8, 1.0 and 1.2 

 

 

7. Conclusions 
 

In this paper, the dynamic stability of a single degree-of-freedom system under the parametric 

excitations of correlated wideband noises is studied. The averaged Itô differential equations 

guverning the pth norm is established and then the method of stochastic averaging, both the first 

and second-order, is applied to obtain analitical results for the moment Lyapunov exponents and 

Lyapunov exponent in terms of small fluctuation parameter  . Moment Lyapunov exponents are 

important characteristic numbers for describing the dynamic stability of a stochastic system. When 

the pth moment Lyapunov exponent is negative, the pth moment of the solution of the stochastic 

system is stable. For stochastic dynamical systems described by Itô differential equations, a Monte 

Carlo simulation algorithm used to determine the moment Lyapunov exponents. Monte Carlo 

simulation approaches complement approximate analytical method of stochastic averaging of the 

first-order and second-order in the determination of moment Lyapunov exponents and provides 

criteria an assessing the accuracy of approximate analitical results. It can be concluded, from the 

approximate analitycal results and the Monte Carlo simulation results of the moment Lyapunov 

exponents, that the increase of noise intensity     the stability region for     becomes decrease, 

which indicates decrease the stability of the system. Also, with the increase of noise intensity     

the stability region of the pth moment for     dwindles away as expected. This results are useful 

in engineering applications. 
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