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Abstract.  An equivalent single layer trigonometric shear deformation theory taking into account transverse 
shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply 
laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms 
of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness 
coordinate is used in transverse displacement to include the effect of transverse normal strain. The 
kinematics of the present theory is much richer than those of the other higher order shear deformation 
theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, 
the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate 
z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of 
the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported 
cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are 
compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher 
order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever 
applicable. The results predicted by present theory are in good agreement with those of higher order shear 
deformation theory and the elasticity theory. 
 

Keywords:  shear deformation; transverse normal strain; static flexure; cross-ply laminated plate; sandwich 

plate; transverse shear stress 

 
 
1. Introduction 

 

Advances in the technology of composite materials has led to the use of composite plates as 

structural components in various engineering applications due to superior mechanical properties of 

these materials. However, shear deformation effects become more pronounced in such structures 

due to low transverse shear moduli as compared to high inplane tensile moduli, when subjected to 

transverse loads. This necessitates the accurate structural analysis of composite plates.  
Classical plate theory (CPT) is based on the assumption that straight lines which are normal to 
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the neutral surface before deformation remain straight and normal to the neutral surface after 

deformation. Since the transverse shear deformation is neglected, it cannot be applied to thick 

plate wherein shear deformation effects are more significant. The errors in deflection and stresses 

are quite significant for plate made out of advanced composite material when obtained using 

classical plate theory. 

Mindlin (1951) has developed displacement based first order shear deformation theory (FSDT) 

which is based on the assumption that straight lines which are normal to neutral surface before 

deformation remain straight but not necessarily normal to the deformed neutral surface. Reissner 

(1944, 1945) was the first to provide consistent stress-based plate theory which incorporates the 

effect of shear deformation. In these theories, the transverse shear strain distribution is assumed to 

be constant through the plate thickness and therefore problem dependent shear correction factor is 

required to account for the shear deformation.  

The limitations of classical plate theory and first order shear deformation theory stimulated the 

development of higher order or equivalent shear deformation theories to avoid the use of shear 

correction factors, to include effect of cross sectional warping and to get the realistic variation of 

the transverse shear strains and stresses through the thickness of plates. Krishna Murty (1986, 

1987) used such theory for the analysis of beams and plates. Lo et al. (1977a, b) presented a 

generalized displacement function in which the in-plane displacements were represented up to 

cubic polynomials in thickness coordinate and out of plane displacement up to second order 

polynomial. This theory contains eleven unknowns. Savithri and Varadan (1992) used Krishna 

Murty‟s displacement function for the plate analysis. Reddy (1984, 1985) simplified Lo‟s theory 

by assuming constant transverse displacement and satisfying transverse shear stress boundary 

conditions at top and bottom surfaces of the plate, which was not satisfied in the Lo‟s theory. 

Doong et al. (1991) utilized Lo‟s displacement function for vibration and buckling analysis of the 

plates. In all above theories the heterogeneous plate is treated as a equivalent single layer plate. 

Soldatos (1988) developed hyperbolic shear deformation theory for the bending analysis of 

laminated composite plates. Kant and Swaminathan (2002) presented an analytical solutions for 

the static analysis of laminated composite and sandwich plates based on a higher order refined 

theory. Leung et al. (2003) proposed a new unconstrained third-order plate theory for the 

symmetrically laminated composite plates. Metin (2006) presented comparative study of various 

shear deformation theories for the bending, buckling and free vibration analysis of symmetrically 

laminated composite plates. Akavci (2007) proposed new hyperbolic theory in-terms of tangent 

and secant functions for the analysis of plates. Karama et al. (2009) have proposed an exponential 

shear deformation plate theory which is modified form of a new shear deformation theory 

developed by Metin (2009). Bending analysis of unsymmetrically laminated sandwich flat panels 

with a soft core have been presented by Brischetto et al. (2009). Zhen and Wanji (2010) developed 

C
0
-type higher-order theory for bending analysis of laminated composite and sandwich plates 

subjected to thermal/mechanical loads. Finite element models based on an improved higher order 

zigzag plate theory are developed by Pandit et al. (2010) and Chalak et al. (2012) for the bending 

and vibration analysis of soft core sandwich plates. Nik and Tahani (2010) presented a semi-

analytical method for the free vibration analysis of laminated composite plates with arbitrary 

boundary conditions. Kapuria and Nath (2013) proposed global–local theories for bending and 

vibration of laminated and sandwich plates. Grover et al. (2013), Sahoo and Singh (2013a) 

proposed a new inverse hyperbolic shear deformation theory for the laminated composite and 

sandwich plates. A layer-wise stress model for the bending analysis of laminated and sandwich 

plates have been presented by Thai et al. (2013). A new set of models in the framework of 
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Carrera‟s Unified Formulation for the static analysis of sandwich plates have been presented by 

Dehkordi et al. (2013). Comprehensive reviews of higher order theories have been given by Noor 

and Burton (1989), Ghugal and Shimpi (2002), Wanji and Zhen (2008), Kreja (2011). 

A class of refined shear deformation theories in which trigonometric functions are used in-

terms of thickness coordinate are designated as trigonometric shear deformation theories. Levy 

(1877) developed a refined theory for thick plate for the first time using trigonometric functions in 

the displacement field. However, efficiency of this particular plate theory was not assessed for 

more than a century. The discussion on Levy‟s theory can be found in Todhunter and Pearson 

(1893). Use of trigonometric functions to describe the plate behavior in thickness direction was 

also proposed by Stein (1986) and developed refined theories for laminated beams, plates and 

shells. 

Shimpi and Ghugal (2000) presented layerwise trigonometric shear deformation theory for the 

flexural analysis of two layered cross-ply laminated plates whereas Shimpi and Ainapure (2004) 

implemented it for the free vibration analysis of two layered cross-ply laminated plates. However, 

effect of transverse normal strain is not included in the theory and the theory is only applicable to 

two layered cross-ply laminated plates. Ghugal and Kulkarni (2011) applied trigonometric shear 

deformation theory without considering effect of transverse normal strain for the thermal stress 

analysis of cross-ply laminated plates. Mantari et al. (2012) developed a new trigonometric shear 

deformation theory for isotropic, laminated composite and sandwich plates. Sahoo and Singh 

(2013b) also proposed a new inverse trigonometric zig-zag theory for the static analysis of 

laminated composite and sandwich plates.  

Ghugal and Sayyad (2010) developed a new trigonometric shear deformation theory which 

includes effects of transverse shear deformation and transverse normal strain. The theory differs 

from trigonometric shear deformation theory of Stein (1986) in which shear stress free conditions 

at top and bottom surfaces of plates are not satisfied, whereas these conditions are fulfilled in the 

proposed theory. The present theory also differs from other higher order theories; because, in the 

present theory effect of transverse normal strain is included which is not assessed by the other 

researchers. The theory is initially applied for the static and free vibration analysis of isotropic 

plates (Ghugal and Sayyad 2010, 2011a) which is then successfully extended to static and free 

vibration analysis of orthotropic plates (Ghugal and Sayyad 2011b, 2013a). Sayyad and Ghugal 

(2011) also applied this theory for the bending analysis of cross-ply laminated beams subjected to 

various loading cases and further applied to laminated composite and sandwich plates (Sayyad and 

Ghugal 2014a). Sayyad and Ghugal (2014b) also extended this theory for the buckling analysis of 

laminated rectangular plates. The effect of transverse normal strain is more important to assess the 

effect of local stress concentration due to concentrated load and at built-in or clamped edges. This 

local effect can be effectively assessed by the present theory (Ghugal and Sayyad 2013b, Sayyad 

and Ghugal 2013). In the present study, this theory is applied for the static flexural analysis of 

laminated composite and sandwich plates under uniformly distributed, uniformly varying and 

concentrated loads. The results of present theory are compared with those of other higher order 

and lower order shear deformation theories and exact solution given by Pagano (1970) wherever 

applicable.  

 

1.1 Plate under consideration 
 

Consider a rectangular plate of length a, width b, and thickness h made up of linearly elastic 

and orthotropic material as shown in Fig. 1. The plate consists of N number of homogenous layers  
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Fig. 1 Plate geometry and coordinate system 

 

 

which are perfectly bounded. The plate occupies (in O–x–y–z right-handed Cartesian coordinate 

system) a region 

                                       0 ; 0 ; / 2 / 2;x a y b h z h                                    (1) 

 

1.2 Assumptions made in theoretical formulation 
 

1. The displacement components u and v are the inplane displacements in x and y –directions, 

respectively and w is the transverse displacement in z-direction. These displacements are small in 

comparison with the plate thickness.  

2. The in-plane displacement u in x -direction and v in y -direction each consists of three parts 

(extension, bending and shear):  

a) The extension components are middle surface components in x and y directions. 

b) The bending components analogous to displacement in classical plate theory.  

c) Shear component is assumed to be sinusoidal in nature with respect to thickness coordinate. 

3. The transverse displacement w in z -direction is assumed to be a function of x, y and z 

coordinates. 

4. The body forces are ignored in the analysis (body forces, if required, can be considered, 

without much loss of accuracy, as external forces). 

5. The plate is subjected to transverse load only. 
 
1.3 The displacement field 
 

Based upon the before mentioned assumptions, the displacement field of the present plate 

theory is 

                                 

   
 

   

   
 

   

       

0

0

w x, y
u x, y,z = u x, y z + f z x, y

x

w x, y
v x, y,z = v x, y z + f z ψ x, y

y

w x, y,z = w x, y + g z ξ x, y











                                    (2) 
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where f(z)=(h/π)sin(πz/h) and g(z)=(h/π)cos(πz/h) and  „u‟, „v‟ and „w‟ are the displacements in x, y 

and z-directions, respectively. 0 0andu v  are midplane displacements and are functions of x and y. 

The ϕ, ψ and ξ represents rotations of the plate at neutral surface. The normal strains εx, εy, εz
 
and 

shear strains γxy, γxz, γyz are obtained within the framework of linear theory of elasticity using 

displacement field given by Eq. (2). 

2
0

2

0

sin

sin

sin

x

2

y 2

z

uu w h z
z

x x h xx

vv w h z
z

y y h yy

w z

z h

 




 





 

  
   

  

  
   

  


  



                                         (3) 

0 0 2 sin

cos

cos

2

xy

zx

yz

u vu v w h z
z

y x y x x y h y x

u w z h

z x h x

v w z h

z y h y

  




 
 



 
 



      
       

        

   
    

   

   
    

   

                      (4) 

It can be noted that transverse shear strains are zero at top and bottom of the plate. Since the 

laminate is made of several orthotropic layers, the constitutive relations in the k
th
 layer are given as 

11 12 13

21 22 23

31 32 33

66

44

55

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k k k k k

x x

k k k k k

y y

k k k k k

z z

k k k

xy xy

k k k

yz yz

k k k

zx zx

Q Q Q

Q Q Q

Q Q Q

Q

Q

Q

 

 

 

 

 

 

     
     
     
        

     
    
    
    
         

                                      (5) 

 
k

ij
Q  are reduced stiffness coefficients given by Jones (1975). 

 

 

2. Derivation of governing equations and boundary conditions 
 

Using Eq. (3) through (5) and principle of virtual work, variationally consistent differential 

equations and boundary conditions for the plate under consideration are obtained. The principle of 

virtual work applied is 
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 

2

2 0 0

, 0

y=bz=h/ x=a

x x y y z z yz yz zx zx xy xy

z=-h/ y= x=

y=b x=a

y=0 x=0

σ δ +σ δ +σ δ δ +τ δ +τ δ dx dy dz

q x y wdx dy =

      



  



  

 

        (6) 

Integrating the Eq. (6) by parts and collecting the coefficients of 

0 0 andu , v , w, ,       the following governing equations and boundary conditions are 

obtained. The governing equations in terms of stress resultants are as follows 

                        

0 0

2 22

2 2

0 0

2 0

0 0

0

xy xy yx

xy yx

s s ss
xy y xys sx

x yz

ss
yz sxz

zz

N N NN
u : , v : ,

x y x y

M MM
w: q ,

x x y y

M M MM
: V , : V ,

x y y x

VV π
: V

x y h

 



 



  
   

   

 
   

   

  
     

   


  

 

                         (7) 

The boundary conditions along edges x=0 and x=a obtained are of the following form 

       

0 or is specified

0 or is specified

2 0 or is specified

0 or is specified

0 or is specified

0 or is specified

0 or is specified

x 0

xy 0

x x xy

s
x

s
xy

s
xz

N = u

N = v

V M / x+ M / y= w

M = w/ x
x

M =

M = ψ

V = ξ

    

 



 (8) 

and along y=0 and y=b edges,  the boundary conditions are as follows 

0 or is specified

0 or is specified

2 0 or is specified

0 or is specified

0 or is specified

0 or is specified

0 or is specified

y 0

xy 0

y y xy

y

s

y

s

xy

s

yz

N = v

N = u

V M / y+ M / x= w

M = w / y

M = ψ

M =

V = ξ

    

 


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0 or is specified

0 or is specified

2 0 or is specified

0 or is specified

0 or is specified

0 or is specified

0 or is specified

y 0

xy 0

y y xy

y

s

y

s

xy

s

yz

N = v

N = u

V M / y+ M / x= w

M = w / y

M = ψ

M =

V = ξ

    

 



 

(9) 

At corners (x=0 y=0), (x=a y=0), (x=0 y=b) and (x=a y=b) boundary condition is 

                                  0 or is specified.xyM w                                            (10) 

The stress resultants appeared in the governing equations and boundary conditions are defined 

as follows 

                                          

   

     

     

 

1

1

1

1

1

1

1

1

, , , ,

, , , ,

, ,

k

k

k

k

k

k

k

k

N

x y xy x x xy

k

N
s s s

x y xy x x xy

k

N
s s

xz yz xz yz

k

N
s

zz zz

k

h

h

h

h

h

h

h

h

M M M z dz

M M M f z dz

V V f z dz

V g z dz

  

  

 



























 

 

 

 

                           (11) 

where Mx, My, Mxy are the bending and twisting moment resultants or the stress couples analogous 

to classical plate theory, 
s s s
x y xyM , M , M  are refined moments or stress couples due to transverse 

shear deformation effects and , ,s s s

xz yz zzV V V  are the transverse shear and transverse normal stress 

resultants and the prime ( )′ indicates the differentiation of function with respect to z. The 

governing equations in-terms of unknown variables in the displacement field are of the form 

2 2 2 3 3 2 2 2

0 0 0
0 1 2 3 4 5 6 7 8 92 2 3 2 2 2
: 0

u u v w w
u L L L L L L L L L

x y x y x x y x y x y x

   


        
        

           
 (12) 

2 2 2 3 3 2 2 2

0 0 0
0 3 2 10 11 5 8 7 12 132 2 3 2 2 2
: 0

u v v w w
v L L L L L L L L L

x y x y y x y x y x y y

   


        
        

           
 

(13) 
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3 3 3 3 4 4 4

0 0 0 0
4 5 11 5 14 15 163 2 3 2 4 2 2 4

3 3 3 3 2 2

17 18 19 18 20 213 2 3 2 2 2

:
u u v v w w w

w L L L L L L L
x x y y x y x x y y

L L L L L L q
x x y y x y x y



     

      
      

         

     
      

       

            (14) 

2 2 2 3 3 2 2

0 0 0
6 7 8 17 18 22 232 2 3 2 2 2

2

24 25 26

:

0

u u v w w
L L L L L L L

x y x y x x y x y

L L L
x y x

 


 


      
     

        

 
   

  

                  (15) 

 

2 2 2 3 3 2 2

0 0 0
8 7 12 19 18 25 232 2 3 2 2

2

27 28 292

:

0

u v v w w
L L L L L L L

x y x y y x y x y x

L L L
y y

 


 


      
     

         

 
   

 

              (16) 

2 2 2 2

0 0
9 13 20 21 26 29 30 31 322 2 2 2

: 0
u v w w

L L L L L L L L L
x y x y x y y x

   
 

       
        

       
      (17) 

The associated boundary conditions are as follows: 

On edges x=0 and x=a, the following conditions hold 

2 2

0 0
1 33 4 34 6 35 92 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
    or 0u is prescribed       (18) 

2

0 0
2 36 72 0

u v w
L L L

y x x y y x

        
       

        
                            or 0v  is prescribed        (19) 

2 2 2 3 3

0 0 0
4 36 5 14 372 2 3 2

2
u u v w w

L L L L L
x y x y x x y

    
   

      
 

2 2 2

17 38 18 202 2
2 0L L L L

x y x y x

      
    
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                                        or w  is prescribed        (20) 

2 2

0 0
4 34 14 39 17 40 202 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
        or 

w

x




 is prescribed       (21) 

2 2

0 0
6 35 17 40 22 41 422 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
   or   is prescribed       (22) 

2

0 0
7 38 232 0

u v w
L L L

y x x y y x

        
       

        
                           or   is prescribed        (23) 
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43 31 0L L
x





 


                                             or   is prescribed                 (24) 

On edges y=0 and y=b, the following conditions hold 

2

0 0
2 36 72 0

u v w
L L L

y x x y y x

        
       

        
                   or 0u is prescribed        (25) 

2 2

0 0
33 10 34 11 35 12 132 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
 or 0v  is prescribed    (26) 

2 2 2 3 3

0 0 0
5 36 11 16 372 2 3 2

2
u v v w w

L L L L L
x y x y y x y

    
   

      
 

2 2 2

18 38 19 212 2
2 0L L L L

x y x y y

      
    

    
                     or w  is prescribed            (27) 

2 2

0 0
34 11 39 16 40 19 212 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
 or 

w

y




 is prescribed    (28) 

2

0 0
7 38 232 0

u v w
L L L

y x x y y x

        
       

        
                             or   is prescribed    (29) 

2 2

0 0
35 12 40 19 41 27 442 2

0
u v w w

L L L L L L L
x y x y x y

 


     
      

     
 or   is prescribed   (30) 

45 30 0L L
y





 


                             or   is prescribed                           (31) 

At corners (x=0, y=0), (x=0, y=b), (x=a, y=0) and (x=a, y=b) the following condition hold 

2

0 0
36 46 382 0

u v w
L L L

y x x y y x

        
       

        
             or w  is prescribed              (32) 

where Lij
 
are the stiffness constants appears in the governing equations and boundary conditions 

are given in Appendix. 

 

 

3. Illustrative examples 
 

In order to prove the reliability/accuracy of the present theory, the following numerical 

examples on laminated composites plates drawn from literature are described and discussed. Some 

problems of sandwich plates with unavailable results are also presented. 

  Example 1: The square laminated composite square plates with simply supported boundary 

conditions and subjected to sinusoidal loading q=q0sin(πx/a)sin(πy/b) on the top surface of the 
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plate are considered where „q0‟ is the magnitude of the sinusoidal loading at the centre. The 

laminate configuration considered in this example is shown in Fig. 2. 

Example 2: The square laminated composite plates with simply supported boundary conditions 

and subjected to uniformly distributed transverse loading are considered. The loading is 

represented by      
1 1

, sin / sin /
m n

mnm n
q x y q m x a n y b 

 

 
   on the top surface of the 

plate where m and n are positive integers and qmn is the coefficient of Fourier expansion of load as 

given below 

                                                           
0

2

16
mn

q
q

mn
 .                                                             (33) 

where q0 is the intensity of uniformly distributed load. The laminate configurations considered in 

this example are shown in Fig. 3.                                                

Example 3: The laminated composite and sandwich square plates with simply supported 

boundary conditions and subjected to linearly varying load on the top surface of the plate are 

considered. The load is given by      
1 1

, sin / sin /
m n

mnm n
q x y q m x a n y b 

 

 
   with 

the coefficient of Fourier expansion qmn of the load as follows 

                                                    
0

2

8
cos ( )mn

q
q m

mn



  .                                                     (34) 

The laminate configurations considered in this example are shown in Fig. 4. 

 

 

  

Fig. 2 Simply supported laminated plates under sinusoidal loading 

 

  

Fig. 3 Simply supported laminated plates under uniformly distributed loading 
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Fig. 4 Simply supported laminated and sandwich plates under linearly varying load 

 
 

 

Fig. 5 Simply supported Sandwich plate under central concentrated load 

 

 

Example 4: The simply supported three layered sandwich plates subjected to concentrated load 

     
1 1

, sin / sin /
m n

mnm n
q x y q m x a n y b 

 

 
  on the top surface of the plate are 

considered (see Fig. 5). The coefficient of Fourier expansion qmn of the load is given as 

                                  
0 04P

sin sinmn

m x m y
q

a b a b

    
    

   
.                                             (35) 

where x0 and y0 are the position coordinates of concentrated load from origin, i.e. for central 

concentrated load x0 = a/2 and y0 = b/2. The laminate configuration considered in this example is 

shown in Fig. 4.   

The following boundary conditions are imposed at the simply supported edges 
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0s
x xw M M        at x = 0, x = a                                          (36) 

0s
y yw M M        at y = 0, y = b                                          (37) 

The following is the solution form of u0(x,y), v0(x,y), w(x,y), ϕ(x,y), ψ(x,y) and ξ(x,y)
 
is assumed 

for the above examples, which satisfies boundary conditions exactly 

 

 

 

 

 

0

0

1,3,5 1,3,5

1,3,5 1,3,5

1,3,5 1,3,5

1,3,5 1,3,5

1,3,5

, cos sin ,

, sin cos ,

, sin sin ,

, cos sin ,

,

m n

mn
m n

m n

mn
m n

m n

mn
m n

m n

mn
m n

m

m n

m x n y
u x y u

a b

m x n y
v x y v

a b

m x n y
w x y w

a b

m x n y
x y

a b

x y

 

 

 

 
 



 

 

 

 

 

 

 

 



 











 

 

 

 



 

1,3,5

1,3,5 1,3,5

sin cos ,

, sin sin

n

mn

m n

mn
m n

m x n y

a b

m x n y
x y

a b

 


 
 



 

 





 

                                (38) 

where , , , , andmn mn mn mn mn mnu v w     are the unknown coefficients of the respective Fourier 

expansions and m, n are positive integers.   In case of single sine load m=1 and  n=1. Substituting 

this form of solution and the load q(x,y) into the governing Eqs. (12) through (17) yields the six 

algebraic simultaneous equations from which the unknowns , , , , andmn mn mn mn mn mnu v w     

can be readily determined. Having obtained values of these unknown coefficients one can then 

calculate all the displacement and stress components within the plate. Transverse shear stresses 

(τzx, τyz) are obtained by using constitutive relations and integrating equations of equilibrium of 

theory of elasticity to ascertain the continuity at layer interface. 

2 2

k kh h

xy y xyk kx
zx yz

h / h /

dz, dz
x y y x

  
 

 

     
      

      
                              (39) 

It may be noted that τzx obtained by constitutive relations is indicated by CR

zx  and it is indicated 

by EE

zx  when obtained by using equilibrium equations. Similar notations are also used for τyz. The 

following plate material properties given by Pagano (1970) are used for the analysis of laminated 

composite and sandwich plates in this paper. 

Material 1: For laminated composite plate and face sheet of sandwich plate 

1 2 3 2 12 13 2 23 2 12 13 2325 0 5 0 2 and 0 25E E , E E , G G . E , G . E .                   (40) 
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Material 2: For core of sandwich plate. 

 
1 2 3 13 23 12 12 32 31

0 04 0 5 0 06 0 016 0 25E E . , E . , G G . , G . , .                    (41) 

 

 

4. Numerical results and discussion 
 

4.1 Numerical results 
 

The results obtained for displacements, and stresses are presented using following non-

dimensional forms. 

 
 

 
 

 
 

 
 

22 3

3 3

3 4 2

2

2

,100
0, , , , , , , , , ,

2 2 2 2 2

,
, , , 0, , , ,0, .

2 2 2 2

xy yz

xy yz

x y

x y

zxzx
zx

hu h E w h Eb z a b z a b z
u w

h q a h q a h q a

h hha b z b z a z

h q a h q a h q a

 
 

  
  

     
       

     

     
       

     

   (42) 

 

 

Table 1 Comparison of inplane displacement ( u ), transverse displacement ( ), normal stresses (
 
and 

), inplane shear stress  and transverse shear stresses (
xz  and 

yz ) in simply supported square 

laminated plate subjected to single sine load 

Layer h/a Theory Model 
u  

(h/2) 

w  
(z = 0) 


x  

(-h/2) 

 y  
(-h/2) 

xy
 

(-h/2) 

CR

xz
 

(0) 

EE

xz
 

(*) 

CR

yz
 

(0) 

EE

yz
 

(*) 

0
0
/90

0
 

0.25 

Present TSDT 0.0111 1.9424 0.9063 0.0964 0.0562 0.3189 0.3370 0.3189 0.3370 

Reddy HSDT 0.0113 1.9985 0.9060 0.0891 0.0577 0.3128 0.3396 0.3128 0.3396 

Mindlin FSDT 0.0088 1.9682 0.7157 0.0843 0.0525 0.2274 0.3356 0.2274 0.3356 

Kirchhoff CPT 0.0088 1.0636 0.7157 0.0843 0.0525 --- 0.3356 --- 0.3356 

Pagano Elasticity --- 2.0670 0.8410 0.1090 0.0591 0.3210 --- 0.3130 --- 

0.1 

Present TSDT 0.0092 1.2089 0.7471 0.0876 0.0530 0.3261 0.3352 0.3261 0.3352 

Reddy HSDT 0.0092 1.2161 0.7468 0.0851 0.0533 0.3190 0.3357 0.3190 0.3357 

Mindlin FSDT 0.0088 1.2083 0.7157 0.0843 0.0525 0.2274 0.3356 0.2274 0.3356 

Kirchhoff CPT 0.0088 1.0636 0.7157 0.0843 0.0525 --- 0.3356 --- 0.3356 

Pagano Elasticity --- 1.2250 0.7302 0.0886 0.0535 0.3310 --- 0.3310 --- 

0
0
/90

0
/0

0
 

0.25 

Present TSDT 0.0092 1.9015 0.7535 0.0880 0.0496 0.2092 0.2768 0.1914 0.2088 

Reddy HSDT 0.0091 1.9218 0.7345 0.0782 0.0497 0.2024 0.2855 0.1832 0.2086 

Mindlin FSDT 0.0055 1.5681 0.4370 0.0614 0.0369 0.1201 0.3368 0.1301 0.1968 

Kirchhoff CPT 0.0068 0.4312 0.5387 0.0267 0.0213 --- 0.3951 --- 0.0823 

Pagano Elasticity --- 2.0046 0.7984 0.0949 0.0505 0.2550 --- 0.2170 --- 

0.1 

Present TSDT 0.0071 0.7155 0.5720 0.0411 0.0278 0.2577 0.3670 0.1070 0.1179 

Reddy HSDT 0.0071 0.7125 0.5684 0.0387 0.0277 0.2447 0.3693 0.1033 0.1167 

Mindlin FSDT 0.0065 0.6306 0.5134 0.0353 0.0252 0.1363 0.3806 0.0762 0.1108 

Kirchhoff CPT 0.0068 0.4312 0.5387 0.0267 0.0213 --- 0.3951 --- 0.0823 

Pagano Elasticity --- 0.7528 0.5898 0.0418 0.0289 0.3570 --- 0.1200 --- 

(*) indicates maximum value of transverse shear stress. 

w 
x

y
xy
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where E3 is elastic modulus of the middle layer. The results obtained for displacement and stresses 

are presented in Tables 1 through 5 and graphically in Figs. 6 through 9. The percentage error in 

result of a particular theory with respect to the result of exact elasticity solution is calculated as 

follows 

100
solution elasticity exact by value

solution elasticity exact by valuemodel particular aby  value
error% 




 
 

 

Table 2 Comparison of inplane displacement ( u ), transverse displacement ( ), normal stresses (
 
and 

), inplane shear stress  and transverse shear stresses (
xz  and 

yz ) in simply supported square 

laminated plate subjected to uniformly distributed load 

Layer h/a Theory Model 
u  

(h/2) 

w  
(0) 


x  

(-h/2) 

 y  
(-h/2) 

xy
 

(-h/2) 

CR

xz
 

(0) 

EE

xz
 

(*) 

CR

yz
 

(0) 

EE

yz
 

(*) 

0
0
/90

0
 

0.25 

Present TSDT 0.0189 2.9983 1.2603 0.1394 0.1104 0.5966 0.8945 0.5966 0.8945 

Reddy HSDT 0.0190 3.0706 1.2691 0.1314 0.1070 0.6034 0.8648 0.6034 0.8648 

Mindlin FSDT 0.0144 3.0082 1.0636 0.1258 0.0992 0.4775 0.7265 0.4775 0.7265 

Kirchhoff CPT 0.0147 1.6955 1.0763 0.1269 0.0934 --- 0.7415 --- 0.7415 

Pagano Elasticity --- 3.1580 1.1840 0.1590 --- 0.647 --- 0.591 --- 

0.1 

Present TSDT 0.0153 1.9070 1.1057 0.1307 0.0978 0.6669 0.7545 0.6669 0.7545 

Reddy HSDT 0.0154 1.9173 1.1049 0.1274 0.0977 0.6591 0.7530 0.6591 0.7530 

Mindlin FSDT 0.0146 1.9050 1.0533 0.1265 0.0961 0.4849 0.7369 0.4849 0.7369 

Kirchhoff CPT 0.0147 1.6955 1.0763 0.1269 0.0934 --- 0.7415 --- 0.7415 

Pagano Elasticity --- 1.9320 1.0860 0.1300 --- 0.702 --- 0.744 --- 

0
0
/90

0
/0

0
 

0.25 

Present TSDT 0.0154 2.8934 1.0343 0.1138 0.1097 0.3575 0.3751 0.4359 0.2933 

Reddy HSDT 0.0152 2.9091 1.0177 0.1030 0.1092 0.3530 0.4036 0.4425 0.3947 

Mindlin FSDT 0.0088 2.3538 0.6546 0.0852 0.0736 0.2286 0.6395 0.3427 0.5528 

Kirchhoff CPT 0.0107 0.6660 0.8076 0.0307 0.0426 --- 0.7233 --- 0.3859 

Pagano Elasticity --- 3.0438 1.1229 0.1238 --- 0.4428 --- 0.4867 --- 

0.1 

Present TSDT 0.0115 1.0954 0.8436 0.0510 0.0594 0.4607 0.6139 0.3467 0.3553 

Reddy HSDT 0.0115 1.0900 0.8395 0.0481 0.0593 0.4409 0.6259 0.3443 0.3859 

Mindlin FSDT 0.0102 0.9642 0.7720 0.0442 0.0515 0.2530 0.7054 0.2633 0.4230 

Kirchhoff CPT 0.0107 0.6660 0.8076 0.0307 0.0426 --- 0.7233 --- 0.3859 

Pagano Elasticity --- 1.1539 0.8708 0.0529 --- 0.6279 --- 0.4009 --- 

(*) indicates maximum value of transverse shear stress. 

 

Table 3 Comparison of inplane displacement (u ), transverse displacement ( ), normal stresses (
 
and ), 

inplane shear stress  and transverse shear stresses (
xz  and 

yz ) in simply supported square laminated 

plate subjected to linearly varying load.  

Layer h/a Theory Model 
u  

(h/2) 

w  
(0) 


x  

(-h/2) 

 y  
(-h/2) 

xy
 

(-h/2) 

CR

xz
 

(0) 

EE

xz
 

(*) 

CR

yz
 

(0) 

EE

yz
 

(*) 

0
0
/90

0
 0.25 

Present TSDT 0.0095 1.4992 0.6301 0.0697 0.0552 0.2983 0.4472 0.2983 0.4472 

Reddy HSDT 0.0095 1.5353 0.6345 0.0657 0.0535 0.3017 0.4324 0.3017 0.4324 

w 
x

y xy

w 
x y

xy
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Table 3 Continued 

0
0
/90

0
 

0.25 

Mindlin FSDT 0.0072 1.5041 0.5318 0.0629 0.0496 0.2387 0.3632 0.2387 0.3632 

Kirchhoff CPT 0.0074 0.8478 0.5381 0.0635 0.0467 --- 0.3707 --- 0.3707 

Pagano Elasticity --- 1.5790 0.5920 0.0795 --- 0.3235 --- 0.3235 --- 

0.1 

Present TSDT 0.0077 0.9535 0.5528 0.0653 0.0489 0.3334 0.3772 0.3334 0.3772 

Reddy HSDT 0.0077 0.9587 0.5524 0.0637 0.0488 0.3295 0.3765 0.3295 0.3765 

Mindlin FSDT 0.0073 0.9525 0.5267 0.0632 0.0480 0.2424 0.3684 0.2424 0.3684 

Kirchhoff CPT 0.0074 0.8478 0.5381 0.0635 0.0467 --- 0.3707 --- 0.3707 

Pagano Elasticity --- 0.9660 0.5430 0.0650 --- 0.3510 --- 0.3510 --- 

0
0
/90

0
/0

0
 

0.25 

Present TSDT 0.0077 1.4467 0.5171 0.0569 0.0548 0.1788 0.1876 0.2180 0.1467 

Reddy HSDT 0.0076 1.4545 0.5088 0.0515 0.0546 0.1765 0.2018 0.2213 0.1974 

Mindlin FSDT 0.0044 1.1769 0.3273 0.0426 0.0368 0.1143 0.3197 0.1709 0.2764 

Kirchhoff CPT 0.0054 0.3330 0.4038 0.0154 0.0213 --- 0.3616 --- 0.1930 

Pagano Elasticity --- 1.5219 0.5614 0.0619 --- 0.2214 --- 0.2433 --- 

0.1 

Present TSDT 0.0057 0.5477 0.4218 0.0255 0.0297 0.2304 0.3070 0.1734 0.1777 

Reddy HSDT 0.0057 0.5450 0.4198 0.0241 0.0296 0.2205 0.3130 0.1722 0.1930 

Mindlin FSDT 0.0051 0.4821 0.3860 0.0221 0.0258 0.1265 0.3527 0.1317 0.2115 

Kirchhoff CPT 0.0054 0.3330 0.4038 0.0154 0.0213 --- 0.3616 --- 0.1930 

Pagano Elasticity --- 0.5769 0.4354 0.0264 --- 0.3139 --- 0.2005 --- 

(*) indicates maximum value of transverse shear stress. 

 

Table 4 Comparison of inplane displacement ( u ), transverse displacement ( ), normal stresses (
 
and 

), inplane shear stress  and transverse shear stresses ( xz  and 
yz ) in simply supported sandwich 

(0
0
/core/0

0
) plate subjected to linearly varying load 

h/a Theory Model 
u  

(h/2) 

w  
(0) 


x  

(-h/2) 

 y  
(-h/2) 

xy
 

(-h/2) 

CR

xz
 

(0) 

EE

xz
 

(0) 

CR

yz
 

(0) 

EE

yz
 

(0) 

0.25 

Present TSDT 0.0073 2.6328 0.9663 0.1694 0.1476 0.2496 0.2095 0.1460 0.1137 

Reddy HSDT 0.0073 2.6529 0.9630 0.1590 0.1496 0.2426 0.2139 0.1414 0.1164 

Mindlin FSDT 0.0044 1.5427 0.6803 0.0954 0.0864 0.0968 0.2651 0.0607 0.1013 

Kirchhoff CPT 0.0053 0.3314 0.8026 0.0254 0.0470 --- 0.2882 --- 0.0710 

Pagano Elasticity 0.0077 2.9768 1.1100 0.1938 0.1649 0.2166 --- 0.0967 --- 

0.1 

Present TSDT 0.0056 0.7750 0.8289 0.0643 0.0739 0.3110 0.2692 0.1029 0.0846 

Reddy HSDT 0.0056 0.7764 0.8286 0.0602 0.0748 0.2979 0.2707 0.0989 0.0843 

Mindlin FSDT 0.0051 0.5432 0.7800 0.0412 0.0576 0.1041 0.2848 0.0465 0.0776 

Kirchhoff CPT 0.0053 0.3314 0.8026 0.0254 0.0470 --- 0.2882 --- 0.0710 

Pagano Elasticity 0.0059 0.8768 0.9049 0.0858 0.0668 0.2726 --- 0.0510 --- 

 

 

4.2 Discussion of results 
 

The results obtained by present theory for displacements and stresses are compared with those 

of  classical plate theory (CPT), first order shear deformation theory (FSDT) of Mindlin (1951), 

higher order shear deformation theory (HSDT) of Reddy (1984), and exact theory by Pagano 

(1970). 

Example 1: A simply supported laminated composite square plates under sinusoidal load Table 

1 shows comparison of displacements and stresses for the two layered (0
0
/90

0
) anti-symmetric and  

w 
x

y
xy
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Table 5 Comparison of inplane displacement (u ), transverse displacement ( ), normal stresses (
 
and ), 

inplane shear stress  and transverse shear stresses (
xz  and 

yz ) in simply supported sandwich (0
0
/core/0

0
) 

plate subjected to central concentrated load 

h/a Theory Model 
u  

(h/2) 

w  
(0) 


x  

(-h/2) 

 y  
(-h/2) 

xy
 

(-h/2) 

CR

xz
 

(0) 

EE

xz
 

(*) 

CR

yz
 

(0) 

EE

yz
 

(*) 

0.25 

Present TSDT 0.0314 23.3483 103.802 14.2953 0.4231 0.8806 2.9810 0.2057 1.1213 

Reddy HSDT 0.0323 26.9313 89.3693 10.4715 0.4266 0.8688 2.9086 0.2648 0.8487 

Mindlin FSDT 0.0251 19.9594 8.54325 2.8370 0.2555 0.4485 1.2317 0.1959 0.2885 

Kirchhoff CPT 0.0322 2.3471 11.7500 1.6441 0.0857 --- 1.3366 --- 0.1042 

0.1 

Present TSDT 0.0297 7.2239 45.0978 5.7239 0.1887 1.1878 2.7295 0.1381 0.4766 

Reddy HSDT 0.0301 7.4910 40.1169 4.7600 0.1877 1.1770 2.4621 0.1716 0.3563 

Mindlin FSDT 0.0302 5.3082 9.64308 2.3860 0.1323 0.4894 1.3428 0.1843 0.1886 

Kirchhoff CPT 0.0322 2.3471 11.7500 1.6441 0.0857 --- 1.3366 --- 0.1042 

(*) indicates maximum value of transverse shear stress. 

 

 

three layered (0
0
/90

0
/0

0
) symmetric cross-ply laminated plates subjected to sinusoidal loading. 

Layers are of equal thickness and made up of Material 1. The inplane displacements predicted by 

present theory for (0
0
/90

0
) and (0

0
/90

0
/0

0
) cross-ply laminated plates are more or less identical with 

those of HSDT of Reddy. The FSDT and CPT underestimate the inplane displacement for all 

aspect ratios. The maximum transverse displacements obtained by present theory are in good 

agreement with those of exact solution for (0
0
/90

0
) and (0

0
/90

0
/0

0
) cross-ply laminated plates. The 

transverse displacements predicted by Reddy‟s theory are in tune with exact solution whereas  

FSDT and CPT underpredict the same for all aspect ratios. The inplane normal stress  x predicted  

by present theory is in excellent agreement with that of exact solution for symmetric and anti-

symmetric cross-ply laminated plates whereas FSDT and CPT underestimate this stress for all 

aspect ratios when compared with the values of other refined theories. For both (0
0
/90

0
) and  

(0
0
/90

0
/0

0
) cross-ply laminated plates, the inplane normal stress 

y  and shear stress 
xy  predicted  

by present theory are in good agreement with those of exact solution. Table 1 also presents the 

comparison of transverse shear stresses for the two layered (0
0
/90

0
) anti-symmetric and three 

(0
0
/90

0
/0

0
) layered symmetric cross-ply laminated plates subjected to sinusoidal loading. The 

present theory gives more accurate transverse shear stresses than those given by other refined 

theories as compared to exact values. For two layered anti-symmetric cross-ply laminated plates, 

transverse shear stresses predicted by present theory are in excellent agreement when obtained 

using constitutive relations as well as by the equations of equilibrium. The present theory 

underestimates the transverse shear stress of cross-ply laminated plates by 0.65 % and 1.48 % for 

h/a=0.25 and h/a=0.1 respectively when obtained using constitutive relations and overestimate it 

by 4.98% and 1.26% when obtained using equations of equilibrium. Reddy‟s theory 

underestimates the transverse shear stresses when obtained using constitutive relations and 

overestimates the same when obtained using equations of equilibrium compared to those of exact 

solution. For symmetric cross-ply laminated plate, present theory predicts excellent transverse 

shear stress by equations of equilibrium. FSDT underestimates the transverse shear stress when 

obtained using constitutive relations and overestimates the same when obtained using equations of 

equilibrium. Transverse shear stresses predicted by FSDT and CPT are identical for cross-ply 

laminated plates for h/a=0.25 and h/a=0.1. Through thickness variations of displacements and 

w 
x y

xy
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stresses of (0
0
/90

0
) and (0

0
/90

0
/0

0
) cross-ply laminated plates under sinusoidal loading for h/a=0.25 

are shown in Figs. 6 and 7, respectively. 

Example 2: A simply supported laminated composite square plates under uniformly distributed 

load Table 2 shows the comparison of displacements and stresses for cross-ply laminated plates 

subjected to uniformly distributed load. Layers are of equal thickness and made up of Material 1. 

From Table 2 it is observed that the inplane displacements predicted by present theory and HSDT 

of Reddy are in excellent agreement with each other whereas FSDT and CPT underestimate the 

results of inplane displacement compared to those of present theory and HSDT.  The present 

theory underpredicts the transverse displacement for (0
0
/90

0
) cross-ply laminated plates by 5.05 % 

for h/a=0.25 and 1.29% for h/a=0.1 and Reddy‟s theory underpredicts it by 2.77% for h/a=0.25 

and 0.76% for h/a=0.1 as compared to the exact value. The transverse displacements predicted by 

present theory are in good agreement with those of exact solution for (0
0
/90

0
/0

0
) cross-ply 

laminated plate. The inplane normal stresses obtained by present theory are in excellent agreement 

with those of exact solution for (0
0
/90

0
) and (0

0
/90

0
/0

0
) cross-ply laminated plates. The inplane 

shear stresses predicted by present theory and theory of Reddy are in good agreement with each 

other for (0
0
/90

0
) and (0

0
/90

0
/0

0
) cross-ply laminated plates. FSDT and CPT underestimate the 

inplane stresses for all aspect ratios as compared to the results of other theories. Results from 

Table 2 indicate that the present theory underestimates the transverse shear stresses when obtained 

using constitutive relations and overestimates the same when obtained using equations of 

equilibrium for h/a=0.25. Transverse shear stresses predicted by present theory for (0
0
/90

0
) and 

(0
0
/90

0
/0

0
) cross-ply laminated plate are in excellent agreement with those of exact solution for 

h/a=0.1. 

Example 3: A simply supported laminated composite and sandwich square plates under linearly 

varying load Displacements and stresses of cross-ply laminated plates subjected to linearly varying 

load are presented in Table 3. Layers are of equal thickness and made up of Material 1. The 

maximum transverse displacement and inplane normal stresses predicted by present theory are in 

close agreement with exact solution. Present theory and Reddy‟s theory overestimate the inplane  

normal stress x for (0
0
/90

0
) cross-ply laminated plate and underestimates the same for (0

0
/90

0
/0

0
)  

cross-ply laminated plate for both the aspect ratios as compared to the exact value. FSDT and CPT 

underestimate the transverse displacement and inplane normal stresses. Present theory  

overestimates the inplane normal stress x  by 1.80 % for (0
0
/90

0
) cross-ply laminated plate for  

h/a=0.1. The inplane shear stresses obtained by present theory and Reddy‟s theory are in good 

agreement with each other. The present theory and theory of Reddy underestimate the transverse 

shear stresses when obtained using constitutive relations and overestimates the same when 

obtained using equations of equilibrium as compared to those of exact solution. For symmetric 

cross-ply laminated plates, present theory predicts excellent transverse shear stresses by equations 

of equilibrium for h/a=0.1.  

Table 4 shows the comparison of displacements and stresses for the three layered (0
0
/core/0

0
) 

square sandwich plate subjected to linearly varying load. The thickness of top and bottom face 

sheet is 0.1h whereas thickness of core is 0.8h, where „h‟ is the total thickness of the plate. The 

face sheets are made up of Material 1 whereas core is made up of material 2 defined by Eqs. (40) 

and (41), respectively. From Table 4 it is observed that the inplane displacements predicted by 

present theory are in close agreement with those of exact solution and HSDT of Reddy. The 

transverse displacement obtained by present theory is in good agreement with that of exact  

solution and Reddy‟s theory. The inplane normal stress x  predicted by present theory and 

Reddy‟s theory is in excellent agreement with that of exact solution whereas FSDT and CPT  
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Fig. 6 Through thickness distribution of displacement and stresses of two layered (0
0
/90

0
) cross-ply 

laminated plate under sinusoidal loading for h/a = 0.25: (a) Inplane displacement ( u ) (b) Inplane normal 

stress (
x ) (c) Inplane normal stress (

y ) (d) Inplane shear stress (
xy )  (e) Transverse shear stress via 

constitutive relation ( CR

zx ) (f) Transverse shear stress via equilibrium equation ( EE

zx ) 
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Fig. 7 Through thickness distribution of displacement and stresses of three layered (0
0
/90

0
/0

0
) cross-ply 

laminated plate under sinusoidal loading at h/a=0.25: (a) Inplane normal stress (
x ) (b) Inplane normal 

stress (
y ) (c) Transverse shear stress ( CR

zx ) via constitutive relation (d) Transverse shear stress ( EE

zx ) via 

equilibrium equation (e) Transverse shear stress ( CR

yz ) via constitutive relation (f) Transverse shear stress (

EE

yz ) via equilibrium equation 

 

 

underestimate the normal stresses compared to those of TSDT and HSDT for all aspect ratios. The  

inplane normal stress 
y  and inplane shear stress 

xy  predicted by present theory are in good  

agreement with those of exact elasticity solution. The present theory predicts excellent values of  
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Fig. 8 Through thickness distribution of displacement and stresses of three layered (0
0
/core/0

0
) sandwich 

plate under linearly varying loading for h/a = 0.25. (a) Inplane displacement ( u ) (b) Inplane normal 

stress (
x ) (c) Inplane normal stress (

y ) (d) Inplane shear stress (
xy ) (e) Transverse shear stress ( EE

zx ) 

via equilibrium equation (f) Transverse shear stress ( EE

yz ) via equilibrium equation 

 

 

transverse shear stresses when obtained using equations of equilibrium. The through the thickness 

variations of displacements and stresses of three layered sandwich plate are shown in Fig 8.  
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Fig. 9 Through thickness distribution of displacement and stresses of three layered (0
0
/core/0

0
) sandwich 

plate under central concentrated loading for h/a = 0.25. (a) Inplane displacement ( u ) (b) Inplane normal 

stress (
x )   (c) Inplane normal stress (

y ) (d) Inplane shear stress (
xy ) (e) Transverse shear stress ( EE

zx ) 

via equilibrium equation   (f) Transverse shear stress ( EE

yz ) via equilibrium equation 

 

 

Example 4: A simply supported sandwich square plates under central concentrated load When a 

plate is subjected to concentrated load, the effect of stress concentration becomes more 

pronounced, which leads to non-linear variations in displacements and stresses with increased 

magnitude.  Table 5 presents the displacements and stresses of three layered (0
0
/core/0

0
) square 
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sandwich plate under central concentrated load. Exact elasticity solution for this loading case is not 

available in the literature; therefore results are compared with those of other refined theories. 

Thickness of layers and material properties are same as used in previous problem. Table 5 

indicates that the inplane and the transverse displacements obtained by present theory are in close 

agreement with those of HSDT of Reddy. From Fig. 9 it is observed that the present theory  

overpredicts the values of inplane normal stresses (
x y,  ) and transverse shear stresses (

zx yz,  )  

compared to those of CPT and FSDT. The through-the-thickness distribution of transverse shear 

stress (
EE

yz ) obtained by present theory via equilibrium equation showed the change in signs in  

core due to the effect of stress concentration. This effect cannot be captured by CPT and FSDT 

even with the use equilibrium equation of 3D elasticity theory as shown in Fig. 9(f).  Thus the use 

of equilibrium equations is inevitable to assess the effect of local stress concentration on transverse 

stresses in conjunction with the equivalent and higher order theories. FSDT and CPT 

underestimate the values of transverse displacements and stresses due to the neglect of stress 

concentration effect. The through-the-thickness distribution of displacements and stresses given by 

CPT and FSDT deviates considerably from those given by present theory and higher order theory 

of Reddy as a consequence of local stress concentration.  

 

 

5. Conclusions 
 

In this paper, an equivalent single layer trigonometric shear deformation theory is applied to the 

static flexural analysis of cross-ply laminated composite and sandwich plates subjected to various 

loading conditions. The effect of linearly varying and central concentrated loads on the bending 

behavior of sandwich plates is assessed.  From the discussion of results, presented numerically and 

graphically, following conclusions are drawn.  

1. The present theory is variationally consistent and obviates the need of a shear correction 

factor due to the realistic variation of transverse shear stress. 

2. The theory is applied to static flexure of two layered anti-symmetric and three layered 

symmetric cross-ply laminated and sandwich plates and shown to be superior to other existing 

higher order theories.  

3. The present theory is shown to be capable of producing excellent results for transverse 

displacement and inplane normal stresses due to the inclusion of transverse normal strain in the 

theory. 

4. The theory is capable of producing reasonably good transverse shear stresses using 

constitutive relations and better values of these stresses can be obtained by integration of 

equilibrium equations.  

5. The effect of stress concentration on displacements and stresses due to concentrated load is 

effectively assessed by the present theory in case of sandwich plate with soft core. 
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Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory 

Appendix 
 

The constants Li appeared in governing equations (see Eqs. (12) through (17)) and boundary 

conditions (see Eqs. (18) through (32)) are as follows 
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where Aij, Bij
 
etc., are the plate stiffnesses, defined as follows 
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