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Abstract.  A four-noded curved shell finite element for the geometrically non-linear analysis of beams 
curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the 
form of transversal segments of identical topology where each slice is formed using a number of the curved 
shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is 
modelled using various meshes and linear analysis results are compared to the solutions of a well-known 
computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly 
distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used 
in modelling open-section beams with curved or straight axes and circular plates under radial compression. 
Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and 
results are compared with each other. The advantage of this element is that curved systems can be 
realistically modelled and satisfactory results can be obtained even by using coarse meshes. 
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1. Introduction 
 

Bridges with box-girder sections have been widely preferred especially due to their relatively 

high torsional stiffness. Torsional stiffness is important for straight bridges in distribution of 

eccentric loads more effectively in cross-sectional direction and also for curved bridges which can 

be subjected to significant torsional effects.   

Cross-section types for box-girder bridges constructed to date are single-cell, multicell, and 

multispine box sections with rectangular or trapezoidal shapes. Analyses of single-cell and multi-

cell box girders have been made using folded plate or shell elements (Meyer and Scordelis 1971, 

Fam and Turkstra 1975, Moffat and Lim 1977) and using box beam elements considering flexural, 

torsional and distortional behaviours of box girders as given in Razaqpur and Li (1991). In Park et 

al. (2005), a thin-walled box beam element for straight box girder bridges has been developed and 

an eccentric loading was decomposed into flexural, torsional and distortional forces by using the 
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force equilibrium in order to consider the distortional behaviour of the multicell box girders 

independently. In Zhang and Lyons (1984), the thin-walled beam theory has been directly 

combined with the finite element technique to provide a new thin-walled box beam element which 

includes three extra degrees-of-freedom over the normal six degrees-of-freedom beam 

formulation, to take into account the warping and distortional effects.  

It is normally impossible to construct bridges entirely with straight axes. Therefore, designing 

some parts or all of the system with a curved axis becomes inevitable (Zhang and Lyons 1984, 

Hiroshi and Chai 1988, Hall 1996, Zureick et al. 2000, Razaqpur and Li 1994, 1997). An efficient 

finite segment method for the analysis of curved box girders with corner stiffeners was presented 

in Wang et al. (2005). A more exact horizontally curved beam finite element in which the true 

warping degree of freedom conforms to the bimoment was developed in Hsu et al. (1990) where 

the beam element can be used for both open and closed sections. Experimental studies of curved 

beams were also carried out by some researchers as in Zureick et al. (2000), Shanmugam et al. 

(1995).  

Second order effects gain importance for systems with thin walls like steel bridges and they 

need to be taken into consideration in order to make more realistic analysis. These effects are taken 

into account in Erkmen and Bradford (2009) where a total Lagrangian finite element formulation 

for the elastic analysis of steel-concrete composite beams that are curved in plan is developed. A 

displacement-based one-dimensional finite element model with geometric nonlinearity is 

introduced for thin-walled composite box beams and also for general thin-walled open-section 

composite beams in (Vo and Lee 2009, 2010) and a finite element model of spatial thin-walled 

beams with general open cross section is presented in Wang and Yang (2009). 

Triangular or quadrilateral finite elements are generally used in the modelling of curved bridges 

in the literature, see for instance Moffat and Lim (1977). However, significant errors may occur 

from the usage of coarse meshes due to the straight edges of the elements. Thus, very fine meshes 

need to be used to be able to model the curved parts of the system realistically which increase the 

computational cost. Using a curved element instead, enables the usage of coarse meshes in design 

which is more convenient. 

Developing such a curved finite element is the objective of the present paper. The proposed 

curved shell finite element has 7 degrees of freedom at each node and the shape functions and their 

derivatives are of a high polynomial degree. Thus, the element meets the expectations as 

satisfactory results can be obtained by using coarse meshes and geometrically non-linear analyses 

of thin walled open and closed section systems can be carried out by the inclusion of the second 

order effects, as will be illustrated with numerical examples. 

 
 
2. Curved shell finite element 
 

A segment of a curved box girder bridge modelled with a typical curved shell finite element 

discretization is shown in Fig. 1. 

Geometrical properties of the curved shell finite element with circular cross-section and the 

directions of the displacement parameters u, v and w are shown in Fig. 2. u and v indicate the 

displacements in s and  directions and w shows the displacement perpendicular to the element  

The elevation coordinate r is related to the coordinate s, the elevation coordinate Ro of the 

origin and the slope angle ϕ by which the elevation coordinates R1 and R2 of the element edges can 

also be determined, that is 
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Fig. 1  Box girder bridge segment with curved axis and its finite element mesh 

 

 
Fig. 2  3D(left) view and vertical section (right) of the curved shell finite element 
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The curved shell element can also be transformed into a ring sector element and a cylindrical 

element by setting the slope angle  to 0
o
 and 90

o
, respectively.  

 
2.1 Displacement functions and deformation field 
 

Defining any rigid displacement of the curved shell element in space depending on the 

translation and rotation components of point S, the displacements at any point can be expressed as 
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which have trigonometric functions in terms of the variable θ. 
     Membrane internal force variations in longitudinal direction gain importance in curved box 

girder beams. Thus, equivalent 3
rd

 order auxiliary shape functions (a1+a2+a3cosθ+a4sinθ)
 
are used 

as u and v displacement functions in direction to be able to represent the actual displacement and 

internal force distributions sufficiently. Although curvatures and bending moments are negligible 

in  direction, equivalent 3
rd

 order auxiliary shape functions are also used for w in order to provide 

the displacement continuity along the common edges of elements connected with different angles. 

Linear auxiliary shape functions are used in s direction for u and v while 3
rd

 order functions are 

used for w since βs is the derivative of w with respect to s. Equivalent linear auxiliary shape 

functions (c1cosθ+c2sinθ) are used in θ direction for the freedom βs. 

     Auxiliary shape functions and corresponding boundary conditions of the curved shell finite 

element are given in Table 1 where li(s) and λi(θ) indicate linear and fi(s), gi(s), φi(θ) and ψi(θ) 

indicate 3
rd

 order variations. 

The element nodes and their freedoms are given in Fig. 3. The directions of the degrees of 

freedom are different from the local element axes and they only coincide for the special condition 

ϕ=0°. 

The defined axis system is common for all elements connected with different slope angles. 

Thus, axis transformations will not be necessary in the assembly process of system stiffness 

matrices from element stiffness matrices. 
 

 
Table 1 Auxiliary shape functions and boundary conditions of curved shell finite element 
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Table 1 Continued 
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Table 1 Continued 
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Fig. 3  28 DOF curved shell finite element 

      

 

The relation between the displacement parameters of any node of the element and the 

displacement and rotation components at curvilinear coordinates of that node is 
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The expression which relates the distribution of the displacement components to the element 

freedoms is 
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Element displacement functions entirely satisfy the rigid displacement criterion for all 6 rigid 

movement components. In order to check this, nodal displacement functions are expressed in 

terms of these components as 
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Here, the nodal values of θi and ri 
should be taken at every node and Eq. (2) is obtained by 

multiplying these values by [Ad] matrix.  

     
2.2 Internal force-displacement relations 
     

Bending moments Mθ and torsional moments Msθ are negligible for curved box girder bridges 

in longitudinal direction. Therefore, the curvatures corresponding to these effects are not taken into 

account. 

The continuum strain-displacement relations in matrix form are 
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The relation between the strains and the nodal DOF is given by 

    dB                                                                   (8) 

where 
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Element internal forces can be collected in vector form as 
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so that the internal force-strain relation can be written as  

    DN                                                                 (12) 

with the assumption of linear elastic material.  

 
2.3 Stiffness matrix of shell finite element 
 

The terms of the element stiffness matrix [ke] for the elements with constant section can be 

obtained by using the virtual work theorem as 
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However, due to the complicated and long terms, Gauss integration is used to obtain the 

stiffness matrices of the elements with constant and variable sections.   

Thus, the numerical evaluation of the stiffness matrix terms is written as 
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Here, F and G are the number of integration points used in s and θ directions, respectively, and 
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Hf and Hg are the weight coefficients corresponding to these points. 

 
2.4 Second order stiffness matrix  
 

The stiffness matrix terms of the second order effects can be expressed as  
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using virtual work theorem. Here, Ns 
and Nθ are the membrane internal force components in s and 

θ directions, respectively.   

Using again Gauss integration, this formulation turns to 
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The element stiffness matrix including the second order effects is obtained by taking the sum of 

the first order terms and the additional second order terms as 

     II
e

II
e KKK                                                            (17) 

 

 

3. Numerical tests 
 
3.1 Box-girder beam with curved axis 
 

A simply supported steel box-girder beam with curved axis is studied. The geometry and  

 

 

 

Fig. 4 Curved box-girder beam 
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E=2.06×10

6
 kN/m

2
; v=0.30 

Fig. 5 Curved box-girder beam cross-section 
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Fig. 6 Macro-element models 

      

 

Fig. 7 Vertical displacements along the beam using 4 ME 

 

 

material properties of the system are given in Figs. 4-5. The beam which is subjected to an 

eccentric vertical point load of P=1000 kN at the midspan is modelled by the proposed shell finite 

element and SAP2000 using various number and 4 different types of macro-elements as shown in 

Fig. 6. 
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First, the beam is modelled using 4 ME with 4 and 6 elements at each ME. The obtained 

vertical displacements of the top left corner along the beam are comparatively plotted in Fig. 7. 

Displacements increase as the number of elements increase from 4 to 6 and it is obvious that there 

is a relatively significant difference between the results of the present study and those of SAP2000. 

     The same system is then modelled using 10 ME by SAP2000 and the results are compared to 

the results of the present study with 4 ME as given in Fig. 8. The displacements of SAP2000 are 

closer but still not satisfactory. 

Finally, the system is analysed by SAP2000 refining the meshes from 4 to 30 ME having 

different number of elements at each ME. It is seen from Fig. 9 that the most convergent results 

upon mesh refinement are obtained by using the proposed shell finite element only with 4 ME 

having 6 elements at each ME. Close results by SAP2000 are obtained when 30 ME with 12 

elements at each are used. 

 

 

 

Fig. 8 Vertical displacements along the beam using 4 and 10 ME 

    

 
Fig. 9 Vertical displacements along the beam using various number of ME 
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Fig. 10 Radial displacements along the beam 

      

 
Fig. 11 Bending moments in the radial direction 

 

 

Radial displacements of the curved box-girder beam are also examined. It is observed from Fig. 

10 that the results of the present study using a very coarse mesh (4 elements × 4 ME) and 
SAP2000 using a fine mesh (12 elements × 30 ME) show good agreement. Coarse mesh results of 

SAP2000 are very far from the others and the displacement curve obtained by using the present 

shell element modelled with 6 elements x 4 ME is the most satisfactory of all.   

In addition to the displacements, internal forces of the curved beam are examined. Bending 

moment values of section B in radial direction obtained using the proposed shell element and 

SAP2000 are comparatively given in Fig. 11 and it is seen that the moment values of the present 

study decrease as the number of elements per ME increase and satisfactory results cannot be 

achieved even by the usage of a fine mesh in SAP2000.  

Normal forces at section B in the radial direction which are expected to be zero along the beam 

can be achieved using 8 elements × 10 ME of the present shell element while 12 elements × 30  
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Fig. 12 Normal forces in the radial direction 

 

 

Fig. 13 Vertical displacements at the midspan obtained in the first and the second order theories 

 

 

ME are used in SAP2000 analysis in order to obtain zero values. 6 elements × 4 ME results using 

the proposed shell element are also satisfactory, Fig. 12.  

The curved box-girder beam is then subjected to increasing uniformly distributed loads in 

vertical direction and linear and geometrically non-linear analyses are carried out. 10 ME and 8 

elements per ME are used in the analyses. A straight line is obtained via the first order solutions as 

expected and it is seen that the rate of vertical displacements increase with the load increment 

when nonlinearities are taken into account. The vertical displacements at the midspan increase by 

3.5 times with the maximum applied load of 256.25 kN/m
2
, cf. Fig. 13. 

    
3.2 Circular plate 
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geometry and material properties of the system are given in Fig. 14 where h is the thickness and a 

is the radius. The system is analysed for two different support conditions which are simple and 

clamped supports. In modelling, a ring sector finite element is used which is obtained by setting 

the slope angle of the curved shell finite element to 0
o
, and a very small hole is assumed to be at 

the centre of the plate in order to avoid singularities. The in-plane pressure is idealized with 

equivalent P1 and P2 point forces acting on the boundary nodes of different meshes as shown in 

Fig. 15. Buckling loads are obtained for all mesh refinements and also analytically as given in 

Timoshenko and Gere (1961), and all results are given comparatively in Table 2 and Fig. 16.  

The critical pressure of the clamped circular plate can be obtained analytically as in 

Timoshenko and Gere (1961) using 
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h=0.02 m; a=1.50 m 

Fig. 14 Circular plate under uniform in-plane pressure 

 

 

Fig. 15 Circular plates with various meshes 
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Fig. 15 Continued 

 
Table 2  Comparison of buckling loads of circular plate 

 Buckling load (kN/m) 

 
4 elements 8 elements 16 elements 32 elements Analytical 

Simply supported 404 336 304 298 287 

Clamped 1022 1172 1069 1031 1004 

 

 

The critical pressure of the simply supported circular plate is obtained analytically as in 

Timoshenko and Gere (1961) via  
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As seen from the results, the buckling loads of the circular plate rapidly converge to the 

analytical solution upon mesh refinement. Satisfactory results are obtained for the simply 

supported circular plate even by using a very coarse mesh (4 elements). However, the usage of 4 

elements for the plate with clamped support does not give satisfactory results due to the buckling 

mode of the plate. It is seen that the buckling load of a clamped circular plate increases about 3.5 

times compared to the simply supported circular plate. It is also observed that refining the meshes 

in angular direction causes only a minor change in the results. 
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Fig. 16 Comparison of buckling loads of a circular plate 

      
 
4. Conclusions 
 

In this paper, a four-noded curved shell finite element with second order effects is introduced. 

It is demonstrated that curved box-girder beams can be realistically modelled and satisfactory 

results can be obtained even by using coarse meshes of the proposed shell finite element.  

Firstly, a steel curved box-girder beam example is analysed. The vertical and radial 

displacements and the internal forces of the system due to an eccentric load of 1000 kN are 

obtained both by SAP2000 and by using the proposed shell element. It is observed from the results 

that satisfactory results can be obtained even by using very coarse meshes of the present shell 

element while fine meshes need to be used by SAP2000 for that purpose.    

Geometrically non-linear analyses of the beams with curved shape can also be made by the 

inclusion of the second order effects to the curved shell finite element formulation. The curved 

beam is then analysed under increasing distributed loads both according to the first and second 

order theories. It is observed that the effects of the geometrical nonlinearities gain importance with 

the load increment, e.g., the vertical displacements at the midspan increase by 3.5 times with the 

maximum applied load of 256.25 kN/m
2
. 

Finally, a circular plate example subjected to a uniform radial pressure is studied. The buckling 

loads of the circular plate converge to the analytical solutions even by using very coarse meshes.      

The buckling load increases about 3.5 times by changing the support conditions from clamped to 

simple and it can be said that refining the meshes in angular direction does not change the results. 
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