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Abstract.  In this paper, a new meta-heuristic algorithm named Ranked Particles Optimization (RPO), is 
presented. This algorithm is not inspired from natural or physical phenomena. However, it is based on 
numerous researches in the field of meta-heuristic optimization algorithms. In this algorithm, like other 
meta-heuristic algorithms, optimization process starts with by producing a population of random solutions, 
Particles, located in the feasible search space. In the next step, cost functions corresponding to all random 
particles are evaluated and some of those having minimum cost functions are stored. These particles are 
ranked and their weighted average is calculated and named Ranked Center. New solutions are produced by 
moving each particle along its previous motion, the ranked center, and the best particle found thus far. The 
robustness of this algorithm is verified by solving some mathematical and structural optimization problems. 
Simplicity of implementation and reaching to desired solution are two main characteristics of this algorithm. 
 

Keywords:  meta-heuristic optimization algorithm; Ranked Particles Optimization; RPO; particle; ranked 
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1. Introduction 
 

There are two general approaches for optimization, namely, mathematical programming and 

meta-heuristic algorithms. Some of mathematical programming approaches are linear 

programming, homogenous linear programming, integer programming, dynamic programming, 

and nonlinear programming which have been applied in many optimization problems. Most of 

these methods use gradient information to search the solution space near an initial starting point. In 

general, gradient-based methods converge faster and can obtain solutions with higher accuracy 

compared to stochastic approaches in fulfilling the local search task. However, for effective 

implementation of these methods, the variables and cost function of the generators should be 

continuous. Also, a good starting point is vital for these methods to be executed successfully. In 

many optimization problems, prohibited zones, side limits, and non-smooth or non-convex cost 

functions need to be considered. As a result, non-convex optimization problems cannot be solved 

by the traditional mathematical programming methods. Although dynamic programming or mixed 

integer nonlinear programming and their modifications offer some facility in solving non-convex 

                                                           
Corresponding author, Professor, E-mail: alikaveh@iust.ac.ir 



 

 

 

 

 

 

A. Kaveh and A. Nasrollahi 

problems, these methods, in general, require considerable computational effort. 

Nature and physics have always been two major sources of inspiration and most of the meta-

heuristic algorithms are inspired by solutions that nature herself seems to have chosen for hard 

problems. The Evolutionary Algorithm (EA) proposed by Fogel et al. (1966), De Jong (1975) and 

Koza (1990), and the Genetic Algorithm (GA) proposed by Holland (1975) and Goldberg (1989) 

are inspired from the biological evolutionary process. Studies on animal behavior led to Ant 

Colony Optimization (ACO) proposed by Dorigo et al. (1995) and Particle Swarm Optimizer 

(PSO) formulated by Eberhart and Kennedy (1995). Also, Simulated Annealing (SA) proposed by 

Kirkpatrick et al. (1983), Charged System Search (CSS) proposed by Kaveh and Talatahari 

(2010a), the Magnetic Charged System Search (MCSS) presented by Kaveh et al. (2013), and 

Colliding Bodies Optimization (CBO) developed by Kaveh and Mahdavi (2014) are introduced 

utilizing physical and mechanical phenomena. 

Each of the above mentioned algorithms has some benefits and drawbacks. For example, the 

implementation the PSO is easy and can search a continuous search space; however a lack of 

balance between exploration and exploitation reduces its robustness. Instead of devising a new 

meta-heuristic from zero, we can utilize the existing features in a new meta-heuristic to create a 

new robust algorithm. For instance, we can choose the PSO principals and use ranked selection 

method in GA to make the required balanced search in PSO. Also, we can use single agent meta-

heuristic algorithms, which do not provide capability of parallel processing, to deal with the 

violated particles from the feasible search space. 

The objective of this paper is to present a new optimization algorithm based on principles from 

existing researches in the field of meta-heuristic optimization algorithms, which will be called 

Ranked Particles Optimization (RPO). The main sources of inspiration of this new algorithm are 

Particle Swarm algorithm, Big Bang-Big Crunch by Erol and Eksin (2006), Genetic Algorithm, 

and Harmony search by Geem et al. (2001). 

The remainder of this paper is organized as follows: Section 2 presents the basic aspects and 

the characteristics of the RPO. Numerical examples are presented in Section 3 to verify the 

efficiency of the new algorithm, and some concluding remarks are provided in Section 4. 

 

 

2 Ranked particles optimization 
 

2.1 Background 
 

There has been great effort to create and improve various meta-heuristic optimization 

algorithms and this has led to various useful tools in this field. Many biological and social 

interactions between natural systems and many physical laws are utilized in optimization 

algorithms. On the other hand, many special concepts such as how to deal with violated variables 

from feasible search space, balancing global and local searches, and how to handle the constraints 

are developed to enhance the quality of the obtained solution. Each algorithm has its own 

characteristics and so none of them is perfect. Utilizing these useful tools in one algorithm can 

leads to a better optimization algorithm. Elements of an optimization problem are: (a) Cost 

Function, (b) Design variable (Solution), (c) Constraints, and (d) Search Space 

And the relations between the abovementioned elements are as follows 

Minimize: )(Xf                                                          (1a) 
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In which: maxmin XXX                                                      (1d) 

Where, f(X) is the cost function; X is the design vector (solution) consisting of p independent 

variables x1, x2, …, and xp; g1(X), g2(X),…, and gm(X) are m unequal constraints; h1(X), h2(X),…, 

and hn(X) are n equal constraints; and Xmin and Xmax are minimum and maximum feasible design 

vectors, therefore Eq. (1d) denotes the feasible search space of the problem. Note that there is not 

any relation between p, n, and m. 

 Steps of most of the meta-heuristic algorithms are as follows: 

 

2.1.1 Initialization 
Most of the meta-heuristic algorithms need a population of initial solutions. Usually, these 

initial solutions are produced randomly in the search space. 

 

2.1.2 Searching for a better solution in the feasible search space 
Having random initial solutions, the existing solutions should be updated using a logical 

manner. This process is called searching.  In this step, solutions are updated iteratively using a 

search engine which is inspired from nature or physics. 

To reach a good solution, search engine of each algorithm should provide two main phases 

which are (a) Exploration (diversification or global search), and (b) Exploitation (intensification or 

local search). At initial iterations, the algorithm should perform a global search and cover the 

whole search space. In this stage, some points which are expected to be near the global minimum 

of the cost function are found. Then at the latest iterations, the algorithm should perform a local 

search using the solution vectors found so far to increase the precision of the solution. In every 

meta-heuristic algorithm, there should be a balance between exploration and exploitation. Further 

exploration diversifies the optimization process and brings down the precision of the solution. On 

the contrary, further exploitation intensifies the optimization process the risk of finding a local 

optimum instead of a global optimum increases.  

 

2.1.3 Stopping criteria 
There are some criteria to finish the iterative process. Some of them are: 

• Maximum number of iterations: the optimization process is terminated after a fixed number of 

iterations, for example, 1,000 iterations.  

• Number of iterations without improvement: the optimization process is terminated after some 

fixed number of iterations without any improvement. 

• Minimum objective function error: the difference between the values of the best objective 

function and the global optimum is less than a pre-fixed anticipated threshold. 

• Difference between the best and the worst solutions: the optimization process is stopped if the 

difference between the objective values of the best and the worst solutions becomes less than a 
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specified accuracy. 

 

2.2 Presentation of ranked particles optimization 
 

In this section the new meta-heuristic algorithm, named Ranked Particles Optimization, RPO is 

presented. First, items of the algorithm and terminology of parameters existing in the RPO are 

defined here. These definitions are as follows: 

(a) Particle, P: Each solution in this algorithm is named a Particle. Number of particles is the 

population of the algorithm. 

(b) Particles’ Memory, PM: In RPO there is a memory in which some of the best particles are 

stored. Size of Particles’ Memory is named PMS and it depends on the problem. A large value of 

PMS results in high diversification and low values provides intensification for the algorithm. 

(c) Rank, R: Each particle in the PM is ranked such that the best particle has the rank of PMS 

and this rank decreases for each particle by unity, thus the rank of the worst particle in the PM is 1. 

(d) Ranked Center, C: ranked center of particles existed in the PM is calculated using Eq. (2) 






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
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i
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i

ii
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XR

C

1

1                                                               (2) 

This definition of C prevents the algorithm to be greedy but C is nearer to the best particle; this 

is inspired from selection process in the Genetic Algorithm using Rank method instead of roulette 

wheel. For example, if in this definition, ranked center is obtained using the inverse of the cost 

function, C will again be nearer to the best particle but this approach will intensify the algorithm 

and the risk of being trapped in the local minimum increases. 

(e) Velocity, V: velocity of each particle is the subtraction of new and previous location of the 

particle. Thus 
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In the RPO, the velocity of each particle is updated using three movements: (i) moving in the 

direction of the previous velocity, (ii) moving in the direction of Ranked Center, (iii) Moving in 

the direction of the best particle and is formulated as 
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Where, α and β are two constants which control convergence of the algorithm. Larger α leads to 

more diversification and larger β leads to faster convergence and more intensification of the  

algorithm. 
k

iV and 
1k

iV  are velocity of ith particle in the kth and k+1th iterations. 
1rand  and 

2rand are two random numbers. C
k
 is the center at iteration k. 

k

iX  is the ith solution particle in the 

iteration k and 
k

bestX is the best solution at kth iteration. And r is a value for preventing the  

algorithm to be trapped in a local minimum and is defined as follows 
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Fig. 1 Location of particles in different iterations of RPO 

 

 

Where P is a predefined value in the [0,1] and should be near to 1. If r=−1 some particles 

recede from the ranked center and other parts of the search space are explored and this ensures that 

the particles are not trapped in a local minimum.  

Eq. (4) is like velocity definition of the PSO but it uses the center of ranked particles instead of 

local best. This modification causes global search at the initial searches when particles are far 

apart, because center is far from the best particle; and in the latest searches when particles are near 

each other, it provides a local search around the best particle. Therefore, it makes a balance 

between exploration and exploitation. Fig. 1 shows the movement of particles in the RPO. In this 

figure it can be seen that the distance between ranked center and the best particle is high at initial 

stages and movement along center and the best particle provides global search and in the latest 

stages of algorithm progression, this distances get smaller and a local search is performed about 

the best particle and center. 

There is a problem in relation to many meta-heuristic algorithms: how to deal with an agent 

violating the limits of the variables. In order to solve this problem, one of the simplest approaches 

is utilizing the nearest limit values for the violated variable. Alternatively, one can force the 

violating particle to return to its previous position, or one can reduce the maximum value of the 

velocity to allow fewer particles to violate the variable boundaries. Although these approaches are 

simple, they are not sufficiently efficient and may lead to reduce the exploration of the search 

space. This problem has previously been addressed and solved using the Harmony Search-based 

handling approach (Kaveh and Talatahari 2009a). According to this mechanism, every component 

of the solution vector violating the variable boundaries can be regenerated from the PM as: 

A new harmony vector is improvised from the PM based on PMCR and PAR. With the 
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probability of PMCR the new vector is generated from PM and with the probability of (1-PMCR) 

the new vector is generated randomly from possible ranges of values. The pitch adjusting process 

is performed only after a value is selected from PM. The value (1-PAR) sets the rate of doing 

nothing. A PAR of 0.25 indicates that the algorithm will select a neighboring value with 

0.25×PMCR. It is recommended not to set PMCR as 1.0 because it is probable that the global 

minimum does not exist in PM. With regard to the foregoing statements, the search of PM is 

summarized in Eq. (6). In which the term “w.p.” represents “with the probability. 
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Regarding the above definitions, steps of the RPO can be expressed as follows: 

 

2.2.1 Initialization of the optimization algorithm  
Eq. (7) is utilized to randomly generate particles so to cover the entire design space and initial 

velocities are considered to be zero.  

 minmaxmin XXrandXX                                                 (7) 

 
2.2.2 Evaluate particles  
The cost function is computed for each particle and PMS of particles are stored in the PM. 

Assign ranking to the particles stored in the PMS such that the best particle has a rank equal to 

PMS and the worst one has a rank equal to 1 and others have rank between 1 and PMS by unit 

steps. Also, the ranked center of stored particles is calculated using Eq. (2).  

 
2.2.3 Update particles' positions  
The position of each particle is updated with Eq. (3) based on the velocity and previous 

position of the particle. If new position of each particle is outside feasible search space, its position 

should be corrected using harmony search as presented in Eq. (6). 

 
2.2.4 Update particles' velocities  
The velocity of each particle is updated according to Eq. (4) based on the velocity and position 

of ranked center and the best particle in the PM. 

 

2.2.5 Update memory  
If Step 2.2.3 results in a better solution than particles stored in the PM, the new particle is 

included in the PM and the worst particle in the PM is excluded.   

 

2.2.6 Stopping criterion  
Repeat steps 2.2.2 to 2.2.4 until one of considered stopping criteria is met. 
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Fig. 2 Flowchart of RPO 

 

 

The abovementioned steps are shown in the flowchart of Fig. 2. 

 

 

3. Verification of the ranked particles optimization 
 

In order to verify the efficiency of the new algorithm, some numerical examples are considered 

from literature. The examples contain 14 uni-modal and multi-modal functions. These numerical 

examples are presented in Section 3.1. The performance of the RPO to optimize these functions is 

investigated in Section 3.2. In Section 3.3, some well-studied engineering design problems taken 

from the optimization literature are used to illustrate the way in which the proposed method works. 

Also, in this section, a new optimization problem is presented and optimal design of this problem 

is implemented using some well-known optimization techniques for comparison. 
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Table 1 Specifications of the benchmark problems 

Function name Interval Function 
Global 

minimum 
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Similar to the other meta-heuristics, for the RPO, a large value for the number of particles 

increases the search strength of the algorithm as well as the computational cost, and vice versa a 

small number causes a quick convergence without performing a complete search. 

Here, the number of Particles is set to 20 and the maximum number of the permitted iterations 

is considered as 100. For this problems, PMS and P are 5 and 0.95, respectively. α in mathematical 

problems is 0.5 and in structural problems is 1. β in both mathematical and structural problems, 

except for the fourth structural problem is 1. In the fourth structural problem, influence of different 

values of β on performance of the RPO is investigated. These values seem to be suitable for 

finding the optimum results. Also, the value of PMCR is set to 0.95 and that of PAR is taken as 

0.10. Each problem is solved 50 times using RPO and the best result, mean of results, worst result, 

and standard deviation of obtained results from different runs are calculated. 

 

3.1 Description of the mathematical examples 
 

In this section, a number of benchmark functions chosen from Tsoulos (2008) are optimized 

using RPO and compared to GA, some of its variations, CSS and RO by Kaveh and Khayatazad 

(2012) to verify the efficiency of RPO. The description of these test problems is provided in Table 

1. When the dimension is selected as 2, a perspective view and the related contour lines for some 

of these functions are illustrated in Fig. 3. 

 

3.1.1 Results 
The results obtained by RPO are listed in Table 2 along with those obtained by GA, some of its  

412



 

 

 

 

 

 

A new hybrid meta-heuristic for structural design: ranked particles optimization 

 

Fig. 3(a) A perspective view and the related contour lines for some of function when n=2 (a) Aluffi-

Pentiny, (b) Becker and lago, (c) Bohachevsky 1 

 

 

variations, CSS, and RO. The numbers denote the average number of function evaluations from 50 

independent runs for every objective function described in Section 3.1. The numbers in 

parentheses represent the fraction of successful runs in which the algorithm has located the global 

minimum with predefined accuracy, which is taken as ε=fmin−ffinal=10
-4

. The absence of the 

parentheses denotes that the algorithm has been successful in all independent runs. To sum up, 

comparison of the results demonstrates that RPO has a faster convergence than other considered 

algorithms. 
 

413



 

 

 

 

 

 

A. Kaveh and A. Nasrollahi 

 

Fig. 3(b) A perspective view and the related contour lines for some of function when n=2, (a) 

Camel, (b) Branin, (c) Bohachevsky 2 

 

 
Table 2 Performance comparison for the benchmark problems 

Function GEN GEN_S GEN_S_M_LS CSS RO RPO 

Aluffi Pentiny 1360 (0.99) 1360 1253 804 331 221 

Bohachevsky 1 3992 3356 1615 1187 677 461 

Bohachevsky 2 20234 3373 1636 742 582 468 

Becker and Lago 19596 2412 1436 423 303 237 

Branin 1442 1418 1257 852 463 221 

Camel 1358 1358 1300 575 332 241 

Cb3 9771 2045 1118 436 262 224 
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Table 2 Continued 

Cosine mixture 2105 2105 1539 1563 802 249 

De Jong 9900 3040 1281 630 452 283 

Exponential n=2 938 936 807 132 136 110 

Exponential n=4 3237 3237 1496 867 382 225 

Exponential n=8 3237 3237 1496 1426 1287 451 

Griewank 18838 (0.91) 3111 (0.91) 1652 (0.99) 1551 1091(0.98) 468 

Rastrigin 1533 (0.97) 1523 (0.97) 1381 1402 1013(0.98) 323 

Goldstein and Price 1478 1487 1325 682 451 283 

 

 

Fig. 3(C) A perspective view and the related contour lines for some of function when n=2 (a) 

Exponential, (b) Goldstein and price, (c) Cb3 

 

 

3.2 Engineering design problems 
 

Three engineering design problems which have been previously solved using a variety of other 

techniques are considered to show the validity and effectiveness of the proposed algorithm. Also, a  
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Fig. 3(D) A perspective view and the related contour lines for some of function when n=2 (a) 

Griewank, (b) Rastrigin 

 

 

new structural optimization problem is introduced here and solved using some existing meta-

heuristics and RPO to compare them with the new algorithm. In utilizing the penalty functions, if 

the constraints are between the allowable limits, the penalty will be zero; otherwise, the amount of 

penalty is equal to the normalized violation Kaveh and Talatahari (2009b).  

The objective function considered for the examples is defined as follows 





N

i

ii XLXW
1

..)(                                                             (8) 

Where X is the vector of design variables, and in the examples of this study, it is the vector of 

cross sectional area of the members; ρ is the material density, and Li is members length; and N is 

the number of elements. 

To handle the constraints, a simple penalty approach is employed. The penalty function is 

defined as 


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i
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1                                                               (9) 

Where M is the number of constraints; λ is the Lagrange coefficients, and in this example it is 

considered to be 10; and Ci is ith constraint violation ratio, and it is defined as follows: 

To control that the element stresses to be less than the allowable value, Ci is defined as 







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                                                (10) 
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Fig. 4 Geometry and element numbering of the 25-bar element space truss 

 
Table 3 Loading conditions for the 25-bar spatial truss 

Node 
Case 1 Case 2 

Px kips (kN) Py kips (kN) Pz kips (kN) Px kips (kN) Py kips (kN) Pz kips (kN) 

1 0.0 20 (89) -5.0 (-22.25) 1.0 (4.45) 10.0 (44.5) -5.0 (-22.25) 

2 0.0 -20 (-89) -5.0 (-22.25) 0.0 10.0 (44.5) -5.0 (-22.25) 

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 

4 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 

 

 

Where i denotes the ith element; ζi is the stress of the ith element; and ζall is the allowable 

stress. 

And to control the nodal displacements to be less than the allowable value, Ci is defined as 











else

if
C alli

all

i

i

0

1 



                                                 (11) 

Where i denotes the ith node; δi is the displacement of the ith node; and δall is the allowable 

displacement. 

Finally, to minimize the weight of structure, and to ensure that the structure will provides stress 

and displacement requirements, the following function should be minimized: 

  PXWX  )(                                                           (12) 

Where Ф(X) is known as the penalized cost function. 
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3.2.1 A 25-bar spatial truss structure 
A 25-bar spatial truss structure is considered with the topology and nodal numbering shown in 

Fig. 4. Table 3 shows two load cases for which the design is performed. In this example, the 

material density is considered as 0.1 lb/in
3
 (2767.990 kg/m

3
) and the modulus of elasticity is taken 

as 10,000 ksi (68,950 MPa). Twenty five bars are classified into eight groups, as follows: 

(1) A1; (2) A2~A5; (3) A6~A9; (4) A10~A11; (5) A12~A13; (6) A14~A17; (7) A18~A21; and 

(8) A22~A25. 

Maximum displacement limitations of ±0.35 in. (±8.89 mm) were imposed on every node in 

every direction and the axial stress constraints vary for each group shown in Table 4. The range of 

cross-sectional areas varies from 0.01 to 3.4 in
2
 (from 0.06452 cm

2
 to 21.94 cm

2
). 

 

 

 

Fig. 5 Geometry and element grouping of the 120-bar element space truss dome 
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Table 5 Performance comparison for the 25-bar spatial truss 

Author Schutte and Groenwold (2003) Kaveh and Talatahari (2009b) Lee and Geem (2004) Present Work 

Group PSO HBB–BC HS RPO 

1 0.01 0.01 0.01 0.010 

2 2.121 1.993 2.121 2.024 

3 2.893 3.008 2.893 2.917 

4 0.01 0.01 0.01 0.010 

5 0.01 0.01 0.01 0.010 

6 0.671 0.679 0.671 0.677 

7 1.611 1.611 1.611 1.684 

8 2.717 2.678 2.171 2.691 

Best Weight 

(lb) 
545.21 545.16 545.21 545.132 

Number of 

analyses 
9,596 12,500 15,000 2,460 

 

 

Table 5 provides some of solutions of this problem. From this table, it can be concluded that 

RPO has a solution slightly better than PSO, HBB-BC, and HS. Also, number of analyses, and 

consequently time and computational effort, in RPO implementation to reach the optimum 

solution is significantly less than other meta-heuristics presented in the table. 

 

3.2.2 A 120-bar spatial truss dome 
Design of a 120-bar spatial dome truss, shown in Fig. 5, is considered as the second example to 

compare the practical capability of the proposed algorithm. This dome is utilized in literature to 

find size optimum design. The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material 

density is 0.288 lb/in
3
 (7971.810 kg/m

3
). The yield stress of steel is taken as 58.0 ksi (400 MPa). 

This dome is considered to be subjected to vertical loading at all the unsupported joints. These 

loads are taken as −13.49 kips (−60 kN) at node 1, −6.744 kips (−30 kN) at nodes 2 through 14, 

and −2.248 kips (−10 kN) at the remaining nodes. The minimum cross sectional area of all 

members is 0.775 in
2
 (2 cm

2
) and the maximum cross-sectional area is taken as 20.0 in

2
 (129.03 

cm
2
). The stress constraints of the structural members are calculated as per AISC (1989) 

specifications as illustrated in Eq. (13). The 120 bar spatial truss members are categorized into 7 

groups as shown in Fig. 5. For further optimal design of domes the reader may refer to Gholizadeh 

and Barati (2014) 

0
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Where, ζi
-
 is calculated according to the slenderness ratio using 
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Table 6 Performance comparison for the 120-bar spatial truss dome 

Element group 
Keleşoğlu and 

Ü lker (2005) 

Kaveh and 

Talatahari (2009a) 

Kaveh and 

Talatahari (2010b) 

Kaveh and 

Nasrollahi (2013) 

RPO 

(Present 

work) 

1 5.606 3.095 3.027 3.037 3.01372 

2 7.75 14.405 14.606 3.867 3.938936 

3 4.311 5.020 5.044 3.241 3.237504 

4 5.424 3.352 3.139 2.246 2.236409 

5 4.402 8.631 8.543 1.637 1.606373 

6 6.223 3.432 3.367 2.492 2.481978 

7 5.405 2.499 2.497 2.301 2.301893 

Best Weight (lb) 38237.83 33248.9 33251.9 18292.8 18251.58 

Mean weight (lb) N/A N/A N/A 18377.6 18324.88 

Worst weight (lb) N/A N/A N/A 18489.5 18490.51 

Standard deviation N/A N/A N/A 176.525 70.22976 

 

 

Fig. 6 Nodal displacement and stress of elements of designed 120-bar truss dome 
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Where, E is the modulus of elasticity; Fy is the yield strength of steel; Cc is the slenderness ratio 

which divides the elastic and inelastic buckling regions  yc FEC 22 ; and λi is the slenderness 

ratio. The relation between cross sectional area and radius of gyration for Pipe sections is as 

follows 

2

1

c
Acr                                                               (15) 

Where, r is the radius of gyration and A is the cross sectional area; 
1c  and 

2c are constants 

which for pipe sections are 0.4993 and 0.6777, respectively. The displacement constraint for this 

example is 0.1969 in in every direction.  

The optimization results reported in literature and RPO are presented in Table 6. From this 

table it can be concluded that RPO which results is better in value and standard deviation, 

performs efficiently. To prove that none of constraints is violated, Fig. 6 is presented. From this 

figure, it is seen that displacement of each node and stress of each element is in the allowable 

bounds. 

 

 

 

Fig. 7 Geometry and element grouping of the 582-bar spatial truss 
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3.2.3 A 582-bar spatial truss tower 
Geometry and 32 element grouping of a 582-bar spatial truss tower shown in Fig. 7 is the same 

as works of Hasancebi et al. (2009). However, since, in this study, application of RPO is 

considered only in problems with continuous search space, it is changed and solved using different 

meta-heuristic. Also, influence of parameter β in the Eq. (4) is investigated in this section. This 

parameter controls the convergence and distinguishes exploration and exploitation of the 

algorithm. A large value of β leads to a fast convergence and more exploitation and may result in 

an immature solution. On the other hand, small values of β cause more exploration and heighten 

the probability of finding a better solution. However, a small value of β reduces the convergence 

of the algorithm and more analyses are needed for solving the problem and large value of β may 

lead to an immature solution. Therefore, this problem is solved using different values of β to verify 

the mentioned claim. 

In this problem, modulus of elasticity and yield stress are E=29,000 ksi (203893.6 MPa) and 

Fy=36 ksi (253.1 MPa), respectively. The material density is 0.288 lb/in
3
 (7971.810 kg/m

3
). The 

stress constraints of the structural members are calculated in according with AISC (1989) 

specifications as illustrated in Eq. (8). The minimum and maximum cross sectional area are 0.775 

in
2
 and 28.5 in

2
. 

The imposed loads on the structure are as follows: A single load case is considered such that it 

consists of lateral loads of 1.0 kips (4.448 kN) applied in both x- and y-directions and a vertical 

load of -7.5 kips (33.362 kN) applied in the z-direction at nodes of section 1. Lateral loads of 1.0 

kips (4.448 kN) applied in both x- and y-directions and a vertical load of -5 kips (22.241 kN) 

applied in the z-direction at nodes of section 2 of the tower. The maximum allowable displacement 

of each node is considered 12.5984 in (32 cm) which is 1/250 times the height of the tower. 

Table 7 presents the solution of this problem using different meta-heuristics and RPO with 

different values of β. It is seen that the best result is obtained when it is solved using RPO with 

β=1/4.  

Fig. 8 shows the convergence history of RPO with different values of β. As seen in this figure 

convergence rate of algorithm increases when the value of β is larger. Therefore, parameter β can 

be used to control the convergence rate of the algorithm to obtain a better solution. However, there 

is not a certain method for determining this parameter and for a new problem, it should be set by a 

try-and-error and can be investigated the influence of this parameter in the following studies. 

 

 
Table 7 Performance comparison for the 582-bar spatial truss 

Group    
RPO 

CSS PSO HS β=1 β=1/2 β=1/3 β=1/4 

1 2.23 3.57 1.79 1.66 1.70 1.62 1.93 

2 11.82 22.50 15.32 17.78 17.04 17.79 13.16 

3 6.38 7.99 6.03 6.56 5.92 5.89 6.25 

4 11.17 15.91 10.15 10.67 11.89 10.96 11.64 

5 6.21 12.55 7.02 5.44 5.76 5.50 5.39 

6 2.48 18.34 3.03 1.53 1.43 2.88 1.44 

7 8.75 17.17 8.55 8.73 8.54 8.67 8.56 

8 5.26 8.83 5.50 5.21 5.04 5.09 5.00 

9 1.72 26.19 2.79 1.96 1.79 2.07 1.55 
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Table 7 Continued 

10 8.93 23.96 10.72 8.89 9.73 8.49 7.61 

11 4.38 15.57 4.52 9.99 4.04 4.43 4.20 

12 12.56 6.16 10.63 9.50 9.01 12.32 9.00 

13 11.39 20.16 15.36 12.53 11.01 11.17 11.26 

14 10.27 22.89 11.71 9.07 10.66 9.42 9.65 

15 15.68 27.57 15.98 8.28 10.62 11.37 18.65 

16 7.01 6.40 7.62 8.31 7.62 7.17 6.84 

17 16.99 8.06 8.13 11.59 7.96 22.21 7.92 

18 5.30 14.83 5.85 5.34 4.95 4.72 5.13 

19 1.28 2.18 2.16 1.78 1.52 7.12 1.57 

20 6.04 11.03 10.51 24.40 11.19 19.33 8.52 

21 5.17 6.33 4.69 4.27 4.61 4.40 4.62 

22 5.36 1.81 1.50 0.78 0.78 0.78 1.47 

23 14.58 6.98 10.86 4.37 25.96 4.39 5.26 

24 3.82 5.35 4.58 5.06 3.96 3.73 4.89 

25 2.93 1.33 0.80 0.78 0.78 0.78 0.78 

26 7.59 27.80 5.14 5.67 3.35 17.31 5.80 

27 3.39 6.27 3.48 3.44 3.08 3.08 3.12 

28 1.94 5.00 4.08 1.74 0.78 5.85 0.78 

29 2.35 27.98 18.67 7.54 6.62 8.60 14.06 

30 2.46 11.08 2.26 4.35 1.85 2.55 1.81 

31 1.14 11.94 1.25 16.42 1.95 1.33 0.78 

32 10.57 25.74 4.59 2.02 1.98 12.49 2.73 

Best Weight (lb) 245215.19 477650.13 251511.86 252780.24 229974.06 253569.51 220704.11 

No. of analyses 5520 7140 7969 8920 9660 8480 6680 

 

 

Fig. 8 Convergence history of the 582-bar spatial truss problem using different values for β 
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4. Conclusions 
 

In this paper, a new meta-heuristic optimization algorithm namely Ranked Particle 

Optimization, (RPO) is presented. This algorithm is inspired from numerous works in the field of 

meta-heuristic algorithms. Similar to other meta-heuristics, RPO initializes by random solutions 

named Particles and evaluating the cost function for each random solution. Some of the best 

particles (PMS) are Ranked and stored in a memory (Particle Memory, PM). Ranked Center of 

stored particles is calculated and new solutions are determined by moving existing particles in the 

direction of previous Velocity, ranked center, and the Best Particle.  

Moving towards previous velocity of particles provides exploration and moving in the direction 

of the ranked center at initial stages is a global search an in the latest iterations is a local search, 

and moving towards the best particle provides exploitation. In one hand, ranked particles 

intensifies the influence of better particles, on the other hand prevents the algorithm to be trapped 

in a local minima. To make a balance between exploration and exploitation, most of the meta-

heuristics use a linear varying formula for velocity of displacement of particles to convert from 

global search phase to local search. In this study, a multiplier α and a power β is introduced to the 

velocity of the particles as well as linear decreasing inertia weight of PSO which is introduced 

here, too. Larger α and β leads to faster convergence and higher probability of trapping in a local 

minima. On the contrary, smaller value of these parameters increases the precision of the solutions 

but reduces its convergence rate. One example was solved using different values of β and it is 

concluded that we can reach to better solutions when a more suitable β is introduced to the 

algorithm. 

The main source of inspiration of RPO is PSO and BB-BC, but there are some substantial 

differences between RPO and these algorithms. First, movement in the direction of particles’ local 

best is replaced by a movement in the direction of ranked center. This idea is based in the BB-BC, 

and since center of best particles is always nearer to the global optimum than particles’ local best, 

it enhances the robustness of the algorithm. 

Second, in the RPO, a ranked center is used based on the rank selection process in the GA. But 

in BB-BC the mass center is calculated using inverse of the cost functions which intensifies the 

algorithm if a few particles have cost functions, and thus the particles may be trapped in local 

minima. 

Third, there is a robust method for handling the violated particles from feasible search space in 

RPO, and it is HS. This approach keeps progression of searching when some particles violates 

boundaries; because way of correction of positions of violated particles is also a meta-heuristic 

while in the PSO and BB-BC, the lack of such approach, cause a halt in the search of the 

algorithm. 

This new algorithm is applied to various mathematical and structural optimization problems 

and a good performance was observed in finding global optima with analyses. Finally, ease of 

implementation is another advantage of RPO. 
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