
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 51, No. 5 (2014) 707-725 

DOI: http://dx.doi.org/10.12989/sem.2014.51.5.707                                           707 

Copyright ©  2014 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Multi-criteria shape design of crane-hook taking account of 
estimated load condition 

 

Takao Muromaki
1, Kazuyuki Hanahara2a and Yukio Tada2b 

 
1
Mechanical Engineering, Maizuru National College of Technology, 

234 Siroya, Maizuru, Kyoto, 625-8511, Japan 
2
Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan 

 
(Received May 1, 2012, Revised May 10, 2014, Accepted May 18, 2014) 

 
Abstract.  In order to improve the crane-hook‟s performance and service life, we formulate a multi-criteria 
shape design problem considering practical conditions. The structural weight, the displacement at specified 
points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. 
The heights and widths of cross-section are chosen as the design variables. The design variables are 
expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization 
problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective 
Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are 
tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained 
designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal 
design approach. 
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1. Introduction 

 

An excavator is one of the fundamental machines used for construction work. Recently, 

excavators having a crane-hook are widely used in construction work sites. One reason is that 

there are work sites where the crane trucks for suspension work are not available because of the 

narrowness of the working site; an excavator has superior serviceability to a crane truck in general. 

Another reason is that such an excavator is convenient because they can perform the conventional 

digging tasks as well as the hanging works mentioned above. Fig. 1(a) shows a sample image of 

excavator with crane-hook and (b) shows the close-up image of its bucket part where the crane-

hook is attached. 

Contrary to its convenience, there are cases that the crane-hooks are damaged during some kind 

of hanging works. Fig. 2(a) shows a typical crane-hook and (b) shows its failed sample to be 

repaired. This type of hook can be used to suspend objects whose weight is up to 2.9t. In Fig. 2(b), 
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we can see that the locking apparatus, called latch, is left open. From the view point of safety, such 
failure must be avoided. Improvement of the performance and the service life is important; the real 
conditions of such suspension tasks in practical environment are, however, still unclear. It is 
necessary to consider the design problem which involves physical and geometrical uncertainties in 
some degree.  

In order to develop a high quality product that is supposed to be used under uncertain 
condition, there are two typical approaches. One is the robust optimal design considering various 
kinds of load conditions as well as other uncertain factors such as the model error. The other is the 
optimal design based on a criterion specialized to take account of the estimated failure factor. In 
the former approach, a variety of robust design methods are proposed in the literature (Marano et 
al. 2010, Vissarion and Nikos 2009, Zhiping et al. 2007, Chris and Sara 2001). The key point of 
this approach is the determination or formulation of the uncertainties. In the latter approach, 
identification of the cause of failure is one of the key issues for the purpose of safety improvement. 
Several failure detection methods are proposed in the past (Xiang et al. 2011, Lam and Ng 2009). 
However, almost all failed structures themselves have no information about the load conditions 
during their service life. We developed a failure estimation approach that uses the failure structure 
images. Our previous work (Muromaki et al. 2012) gives the estimation of load condition in the 
form of probability distribution. On the basis of the distribution, we formulate a criterion for 
optimal design that takes account of the load condition uncertainty. We deal with the following 
three evaluation items for the optimal design. 

• structural weight 
• strength against the specified load condition 
• robustness for unspecified load condition 
The first item is selected for achievement of the light weight. The second item is selected for 

evaluation of the strength against a critical load condition leading to the damage of the hook. The 
third item is selected for achievement of the high-stiffness against unspecified and multiple load 
conditions. The latter two items reflect the load condition obtained in the previous study. It is 
important to evaluate the mechanical rationality and the material cost simultaneously. We 
formulate the multi-criteria design problem with these three items. This problem is solved by using 
the multi-objective particle swarm optimization (MOPSO). We show the common characteristics 
in the obtained solutions and discuss the difference in shape between the obtained solutions and 
actual designs. 
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(a) Excavator with crane-hook (b) Close-up 

Fig. 1 Sample image of excavator and its close-up 
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(a) Crane-hook (b) Failed crane-hook 

Fig. 2 Typical crane-hook and failed sample 
 
 
2. Modeling of crane-hook 
 

2.1 Finite element model of crane-hook 
 
We construct a finite element model of crane-hook based on one of its actual designs. Fig. 3 

shows the design drawing of crane-hook adopted as the reference. Its cross-sectional shapes are 
illustrated by the shaded area at two positions. One is the lowest center position “E” where the 
load is applied in conventional suspension work. The other is the position “D” where the largest 
stress occurs in the typical work. This area is usually called “critical section”. These cross-
sectional shapes, called “T shape”, have been achieved by the expert engineers empirically.  

The crane-hook model adopted in this study is shown in Fig. 4. This model is constructed based 
on Fig. 3. The dimensions of the crane-hook dealt with in this study are indicated in Table 1. As 
indicated in Fig. 4, the latch part is omitted in the adopted model because it does not contribute to 
supporting the applied load. The center line of the model indicated by the broken line is 
represented as follows: 

• a straight line from the tip-end point “G” to point “F” 
• a circular arc from point “F” to point “C” 
• a piecewise linear line from point “C” to point “A” 
In the interval between points “A” and “C”, the positions of the representative points are 

determined by referring to the actual design shown in Fig. 3. 
Fig. 5 shows the layered model of the section used in this study. This model is constructed of 

Nd layers. The height of cross-section is specified by “h”. The height of each layer is assigned 
evenly. The width of each layer is specified by “bi” (i=1, … , Nd). By changing these widths bi, we 
can represent various cross-sectional shapes. 

A finite element model is developed based on the one dimensional beam element. The crane-
hook model is divided into Ne elements. Fig. 6(a) shows the finite element model and (b) is a slice 
of the model. The shaded area represents the side of the element. In the elastic deformation 
analysis, the equilibrium equation is obtained by means of the conventional finite element analysis 
approach and expressed as 

KUF                                    (1) 
where F , K and U are the external force vector, the stiffness matrix and the displacement vector. 
Given a specified external force vector and boundary conditions, the corresponding deformation of 
the crane-hook is calculated on the basis of Eq. (1). 
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Fig. 3 Design drawing of crane-hook 
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Fig. 4 Crane-hook model 
 
Table 1 Dimension of crane-hook model  

parameter value parameter value 
l1 80 [mm] l2 20 [mm] 
l3 60 [mm] l4 54 [mm] 
l5 44 [mm] l6 28 [mm] 
l7 66 [mm]   
θ1 180° θ2 30° 

(x1, y1) (−22, 50) (x2, y2) (−8, 70) 
(x3, y3) (−4, 80) (x4, y4) (0, 9) 
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Fig. 5 Layered model of cross section 
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Fig. 6 FE model based on 1-D beam element 
 
 

2.2 Elasto-plastic deformation analysis 
 
In Fig. 2(b), we can see the permanent deformation of the failed hook. In order to improve the 

safety and strength of the crane-hook, it is important to do the elasto-plastic deformation analysis. 
We discuss a crane-hook design based on the elasto-plastic deformation analysis. In our analysis, 
the stress-strain relationship of the material is approximated by a piecewise linear function as 
shown in Fig. 7 (Crisfield 1991). In this figure, E1 is the Young’s modulus, E2 is the tangent 
modulus and   is the yield stress. The dashed line indicates the relationship in the unloading 
process; the tangent modulus in this case is assumed to be equal to the Young’s modulus E1. In 
order to calculate the displacement of finite element model, we utilize the incremental solution 
scheme (Crisfield 1991). The incremental formulation is expressed as 

    UKF  t  (2)

where ΔF, Kt and ΔU are the incremental force vector, the tangent stiffness matrix and the 
incremental displacement vector, respectively. The tangent stiffness matrix Kt takes over the role 
of the stiffness matrix in elastic analysis. It relates small change in force to small change in 
displacement. The matrix Kt takes the form 

     Kt = Kt (U), Kt (0) = K (3)

where K is the elastic stiffness matrix used in the linear elastic analysis as Eq. (1). The total 
displacement is computed by the sum of the incremental displacements ΔU. 

     U =U  (4)

In the assessment process of the yielding, we utilize the layered approach (Owen and Hinton 
1980). In this approach the beam element is subdivided into layers, as shown in Fig. 5. A layer 
element is determined to be in yield state as a whole in the case that the central stress of the layer 
reaches the material yield stress. The stiffness values of the elements are determined according to 
the stress-strain relationship shown in Fig. 7. 
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Fig. 7 Adopted stress-strain relationship model 
 

Fig. 8 Stretch experiment of hook 
 

 

Fig. 9 Relation between applied load and enlargement of displacement 
 
 
2.3 Estimation of physical parameters 

 
As shown in Fig.7, the stress-strain relationship has three parameters: the Young’s modulus E1, 

the tangent modulus E2 and the yield stress  , which must be determined. We estimate them 
based on experimental data. The stretch experiment of crane-hooks conducted is as follows. A load 
is applied at the point “E” of crane-hook shown in Fig. 8. We measure the distance between points  
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Fig. 10 FEM model and its sections for parameter estimation: the reference design 

 
 

“B” and “G” at various load conditions and obtain the enlargement of the distance. Fig. 9 shows 
the experimental result. The ordinate and the abscissa represent the magnitude of load [kN] and the 
enlargement of distance between point “B” and “G” [mm], respectively. On the basis of the 
obtained data, the plastic deformation is determined to occur at a load around 120 [kN]. The 
nominal load of the crane-hook dealt with in this study is 29 [kN], thus we can see that the 
nominal load is far below the plastic deformation area. 

In order to determine the material parameters based on the experimental data, we formulate a 
minimum square error problem. The data points in Fig. 9 are represented as (fi, yi), where fi is the i-
th magnitude of load and yi is the enlargement between “B” and “G” for the load fi. The 
enlargement corresponding to the load fi can also be obtained by means of the calculation based on 
the parameter set },,{ 21 EE  and the FEM model shown in Fig. 10; the FEM model has the 
dimension and the cross-sectional shape corresponding to the actual design of hook shown in Fig. 
3. We represent the calculated enlargement as iŷ . The relation can be expressed as follows 

},,,{ˆˆ 21 EEfyy iii                               (5) 

The minimum square error problem for the parameter estimation is set as follows 

Minimize   
i

ii yy 2)ˆ(    with respect to  ,, 21 EE               (6) 

Table 2 shows the candidates of these parameters and the results of the error-minimization. The 
results are obtained by the exhaustive search and are shown in the lowest row. In the following, we 
utilize these estimated values for the FEM analysis. 

 
 
3. Shape optimization 

 
3.1 Setting of criteria and formulation of optimization problem 
 
We explain the formulation of criteria that evaluate the crane-hook design. In order to improve  
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Table 2 Range of parameters and results of error-minimization 

 E1 [GPa] E2 [GPa]  [MPa] 
range 190~270 1~50 100~600 

candidates 

190 1 100 
200 3 150 
210 5 200 

  8   
260 10 550 
270 15 600 

 20  
    
 45  
 50  

estimated 260 8 350 
 
 

the performance of crane-hook, we employ the following criteria: 
(i) structural weight 
(ii) displacement of specified points under specified load condition 
(iii) ratio between displacement norm and possible load norm 

Criterion (i) is selected for the achievement of the light weight. Light weight is important for the 
saving of material cost and the compactness. The structural weight J1 is formulated as 





eN

i
iilAJ

1
1                                  (7) 

where Ne is the number of FE elements, ρ is the material density, Ai is the cross-sectional area of i-
th element and li is the element length. 

Criterion (ii) is selected for the evaluation of the strength against the elasto-plastic deformation. 
This criterion is calculated in terms of the displacement of specified points under a given load 
condition. The adopted load condition for this criterion is shown in Fig. 11 as P. The load applied 
position is not at the lowest point of the crane-hook but at the right-hand shifted point from the 
lower center. The load direction is not normal to the contour curve but leftward. This load 
condition is set based on our previous work (Muromaki et al. 2012). The failure estimation results 
of the report are shown in Fig.12. This figure illustrates the probability of load applied position by 
gray-scale level. Their gray-scale levels are assigned by the estimated density function, dark part 
for high probability and light part for low probability. The position and direction of load vector P 
is determined by means of the estimated density functions. Under the applied load vector P, we 
calculate the displacement at two parts. One is the displacement at the lower center point “E” and 
the other is the enlargement of the displacement between the points “B” and “G”. Fig. 13(a) shows 
the parts where displacements are evaluated. Criterion (ii) is formulated as 

J2 = || UE||+ BGBG


                             (8) 

where UE is the nodal displacement vector at the point “E” obtained by the elasto-plastic  
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Fig. 11 Load condition for criterion (ii) and local curvilinear coordinate s 
 

 
Fig.12 Critical load applied position and load direction 

 
 

deformation analysis explained in section 2.2, 


BG  is the distance between the points “B” and 

“G” under the loading condition and BG  is the initial distance without load. The initial distance 
is represented by the symbol l7 in Fig. 4 and its value is shown in Table 1. 

Criterion (iii) is selected for evaluation of the robustness of structure against unspecified 
multiple load conditions. We aim to minimize the deformation to unspecified loads averagely. For 
this evaluation, we adopt the ratio between the norm of the global displacement vector and the 
norm of the possible load vector. The robustness of the structure is evaluated in terms of the 

maximum value of the ratio. The possible load vector is represented by F
~

. This vector is 
corresponding to an arbitral force acting on some specific points. The maximum ratio 3J  is 

expressed as 

F

U
0F ~max~3


J                                  (9) 

U = K−1F ,  FBF
~

v                             (10) 
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(a) Evaluation points of J2 (b) Setting of Bv in J3 

Fig. 13 Specification of criteria (ii) and (iii) 
 
 
where || • || represents the vector norm and K is the elastic stiffness matrix in Eq.(1). The global 

force vector F is associated with the possible load vector F
~

 on the specific points by the 
Boolean matrix Bv. The matrix Bv specifies where the loads are applied, that is, the points shown in 
Fig.13(b) by the square marks. The maximum ratio is rewritten in the following form 

F

FBK

F

FK

F

U
0F0F0F ~

~

max~max~max
1

~

1

~~3

v
J








                 (11) 

The magnitude of F
~

 is normalized to unity. In the current study, instead of searching the 

maximum value directly, we utilize the matrix norm. According to the maximum principle of the 
eigenvalue, the maximum value of this function is calculated as the matrix norm induced by the 
Euclidean vector norm ||•||2 (Roger and Charles 1985). Criterion (iii) is then calculated as 

J3 = ||K−1Bv||2 =  )()( of eigenvaluean  is :max 11
v

T
v BKBK           (12) 

where superscript T denotes the transpose operation. This criterion represents a displacement-force 
ratio and the unit is [m/N]. 

In this study, the design variables of crane-hook are the parameters of cross-section of FEM 
elements. As shown in Fig. 5 and Fig. 6, the parameters of cross-section are the height and layer 
widths. These design variables are represented as the functions of the local coordinate s attached at 
the contour curve of hook, as h(s), bi(s) (0 ≤ s ≤ L), where L is the length of the contour curve. The 
coordinate s is indicated in Fig. 11. The start point of s is the base point “A” and the end point is 
the tip point “G”. The height of the layers at s is evenly assigned as h(s)/Nd. 

The multi-objective optimal design problem of the crane-hook is then expressed as follows 

max2

3

3

2

2

1

1

,)(,)(   subject to

)(,)(    respect towith ,,  Minimize

UJbsbbhshh

sbsh
J

J

J

J

J

J

UiLUL

i


   (13) 
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where 1J , 2J  and 3J  are the evaluation item values for normalization. We adopt the FEM 
model of crane-hook shown in Fig. 10, called “reference design”, for this normalization. The 
values 1J , 2J  and 3J  are calculated for the reference design. The constants hL and bL and hU 
and bU are the lower and upper bounds of the height and width, respectively. The constraint Umax is 
the imposed allowable limit of the displacement. This constraint is adopted for excluding low-
strength designs. 
 

3.2 Design variables and their parametric representation 
 

 In this study, the design variables are the shape functions of height h(s) and widths bi(s) of the 
cross-section. There are several kinds of methods that represent such shape functions as linear 
combination of basis functions (Vanderplaats 1979). We utilize the Gaussian function (Boyd and 
Wang 2009) to represent the design variables h and bi. The shape functions are then expressed as 


 












 


hN

j
h
j

h
jh

j

s
sh

1
2

2

)(2

)(
exp)(




                         (14) 


 












 


b

i

i

i

N

j
b
j

b
jb

ji

s
sb

1
2

2

)(2

)(
exp)(




                        (15) 

where α is the scaling factor, μ and β are the location of the peak and the standard deviation. The 
constants Nh and Nb are the number of Gaussian functions representing h and bi, respectively. Fig. 
14 shows example Gaussian functions and their superposition. The thinner lines represent 
individual Gaussian functions and the thicker line is the integrated function obtained by adding the 
two Gaussian functions. By introducing this representation, the shape functions h(s) and bi(s) are 

represented in terms of the coefficients h
j

h
j

h
j  ,,  ( hNj ,,1  ) and iii b

j
b
j

b
j  ,,  

( bNj ,,1  ). The optimization problem (13) is rewritten in the following form 

  

max2

321

,)(,)(  subject to

)or  ,,1,,,1(

,,,,,    respect towith 
~

,
~

,
~

   Minimize

UJbsbbhshh

NNjNi

JJJ

UiLUL

bhd

b
j

b
j

b
j

h
j

h
j

h
j

iii


 


     (16) 

where 111

~
JJJ  , 222

~
JJJ   and 333

~
JJJ  . 

Researchers such as (Srirat et al. 2012) and (Iman et al. 2012) adopt only the coefficients α in 
Gaussian basis functions as design variables, but we choose all the coefficients α, μ and β in Eqs. 
(14) and (15) as the design variables to be determined in our optimal design. The increase in the 
number of design variables is not convenient especially from the viewpoint of the computational 
cost in the optimization process; however, the adjustment of the coefficient β as well as μ is crucial 
for the shape representation in terms of Eqs. (14) and (15) to express some shapes such as a near-
flat shape A-C of the reference design shown in Fig. 10. In this case, the radial basis function 
representation is nonlinear in these design variables. However, the optimization method adopted in 
this study explained in the following, the particle swarm optimization, is a powerful algorithm 
suitably applicable to nonlinear optimization problems as well. 
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Fig. 14 Examples of Gaussian function and the integrated function 
 

 
3.3 Optimization method 

 
The optimization problem (16) is solved by means of the particle swarm optimization (PSO). 

The PSO developed by Kennedy and Eberhart in 1995 is one of the population-based stochastic 
optimization techniques inspired by social behavior of bird flocking. In recent years, PSO has been 
successfully applied in many research and application areas (Behera and Choukiker 2010, Mauro 
et al. 2009). In the PSO, each candidate for the solution of the problem corresponds to a point in 
the search space. These candidates are called particles. Each particle also has an associated 
velocity that decides the next position of its movement. At each iteration, each of the particles 
changes its velocity and direction taking its best position and the group best position into account. 
The velocity v and position x of the particle i are updated according to Eqs. (17) and (18). 

)()( )()(
,

)(
22

)()()(
11

)()()1( k
i

k
ig

kk
i

k
i

kk
i

kk
i rcrcw xpxpvv                 (17) 

)1()()1(   k
i

k
i

k
i vxx                            (18) 

In the above, w(k) is the time-varying inertia weight, the coefficients c1 and c2 are constants, r1 and 
r2 are two random variables applied independently to provide uniform distributed numbers in the 

interval [0,1], )(k
ip  is the position of the best result of particle i, )(

,
k
igp is the position of the best 

global particle in the group, and superscript k refers to the iteration number. The inertia weight w  
decreases by the following manner 

k
k

ww
ww k

max

minmax
max

)( 
                          (19) 

where wmax and wmin are the maximum and the minimum values of inertia weight. The constant 
kmax is the maximum number of iteration. 

In order to apply the PSO to the multi-objective problem (16), we implement the multi-objective 

PSO (MOPSO). The important part in the MOPSO is to determine the best global particle )(
,
k
igp  

for each particle i of the group. In multi-objective optimization problem each particle of the group 
should select one of the Pareto-optima as its global best particle. In order to find the best global 
particle, we use the Sigma method (Mostaghim and Teich 2003). In the paper, the best global 
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particle is called the best local guide. 
In the Sigma method, a vector σ is assigned to each particle in the objective space. Because in 

the current study the number of objective function is three, we explain the Sigma method in three 
dimensional space. The value of σ is determined for each particle referring to the coordinate 

)
~

,
~

,
~

( 321 JJJ . The vector σ is defined as follows 
























2
1

2
3

2
3

2
2

2
2

2
1

2
3

2
2

2
1 ~~

~~

~~

~~~
1

JJ

JJ

JJ

JJJ
σ                         (20) 

Using the basic idea of Sigma method and by considering the objective space, finding the best 

local guide ( )(
,
k
igp ) among the Pareto-optima for the particle i of the group is as follows: In the first 

step, the vector σj is assigned to each particle j in the Pareto-optimal. In the second step, the vector 
σi for the particle i of the group is calculated. Then we calculate the distance between the σi and σj. 
Finally, the particle l in the Pareto-optima which σl has the minimum distance to σi is selected as 
the best local guide for particle i during iteration k. In the case of three dimensional objective 
space, closer means the 3-euclidian distance between the sigma values.  
    In addition to the Sigma method, we add a turbulence factor (Fieldsend and Singh 2002) to 
the updated position of each particle in the group. The turbulence factor is implemented as below 

)1()1()1(   k
iT

k
i

k
i R xxx                          (21) 

where RT is a random value in [0,1] with a constant probability of addition. 
In the optimization problem (16), the variables which are independent of each other are 

randomly generated in the beginning of the optimization process and are modified in each iteration 
by the Eq. (18). In this problem, the variables to be decided are the coefficients of Gaussian 
functions in Eqs. (14) and (15). The position x is represented as the following form. 

),,1,,,1(111
bbhh

b
j

b
j

b
j

b
j

b
j

b
j

h
j

h
j

h
j NjNjdN

b

dN

b

dN

bbbbhhh
 



 x     (22) 

 
 
4. Design examples 
 

4.1 Setting of parameters for numerical calculation 
 
The parameters used in the optimization are shown in Table 3. The values of the material 

parameters E1, E2 and   are estimated in section 2.3. The applied load vector P in Fig. 11 is 
specified as follows: 

• magnitude : 121.7 [kN] 
• angle from the vertical line : 10° (counterclockwise) 
• load applied point : 31-th node 
The evaluation item values obtained based on the reference design is shown in Table 4. As 

explained in section 3.1, the evaluation items J1, J2 and J3 are the structural weight, the sum of the 
displacement of specified points, and the induced Euclidean norm of the stiffness matrix, 
respectively. 
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Table 3 Parameters for numerical calculation 

 symbol value 

FE model 

Young’s modulus: E1 260 [GPa] 
Yield stress:   350 [MPa] 

Tangent modulus: E2 8 [GPa] 
Material density: ρ 7.87 [g/cm3] 

Number of elements: Ne 40 
Number of layers: Nd 10 

optimization problem 

Number of Gaussian function: Nh, Nb 10, 4 
Lower bound of size: hL, bL 5 [mm] 
Upper bound of size: hU, bU 40 [mm], 50 [mm] 

Upper limit of displacement: Umax 40 [mm] 

MOPSO 

Coefficients: c1, c2 1.0, 1.0 
Inertia weight: wmax, wmin 0.9, 0.4 

Number of particles 3000 
Number of iteration: kmax 100 

 Probability of adding turbulence factor 0.01 
 
Table 4 Evaluation item values of reference design 

1J  2J  3J  

1.77 [kg] 7.51 [mm] 3.80×10-7 [m/N] 
 

 
Fig. 15 Result of optimization for the problem (16) 

 
 

4.2 Obtained results 
 
   We present results of optimization and discuss the features of obtained solutions. Fig. 15 
shows the result of optimization for the problem (16). A good diversity of solutions is observed. 
The blue diamond represents the reference design. Each value indicates the ratio to the value of 
reference design. Fig. 16 shows the distribution of evaluation item values. Figs. 16(a)~(c) plot the  

720



 
 
 
 
 
 

Multi-criteria shape design of crane-hook taking account of estimated load condition 

(a) Evaluation items 1

~
J  and 2

~
J  (b) Evaluation items 2

~
J  and 3

~
J  

(c) Evaluation items 3

~
J  and 1

~
J  

Fig. 16 Distribution of evaluation item values of obtained solutions 
 
 
pair of ( 21

~
,

~
JJ ), ( 32

~
,

~
JJ ) and ( 13

~
,

~
JJ ). As it is shown in Figs. 16(a) and (c), there are trade-off 

relationships between the evaluation items ( 21
~

,
~

JJ ) and ( 13
~

,
~

JJ ). However, the trade-off 
relationship cannot be observed in Fig. 16(b). There is a positive correlation between the 
evaluation items 2

~
J  and 3

~
J . We discuss details about this relation later. 

The shapes of the obtained solutions are illustrated in Fig. 17. The central part shows the height 
distribution of the elements. In the following, we call this part as ‘hook shape’. The selected two 
cross-sections of design solution are also shown. One is the section of the ‘critical section’ (20th 
element) and the other is the section of the lower center part (28th element). The top and bottom of 
the section shape correspond to the inner and outer surfaces of the hook, respectively. These two 
are important sections in the practical design scene. 

The following features are observed for the obtained hook shape: 
• hook shape becomes thinner toward the tip point “G” from the lower center point “E” 
• thickness of base region around the point “A” is greater than any other region (except solution (F)) 
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(a) Hook shape and sections of solution (A) 
(good performance on 

2

~
J  and 

3

~
J ) 

(b) Hook shape and sections of solution (B) 
(good performance on 

1

~
J ) 

(c) Hook shape and sections of solution (C) 
(good performance on 

1

~
J , 

2

~
J  and 

3

~
J ) 

(d) Hook shape and sections of solution (D) 
(good performance on 

1

~
J ) 

(e) Hook shape and sections of solution (E) 
(good performance on 

1

~
J ) 

(f) Hook shape and sections of solution (F) 
(good performance on 

3

~
J ) 

Fig. 17 Obtained designs of crane-hook 
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The larger the attached importance on light weight is, the more remarkable the first feature 
becomes. Tapering off around the tip point “G” is a rational shape, because the stresses on the 
surface of hook between the load applied point and the tip point “G” are equal to 0 and this part 
has no contribution to the strength. On the basis of the mechanical view point, it is better to 
decrease the thickness of hook from the right part of the load applied point, but the obtained 
shapes become thinner gradually. The obtained smooth shapes are due to the adopted Gaussian 
function; they are considered to be practical from the viewpoint of productivity. The obtained 
shapes have similarity to those of the actual crane-hook design. We can say that the existing 
designs based on the knowledge empirically obtained by the expert engineers have considerably 
good performance from the viewpoint of the evaluation items adopted in this study. 

We discuss the features of the cross-sectional shape. In the case that we attach importance on 
light weight, as shown in Figs. 17(b) and (e), the cross-sectional shape is bellows-like shape. The 
widths between the upper and middle part and the middle and lower part become thinner. This 
feature is commonly observed at the point “D” and “E”. The width at the point “D” is greater than 
the width at the point “E”. Since the stress around the point “D” is often larger than that of any 
other points, larger width is required at this point. If we do not attach importance on light weight, 
as shown in Figs. 17(a) and (c), the sections of the point “D” and “E” are the rectangular shape 
whose widths are larger than height. In the case that the importance is attached to the induced 
Euclidean norm of the stiffness matrix, as shown in Fig. 17(f), the cross-sectional shape of the 
point “D” becomes thinner toward the top and the shape of the point “E” becomes thinner toward 
the bottom.  

The key points obtained from the observation of the solutions are as follows: 
• hook shape is tapering off from the lower center point 
• tapering off shape of hook becomes conspicuous as the importance is attached to the light 

weight 
• cross-sectional shape is a wide rectangular in the case that the importance is attached to the 

strength and the stiffness 
• cross-sectional shape is bellows-like in the case that  the importance is attached to the light 

weight 
We discuss about the result shown in Fig. 16(b). In this figure, the evaluation items 2

~
J  and 

3

~
J  have a positive correlation. In order to confirm the similarity between these two items, we 
solve single objective optimization problems of 2

~
J  and 3

~
J  with constrained structural weight 

0.2
~

1 J . Figs. 18(a) and (b) show the shapes of obtained solutions. The hook shape of Fig. 18(a)  
has uniform height distribution. The size equals the upper limit. The thicker the hook shape and 
the cross-sections are, the less the stress of the element becomes. By minimizing the stress, the 
deformation of hook becomes small. In Fig. 18(b), the thickness of base region around the point 
“A” is smaller than any other region. The sections are the rectangular shape. In order to keep the 
high stiffness against not only the downward load but also various loads, this structure is rational. 
If the applied load condition is unclear, the structure design taking account of the criterion 

3

~
J  is 

important. These two evaluation items have a similar tendency as the objective functions, but the 
optimal solutions are different from each other. Thus, each of the obtained solutions of the three 
objective optimization problem has its own significance. 
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(a) Evaluation item 
2

~
J  (b) Evaluation item 

3

~
J  

Fig. 18 Obtained designs of crane-hook for single objective problem 
 
 
5. Conclusions 
 

The design and optimization of the crane-hook are presented and discussed. In order to obtain a 
high-quality design, we formulate the multi-objective optimization problem with three items. The 
evaluation items are the structural weight, the sum of displacements at the specified points and the 
robustness against unspecified multiple load conditions. In the representation of the design 
variables, we utilize the Gaussian functions. The multi-objective problem is solved by means of 
the MOPSO with the Sigma method. 

The obtained crane-hook shapes have a tapered shape similar to those of actual crane-hook 
designs. This indicates that the evaluation items adopted in this study represent the performance 
indices of crane-hook that can be adopted in the practical design scenes. Contrary to the similarity 
in the side view, that is, the height distribution of the elements between the actual design and the 
obtained designs, the cross-sections are different. The main features of the sections are ‘wide 
rectangular’ and ‘bellows-like shape’. The former feature is observed when the attached 
importance on the light weight is less. The latter feature is mainly observed when the attached 
importance on the light weight is greater. By introducing the Gaussian function to represent the 
design variables, we can reduce the number of design variables and represent the shape functions 
effectively. We utilize PSO as the optimization algorithm and are able to produce feasible designs. 
In this study, we do not consider the production cost. The change of cross-sectional shape needs 
the modification of the production systems. It is necessary to formulate an optimization problem 
including the constraints about the production costs in our future work. 
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