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Abstract.  In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is 
investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, 
whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the 
von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations 
are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. 
Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable 
simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the 
assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. 
Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It 
is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces 
and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape. 
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1. Introduction 

 

When a structure is subjected to compressive in-plane loads, the buckling phenomenon may 

occur and is distinguished via a rapid change in displacements due to an increment in loading 

process. Buckling resistance is an important factor which should be taken into consideration for 

design purposes. For the cases when loads are below the yield limit, buckling phenomenon is of 

high importance and have to be studied in elastic range. 

Sandwich structures with soft core made of foam or low-strength honeycomb like Aramid or 

Nomex are used in various industrial applications such as aerospace and civil engineering. The use 

of a foam or lowstrength honeycomb core rather than a metallic honeycomb is advantageous in 

terms of weight and manufacturing processes and resources. The major difference between a 

metallic honeycomb and a soft core is its flexibility in the vertical direction. This flexibility, 

significantly affects behavior, especially under localized loads, and yields quite different behaviors 

as compared to other structures that have a stiff honeycomb core. The general approach assumes 

that the global buckling of the beam and the local buckling of the skins are uncoupled. The global 

buckling is defined by the solution of an equivalent beam, which incorporates the shear stiffness of  
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the core in the flexural rigidity of the beam. Local buckling is determined by considering the 

isolated skins as a beam resting on an elastic foundation provided by the core in the vertical 

direction. 

A similar approach, which assumes that no interaction between the skins exists in the local 

buckling mode, was used by Bulson (1970) and by Brush and Almroth (1975). This approach is 

satisfactory as long as the core is incompressible in the vertical direction. However, when a 

compressible type of core is considered, an interaction between the global and local buckling 

modes exists, as well as collaboration between the two skins. Hence the critical mode can be 

shifted from the global mode to the local one and vice versa. They replaced the sandwich structure 

with a high-order shear deformable beam but were unable to determine the local buckling modes 

as well as the imperfection effect on overall behavior. Hunt and Da Silva (1990a, b) used a 

different approach, based on energy methods and superposition of symmetrical and 

nonsymmetrical buckling modes. This approach is limited to specific configurations and to 

specific boundary conditions. Frostig and Baruch (1990) and Frostig et al. (1991), analyzed the 

sandwich beams with soft core with the aid of a superposition approach. Frostig and Baruch 

(1993) presented the higher order buckling analysis of sandwich beams with transversely flexible 

core. Closed-form solutions are presented for simply supported beams with identical skins and 

only numerical results for other cases. Smith (1984) yielded a unified analysis method based on 

two-dimensional elasticity theory for evaluation of bending, buckling and vibration of multilayer 

orthotropic sandwich beams and panels. Cheng et al. (1995) presented a method of continuous 

analysis for predicting the local delamination buckling load of the face sheet of sandwich beams. 

In a research by Bozhevolnaya and Kildegaard (1998) a sandwich curved beam subjected to 

uniform loading is experimentally investigated. Wang and Shenoi (2001) performed an elasticity 

theory based approach for delamination and flexural strength of curved layered composite 

laminates and sandwich beams. They also performed the analysis of curved sandwich beams with 

a focus on debonding and buckling/wrinkling of the faces (Wang and Shenoi 2004). Lyckegaard 

and Thomsen (2005) formulated the buckling behaviour of straight sandwich beams joined with 

curved sandwich beams loaded in pure bending using two different models. A two-dimensional 

mechanical model is developed by Ji and Waas (2007) to predict the global and local buckling of a 

sandwich beam, using classical elasticity. 

In this paper, the governing equilibrium equations of a three layered sandwich curved beam in 

the von-Karman sense are obtained. Two skins are formulated in the Euler-Bernoulli sense 

whereas the host layer is formulated by the two dimensional elasticity equations. The pre-buckling 

deformations of the arch are obtained under the linear membrane pre-buckling deformations. 

Adjacent equilibrium criterion is used to establish the stability equations. A closed form solution 

suitable for curved beams with both edges simply supported is developed which results in closed-

form expression for the critical buckling pressures. Some numerical results are provided to study 

the effect of various involved parameters.  

 

 

2. Geometry of problem and kinematic relations 
 

A curved sandwich beam of the width b is considered. Other geometrical parameters of the 

model with the coordinate system are shown in Fig. (1).  

In the following, indices t, b refer to the upper (top) and lower (bottom) faces of the beam, 

respectively. Each face has its own curvilinear coordinate system (zi, si), where  
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                                                                                (       ) (1) 

The local coordinate system (r, ) for the core is polar and has its origin in the center of the 

beam curvature. The following assumptions form the basis of the presented model: 

1. The length of the beam is of the order of its characteristic radii of curvature L≤R. 

2. The faces may have a different thickness   and    that are small in comparison with the 

length of the beam and radii of curvature. The faces are treated as thin elastic panels that follow 

Bernoulli assumptions. 

3. The core of thickness    is fully bonded with the faces. The core is considered to be a 2-D 

elastic medium with resistance to shear and radial stresses. In-plane (circumferential) stress in the 

core is neglected.  

4. The kinematic relations of the core are those of small deformations and therefore they are 

linear. Note that, no priori assumptions on the deformation fields through the thickness of the core 

are made.  

5. Different kinds of the boundary conditions may be implemented for the various faces at the 

same section.  

 

 

 

Fig. 1 Geometry of the mathematical model (Bozhevolnaya and Frostig 2001) 

 

 

Fig. 2 Displacement in the element of the sandwich beam (a); internal resultants in the differential 

elements of the faces, stresses at the interfaces and stresses in the differential element of the core (b) 

(Bozhevolnaya and Frostig 2001) 
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Radial   ,   and circumferential    ,    displacements of the centroids of the face elements 

are shown in Fig. 2(a). In the polar coordinate system the kinematic relations for the faces read 

                                                                                           
 (2) 

                                                                              
 

 
 
 

  
             (3) 

In Eqs. (2) and (3)    and    are respectively, circumferential displacement  and circumferential 

strain in the skins that can be measured upwardly from the center of each skin. Furthermore  
 
 is 

equal to 

                                                                                 
 
 
      

 

  
 (4) 

In Eq. (3)     and    are the values of strain in the center of each skins and the curvature value 

of each skins respectively and are equal to 
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In the mentioned relation all derivations are considered based on angle  . The appropriate 

kinematic relations for the core are 
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Compatibility conditions emerge from the conditions of the fully bonded faces and core. 

At the upper interface 
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in the recent relation    is defined as follow 

                                                                                  
  

   
 (11) 

For the lower interface 

326



 

 

 

 

 

 

The analytical solution for buckling of curved sandwich beams with a transversely flexible core... 

                                                             |        |    
 

   |         (12) 

                                                    |         |    
 

   |          
  

 
 
 
  

                                        |          
  

   
(      

 )   |         (    )   
    

(13) 

in the recent relation    is defined as follow 

                                                                                     
  

   
 (14) 

The stresses in the beam constituents are shown in Fig. 2(b). The constitutive relations for the 

faces and for the core are 
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( )         
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( )                              (15a-d) 

Where 
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(16a-b) 

In the relation (16), A11 and D11 are laminate membrane stiffness and flexural stiffness 

respectively.  
  

( ) is the stiffness of each layer based on laminate angle such that 

                                           
  

( )  
  
       

  
   

 
   ( 

  
   

  
)            (17) 

where in the above relation we have 

                                                            
  
 

   

        
          

  
 

   

        
 

                                                                   
  
       

       
  
     

 

 

(18a-d) 

   and    respectively are axial force and bending moment for each skin that are defined as 

follow 

                                                           ∫    

  
 

   
 

            ∫     

  
 

   
 

  (     ) 
(19) 

Now with the aid of kinematic relations (2), (3), (7), (8) and (16)-(18) along with the 

simultaneous aid of constitutive relations (15), Eq. (19) reaches one to 
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                            (
   
    

  

  
 
)           (     ) (20a-b) 

 

2.1 The governing equations 
 

The mathematical formulation starts with the derivation of the field equations and the 

appropriate boundary and continuity conditions. After that, the solution of the stress and the core 

deformation field are obtained. The formulation ends with the governing equations expressed in 

terms of the unknowns and their solutions. The governing equations, the continuity requirements 

and the boundary conditions are derived via the variational principles, which minimize the total 

potential energy, as follows 

                                                                               (   )   (21) 

where in Eq. (21)     and   respectively are internal and external energies and the variation 

operator. The internal energy reads 

                                         ∫   

    

        ∫   

    

        ∫(            )

     

     (22) 

where in Eq. (22)    and    are the longitudinal normal stresses and strains in the upper skins and 

   and    are the longitudinal normal stresses and strains in the lower skins;    and  
  

  are the 

shear stresses and strains in the core;    and    are the vertical normal stresses and strains in the 

core;    ,     , and       are the volume of the upper and lower skins and the core, respectively;     

,     and     are the differential volume of the upper and lower skins and the core, respectively. 

To obtain    the value of strains should be set from Eqs. (3), (7), (8) into Eq. (22) which 

results in 
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(23) 

The value of differential volume is equal to 

                                                                                         (24) 

where in Eq. (24) 

                                                                                       (25) 

The external energy reads 

                            *∫ (                  )
 

   

    ∫ (                  )
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(26) 
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where in Eq. (26)  
 
,   ,   (i=t, b) are the external distributed vertical, horizontal and bending 

moments, at upper and lower skins,   ,   ,   (i=t, b) are the horizontal displacements, vertical 

displacements and the rotation at upper and lower skins, respectively. The case of buckling in the 

curved beam may be analyzed for various status of loading. Even though researches in this field 

show that buckling of curved beam is analyzed in the presence of uniformly distributed transverse 

load. In this regard also in this paper the buckling of curved beam in the presence of uniformly 

distributed load is analyzed. To this end, other external loads that are introduced in relation (26) 

are considered to be equal to zero and consequently the work relation derived from external forces 

will be simplified as follow 
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         ∫  
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In Eq. (27),         is the differential length in curvature line of the beam. Now by 

Substituting Eqs. (23) and (27) into (21) we will have 
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 ∫     
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To obtain the equilibrium equations relation (29) might be established. By equaling the 

coefficients of               
     ,         to zero the following equilibrium equations will be 

obtained. 
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According to Eq. (29), the boundary conditions in each end are as follows. 
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One can compute the displacement field in the core precisely. The last two governing equations 

in the relation (30) are related to equilibrium equations of the core. Of the first one we have 
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Fig. 3 Curved sandwich beam with simply supported boundary condition subjected to uniform pressure 
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where in the recent relation   is only function of  . By substituting    from the last equation into 

Eq. (30) we have 
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In Eq. (33),    is a constant value of integration. Using the core constitutive relations (15) we 

may write 
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To obtain constant values    and    we use the matching condition in the upper and lower 

points of core. According to the compatibility condition in these two points we can write 

at        
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By accomplishing the two equations simultaneously, the constants of    and    will be 

achieved as follow. 
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(37a-b) 

By defining parameter of    
   -   

      
 and setting the constants of    and    in the previous 
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equation, the function     of core will be  
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By certifying distribution of    we can obtain the distribution of    in the core. Using the core 

constitutive relations (15) we have. 
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 Substituting Eqs. (38) into (39) we have 
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By integration from relation (40) related to r in the interval [r    ] we will have. 
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Solving Eq. (41) for   , its distribution in the core will be as follow 
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It should be mentioned that by solving the related equations to the core all parameters have 

been related to variable τ( ). Therefore a new equation should be replaced by two equilibrium 

equations of the core. To obtain this equation we use the compatibility condition (36). At      we 

have.  

                                                                    |         (    )     
  (43) 

By equaling Eqs. (42) and (43) we have. 
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And after simplifications, relation (44) takes the form 
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(45) 

Eq. (45) along with the four first equilibrium equations, will be the governing equations. 

 

 

3. Pre-buckling analysis 
 

This study analyses the buckling of curved sandwich beam with flexible core which its upper 

skin is subjected to uniform load of intensity  
 
. In the pre-buckling analysis of curved beam, von-

Karman non-linear terms can be disregards. Deformation in the beam is not so great, consequently 

rotations of  
 
and  

 
 are not so great and therefore the values of  

 

  
and  

 

  
may be ignored. In other 

words in the case of pre-buckling only linear analysis is sufficient. Also in this case it is supposed 

that the beam contracts uniformly and therefore the components of displacement    ,    and    in 

the pre-buckling case can be disregarded. 

According to the above assumptions and using superscript of zero for pre-buckling case, the 

equilibrium equations in this case would be as follow (It should be considered that because of the 

uniform contraction in beam all derivatives would be ignored (Hodges and Simitses 2006)) 
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Fig. 4 Schematic of pre-buckling path and buckled form in a homogeneous curved beam 

with simply supported boundary conditions subjected to uniform load 

 

 

Based on the last relation (46) we conclude that distribution of shear in the pre-buckling state 

will be equal to zero. Therefore, first equations would be satisfied and third and fourth equations 

would be simplified as follow 
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To estimate the value of stress of   
  we use the relation   

       
 . According to the resulted 

distribution for    we can write 
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And consequently pre-buckling equations will be as follows 
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On the other hand according to the stress resultants and regardless of  
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 in the pre-

bucking case we will have 
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 (50a-b) 

By equaling relations of (49) and (50), the following equations for   
 and   

  will be achieved. 
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By solving two equations and two unknowns in the relation (51) for   
  and   

  we will have 
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and pre-bucking forces are equal to. 
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4. Stability equations 
 

For derivation of stability equations from the primary path the concept of adjacent equilibrium 

criterion is used. According to this criterion a bucking state on pre-bucking path is considered that 

is shown by superscript zero. This state is perturbed. The amount of this perturbation is nonzero. 

Because, if it is equal to zero the structure will remain on its initial path. If we show the amount of 

development by superscript one, we will have a new equilibrium path that its components will be 

as follow (Hodges and Simitses 2006) 
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Due to the increment in the displacement components, the stress resultants will perturb too. It 

should be considered that the values with superscripts one are very small and the second order of 

them will be disregarded. Accordingly, stability equations for curved sandwich beam will be as 

follow 
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(55a-e) 

The presented equations in relation (55) should be like an eigenvalue system with unknown 

coefficients   
  and   

 . It should be stated that   
    

    
  and   

  are the value of developments 

of stress resultants that are calculated as follow 
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Boundary conditions in this analysis are considered to be simply supported on two edges. For 

two edges of         these conditions are 
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According to obtained result for    and according to the fact that    and    are equal to zero 

in two edges, the boundary conditions will be simplified as follow 
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According to the definitions of   
  and   

  that are presented in relation (56), the above 

boundary conditions can be offered as follow 
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To satisfy the boundary conditions (59), functions    
 ,    
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 and    will be considered as 

follow 
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 (60a-e) 

The assumed mode shapes (60) are set in the stability equations. It is to mention that stability 

equations based on displacement components will be written as follow that for easy usage the 

superscript one is ignored. 
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Therefore if we set the substitute the solutions (60) in the relation (61) the problem will be 

written as follow 

                                                         ([ ]   [ ] )
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 (62) 

Where in relation (62), [ ]  and [ ]  respectively show elastic and geometric stiffnesses. By 

definitions of    
  

  
 elements of each of these two matrices can be written as follow 
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   (63a-y) 

where in derivation, the existent relations in the Eq. (63), the last stability equation is multiplied in 
 

   
in order to set the membersof the elastic matrix symmetric. Accordingly members of   are. 
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     (64a-y) 

By equaling determinant of the coefficient matrix of the problem there would be an eigenvalue 

problem in which critical pressure is an eigenvalue and the buckled shape of the beam will be like 

an eigenvector. As in the analysis of eigenvalue, the eigenvector is not specified uniquely, the 

values of lateral rising and longitudinal displacement at the state of bucking are not determined 

uniquely. For this reason the bucking shapes only show the schematic at the state of bucking. 

 

 

5. Results 
 

In this section, using Matlab software and the theory offered in the previous sections, bucking 

of curved sandwich beam with simply supported boundary conditions is analyzed. This analysis is 

established for orthotropic and isotropic face sheets. 

 

5.1 Numerical examples 
 

Example 1. In this example buckling analysis of curved sandwich beams with a transversely 

flexible core is done. Skins are composite in the cross-ply form. The type of skins is of graphite-

epoxy A54/3501 that has the following mechanical and geometrical properties. Numerical results 

are shown in Figs. (5) to (8).  

                                                                     

                          

                                                                      

In Fig. (5) for three values of elasticity module of core                      the critical 

pressure is obtained. The lay-up of the two skins is considered as [    ] . The results of the 

amounts of critical pressure is offered against the beam angle. As it is expected, keeping higher the 

elasticity module of core leads to the increasing of critical load.  

In Fig. (6) the effects of entire thickness of laminate on critical load is studied. Three below 

cases are considered 
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Table 1 Critical buckling load Pcr (MN/m) of curved symmetric sandwich beam subjected to uniform load 

 0 Ec (Mpa) Pcr (MN/m) 

30 

200 

400 

500 

79.04 

89.20 

90.08 

60 

200 

400 

500 

79.00 

87.28 

90.08 

90 

200 

400 

500 

77.68 

83.92 

90.08 

120 

200 

400 

500 

79.00 

83.92 

88.80 

150 

200 

400 

500 

77.60 

84.32 

88.40 

180 

200 

400 

500 

77.68 

83.92 

88.32 

 

 

Fig. 5 Variation of critical buckling pressure versus curved beam angle 

 

 

      {
       

      

       

 

Critical load is offered versus angle     Numerical results are given for three states of skin 

thickness. Core properties are assumed as                     . Stacking sequence is assumed as 
[    ] . As it is expected, as the thickness of skins increases, the critical load increasing. In each 

state, the amount of pile angle indicates the change in the bucking mode. 
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Table 2 The critical buckling load of curved sandwich beam subjected to uniform load 

 0 db=dt (m) Pcr (MN/m) 

30 

0.015 

0.02 

0.025 

46.45 

79.07 

127.70 

60 

0.015 

0.02 

0.025 

46.45 

79.01 

127.70 

90 

0.015 

0.02 

0.025 

44.41 

77.68 

127.70 

120 

0.015 

0.02 

0.025 

44.24 

79.01 

124.28 

150 

0.015 

0.02 

0.025 

44.38 

77.60 

122.69 

180 

0.015 

0.02 

0.025 

5.62 

77.68 

122.18 

 

 

Fig. 6 Variation of critical buckling pressure versus curved beam angle 

 

 

In Fig. (7) lay-up influence for two cross-ply laminates is analyzed. Two different arrays of 
[    ]  and [    ]  are studied. The thickness of the two cases is equal to         and each case 

consists of 4 layers with equal thicknesses. Core module is equal to           . According to 

Fig. (7) in the studied area the amount of critical load for case [    ]  is more than the state in 

which skins have [    ]  layup. 
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Table 3 The critical buckling load of curved sandwich beam subjected to uniform load 

 0        Pcr (MN/m) 

30 
[    ]  
[    ]  

46.45 

79.07 

60 
[    ]  
[    ]  

46.45 

79.01 

90 
[    ]  
[    ]  

44.41 

77.68 

120 
[    ]  
[    ]  

44.24 

79.01 

150 
[    ]  
[    ]  

44.38 

77.60 

180 
[    ]  
[    ]  

5.62 

77.68 

 

  

Fig. 7 Variation of critical buckling pressure 

versus curved beam angle 

Fig. 8 Variation of critical buckling pressure 

versus curved beam angle 

 

 

In Fig. (8) the layering influence and the number of layers on critical pressure is studied. The 

thickness of the two cases is considered as       . Core module is equal to           . Four 

different layups are considered that are 

  [    ]  
  [      ]  
  [         ]  
  [           ]  

According to Fig. (8), by adding two layers of    to the skins, the critical load of the structure 

increases. Critical load of pile with stacking (2) is much more than (1) and with the layup (4) is 

more than (3). Also adding two layers     to arrays leads to decreasing the critical load, because as 

it is obvious critical load in the state (3) is less than state (2). 

Example 2. In this example we study the critical load of composite curve sandwich beam with  
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Table 4 The critical buckling load of curved sandwich beam subjected to uniform load 

 0        Pcr (MN/m) 

30 

[    ]  
[      ]  
[         ]  
[           ]  

79.07 
104.88 

86.88 

90.95 

60 

[    ]  
[      ]  
[         ]  
[           ]  

79.01 

82.50 

69.41 

73.11 

90 

[    ]  
[      ]  
[         ]  
[           ]  

77.68 

82.14 

70.36 

74.23 

120 

[    ]  
[      ]  
[         ]  
[           ]  

79.01 

82.50 

69.41 

73.11 

150 

[    ]  
[      ]  
[         ]  
[           ]  

77.60 

81.63 

69.40 

73.18 

180 

[    ]  
[      ]  
[         ]  
[           ]  

77.68 

82.14 

69.40 

73.11 

 
Table 5 The critical buckling load of curved sandwich beam subjected to uniform load 

 0        Pcr (MN/m) 

30 

[      ]  
[      ]  
[      ]  

158.10 
93.16 

40.02 

60 

[      ]  
[      ]  
[      ]  

158.10 
80.45 

40.02 

90 

[      ]  
[      ]  
[      ]  

158.10 
77.50 

38.30 

120 

[      ]  
[      ]  
[      ]  

158.10 

78.17 

38.11 

150 

[      ]  
[      ]  
[      ]  

158.10 
78.08 

38.22 

180 

[      ]  
[      ]  
[      ]  

157.70 
77.50 

38.30 
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Fig. 9 Variation of critical buckling pressure versus curved beam angle 

 
Table 4 The critical buckling load of curved sandwich beam subjected to uniform load 

 0        Pcr (MN/m) 

30 

[    ]  
[      ]  
[         ]  
[           ]  

79.07 
104.88 

86.88 

90.95 

60 

[    ]  
[      ]  
[         ]  
[           ]  

79.01 

82.50 

69.41 

73.11 

90 

[    ]  
[      ]  
[         ]  
[           ]  

77.68 

82.14 

70.36 

74.23 

120 

[    ]  
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[           ]  

79.01 

82.50 

69.41 

73.11 

150 

[    ]  
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[           ]  

77.60 
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73.18 
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Table 6 The critical buckling load of curved sandwich beam subjected to uniform load 

 0 db=dt (m) Pcr (MN/m) 

30 

0.01 

0.015 

0.02 

0.025 

16.97 

35.52 

75.34 

112.86 

60 

0.01 

0.015 

0.02 

0.025 

16.46 

35.36 

62.83 

107.98 

90 

0.01 

0.015 

0.02 

0.025 

16.21 
35.62 

64.46 

101.21 

120 

0.01 

0.015 

0.02 

0.025 

16.39 

35.45 

62.57 

100.33 

150 

0.01 

0.015 

0.02 

0.025 

16.28 

35.17 

63.43 
100.76 

180 

0.01 

0.015 

0.02 

0.025 

16.33 

35.30 

62.74 

101.10 

 

 

soft core and composite skins in the form of Angle-ply. The core is flexible and skins follow the 

classical theory. The type of skins is of graphite-epoxy A54/3501that has the following mechanical 

and geometrical properties. Numerical results are shown in the Figs. (9) and (12).  

                                                                      

                          

                                                                    

In Fig. (9), the influence of layup skins on critical load is studied. Both of the two skins have 

the array of [  - ]
 
. The thickness of both skins is        and the radii of curvature are equal to 

             . Core elasticity module and the Poisson ratio are respectively         and    . In 

each laminate, the thicknesses of layers are the same. The numerical results for three various 

angles of layering φ
 
              are offered. The results show that in the three studied state by 

increasing layering angle, the critical load will decreases. Also layup angle and beam head angle, 

are influential parameters on the value of critical load and the critical shape of beam. 

In Fig. (10) the effect of skins thickness is analyzed. Both skins have the same thickness and 

have the arrays of [   -  ]
 
. The value of module and Possion's ratio of the core and geometric 

parameters of the core according to the mentioned cases are chosen in the Fig. (9). Four different 

values are considered for skins thicknesses. As we expected by increasing the thickness of skins  
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Fig. 10 Variation of critical buckling pressure versus curved beam angle 

 
Table 7 The critical buckling load of curved sandwich beam subjected to uniform load 

 0 rbc (m) Pcr (MN/m) 

30 

    

0.65 

    

46.76 

40.64 

38.11 

60 

    

0.65 

    

38.22 

38.64 

38.11 

90 

    

0.65 

    

39.17 

37.62 

38.11 

120 

    

0.65 

    

40.77 

37.83 

38.11 

150 

    

0.65 

    

38.48 

37.77 

38.11 

180 

    

0.65 

    

40.77 

37.62 

38.11 

 

 

the critical load will increase because beam elastic stiffness will increase by increasing the 

thickness. In each state the thickness of skin, curve has several relative maximum points that shape 

of the structure at the onset of bucking changes. 

In Fig. (11) the effect of core thickness is analyzed. The values of core elasticity module and 

the Poisson ratio are respectively         and    . Thickness of skins are equal to         and 

the skins follow the array of [   -  ]
 
. The radius of upper curve of core is equal to          .  
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Fig. 11 Variation of critical buckling pressure versus curved beam angle 

 

 
Fig. 12 Variation of critical buckling pressure versus core stiffness 

 

 

Three different thicknesses are chosen for the core that are      ,      and      . Therefore the 

internal radial curve is equal to          ,            and           . Results show that by 

increasing the thickness of the core the critical load increases unless the bucking mode changing 

occur (like what is observed in the angle φ     ). The buckling pressure intensively depends on 

beam angle and thickness of the core. 

In Fig. (12), the effect of core module for four curved beams is analyzed. All of the applied 

parameters are similar to Fig. (11). Thickness of skins are equal to        . The results show that 

by increasing the stiffness of core for the state of            the critical load will be enhanced. 

Even though, in the area         
 
         increasing the stiffness of the core lead to 
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decreasing the critical load. 

 

 

6. Conclusions 
 

In this study, the stability behavior of a sandwich arch with flexible core and composite 

laminated face sheets is studied analytically. Displacement field in the core is solved via the 

compatible elasticity equations, while for the two skins classical laminate theory is adopted. 

Various lay-ups and types of laminations are used for the faces. The resulted governing equations 

are established in general form via the virtual displacements principle. The case of an arch under 

uniform lateral pressure is analyzed. The pre-buckling solution is accomplished with proper 

linearizations and the stability equations are obtained via the adjacent equilibrium criterion. An 

exact solution is obtained for the case of a beam with both edges simply supported.  Analytical 

closed form phrase is presented to deduce the critical buckling load of the arch. As concluded, the 

stiffness of the core, thickness of the core, curved beam angle and face sheets lamination have 

influential effects on critical buckling loads of the arch. Furthermore, buckling shape of the arch is 

highly dependent to the above mentioned parameters.  
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