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Abstract.  The main goal of this study is to extend the domain of influence result to cover the micropolar 
thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field ui, the microrotation 
vector φi, the temperature θ and the chemical potential P generate no disturbance outside a bounded domain 
Bt. 
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1. Introduction 

 

The problems connected with the diffusion of matter in thermoelastic bodies and the interaction 

of mechano-diffusion processes have become the subject of research by many authors. At elevated 

and low temperatures, the processes of heat and mass transfer play the decisive role in many 

problems of satellites, returning space vehicles, and landing on water or land. These days, oil 

companies are interested in the process of thermodiffusion for more efficient extraction of oil from 

oil deposits. Diffusion can be defined as the random walk, of an ensemble of particles, from the 

regions of higher concentration to the regions of lower concentration. Thermodiffusion in an 

elastic solid is due to coupling of the fields of temperature, mass diffusion and that of strain. 

Nowacki (1974), Nowacki (1976) developed the theory of thermoelastic diffusion. In this theory, 

the coupled thermoelastic model is used. 

Uniqueness and reciprocity theorems for the equations of generalized thermoelastic diffusion 

problem, in isotropic media, was proved by Sherief et al. (2004) on the basis of the variational 

principle equations, under restrictive assumptions on the elastic coefficients. Aouadi (2009) proved 

this theorem in the Laplace transform domain. Aouadi (2010) derived the uniqueness and 

reciprocity theorems for the generalized thermoelastic diffusion problem in anisotropic media.  

In the paper Chirita and Ciarletta (2007) derived necessary and sufficient conditions for strong 
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ellipticity in several classes of anisotropic linearly elastic materials. Other important results 

regarding generalized thermoelastic bodies are present in papers Marin et al. (2013), Marin (1994), 

Marin (1998), Marin (2010a), Marin (2010b). 

Abbas and his co-workers applied finite element method for different problems with different 

theories of thermoelasticity in the papers Abbas and Othman (2012 a), Abbas and Othman (2012 

b), Abbas (2012), Kumar et al (2013), Abbas and Kumar (2013). 

An intelligent supersize finite element method, was employed in the paper Kim et al. (2013) for 

the ultimate longitudinal strength analysis. 

In the paper Takabatake (2012), the existence and effect of dead loads are proven by numerical 

calculations based on the Galerkin method. 

In the present paper we first consider the basic equations and conditions of the mixed initial-

boundary value problem in the context of micropolar thermoelastic diffusion. Next we define the 

domain of influence Bt of the data at time t associated with the problem. We adopt the method used 

in Carbonaro and Russo (1984) to establish a domain of influence theorem. The main result asserts 

that in the context of theory considered, the solutions of the mixed initial-boundary value problem 

vanishes outside Bt, for a finite time t>0. 

 
 

2. Basic equations 
  

An anisotropic elastic material is considered. Assume a such body that occupies a properly 

regular region B of three-dimensional Euclidian space R
3
 bounded by a piecewise smooth surface 

∂B and we denote the closure of B by B . We use a fixed system of rectangular Cartesian axes Oxi, 

(i=1,2,3) and adopt Cartesian tensor notation. A superposed dot stands for the material time 

derivate while a comma followed by a subscript denotes partial derivatives with respect to the 

spatial coordinates. Einstein summation on repeated indices is also used. Also, the spatial 

argument and the time argument of a function will be omitted when there is no likelihood of 

confusion. 

The basic equations for micropolar thermoelastic diffusion are 

- equations of motion 

;=

,=

,

,

jijijkijkjij

iijij

IMtm

uFt
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




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
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- equation of energy 

;= ,0 hqT ii                                (2) 

- equation of conservation of mass 

.=,  rii                                   (3) 

We complete the above equations with 

    - the constitutive equations 
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(4) 

- the kinetic relations  

.=,= ,, ijijkjikijij u                             (5) 

In the above equations we have used the following notations: ρ-the constant mass density in the 

reference state; η-the specific entropy; T-the absolute temperature of the medium; T0-the constant 

absolute temperature of the body in its reference state; θ-the temperature variation measured from 

the reference temperature T0; Iij-coefficients of microinertia; ui-the components of displacement 

vector; φi-the components of microrotation vector; εij, μij-kinematic characteristics of the strain; tij-

the components of the stress tensor; mij-the components of the couple stress tensor; Kij-the 

components of the thermal conductivity tensor; qi-the components of the heat conduction vector; 

ηij-the components of the diffusion; Fi-the components of the body forces; Mi-the components of 

the body couple; dij is the diffusion tensor; h-the heat supply per unit mass and unit time; r is the 

diffusion supply per unit of initial volume; C is the concentration of the diffusive material in the 

elastic body; P is the chemical potential per unit mass; aijmn, bijmn, …, a are the characteristic 

functions of the material. 

By using the chemical potential as a state variable instead of the concentration of the diffusive 

material, we can obtain an alternative form of the above equations. So, the basic equations become 
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(6) 

The constitutive equations received the form 
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(7) 

where new sizes have the following meanings  

,
1
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We assume that the constitutive coefficients satisfy the following symmetry relations  

.=,=,=,=

,=,=,=

jiijjiijjiijjiij

jiijmnijijmnmnijijmn

CCBB

KKCCAA


                     (9) 

The entropy inequality (the second law of thermodynamics) implies that  

0,,, jiijK                           (10) 

for all ξ,i. 

The components of the surface traction, the heat flux and the diffusion flux at regular points of 

∂B are given by  

,=,=,=,= iiiijijijiji nSnqqnmmntt   

respectively.  

By ni we denoted the components of the outward unit normal of surface ∂B. 

To the system of field Eq. (7) we adjoin the following initial conditions  
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and the following prescribed boundary conditions  
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where ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ccc BBB 321 ,,   and cB4  are subsets of 

∂B, so that 
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ni are the components of the unit outward normal to ∂B, t0 is some instant that may be infinite, 

qmtuuu iiiiiiii ,,,,,,,,,,,,, 1001010  and h  are prescribed functions in their domains. 

Introducing the constitutive Eq. (7) into Eq. (6) we obtain the following system of equations  
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     .= , rdCBPdPl ijijijijijij     

(13) 

By a solution of the mixed initial boundary value problem of the micropolar thermoelastic 

diffusion in the cylinder Ω0=B×[0,t0] we mean an ordered array (ui, φi, θ, P) which satisfies the 

system of Eq. (13) for all 0),( tx , the boundary conditions (12) and the initial conditions (11). 

 
 

3. Main result 
 

In the beginning of this section we define the notion of the domain of influence. Next, we will 

establish a domain of influence inequality, which is a counterpart of the inequality established in 

Hetnarski and Ignaczak (1999) and which is the basis of demonstration of main result of this 

study: the domain influence theorem in the context of micropolar thermoelastic diffusion. 

We shall use the following assumptions on the material properties  

0;>0,>0,>0,>) 0 aTIi ij   

 ijijmnijijmnmnijijmnmnijijmn xByyCyxBxxAii 22)  

 ,2 22   ijijijijijij yyxxlyC  for all ;,, ijij yx  

,) 0 iijiij cKiii    for all i  with 0>0c . 

These assumptions are in agreement with the usual restrictions imposed in the mechanics of 

continua. The assumption iii) represent a considerable strenghtening of the consequence (10) of 

the entropy production inequality. 

For a sufficiently small ε>0, let Wε(z) be a smooth nondecreasing function, defined as follows  








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For 0≤s≤t we define the function G(x, s) by 












st

c

rR
WsxG =),(                            (14) 

for some fixed positive R and t, where r=|x−x0|, x0 is an arbitrary fixed point, c is a positive 

constant to be determined later. 

G(x, s) is a smooth function defined on B×[0, t], vanishing outside the set Ʃ, where Ʃ is defined 

as 

)].(,[= 0

][0,

stcRxS
ts




  

 Here S(x0, R) is a sphere of the form  
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}.|<:|{=),( 0

3

0 RxxRxRxS                         (15) 

Let U(x, s) be the function defined by 


 ).,(222
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1
=),( 22
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We also define the function K(x, s) by 

  ).,(
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Taking into account the assumptions i), ii) and iii) from the form (16) and (17) of the functions 

U(x, s) and K(x, s), respectively, we deduce 

).,(),( sxUsxK                               (18) 

In the next theorem we prove the domain of influence inequality which is a necessary step to 

prove the main result. 

Theorem 1. Let (ui, φi, θ, P) be a solution to the system of Eq. (13) with the initial conditions 

(11) and the boundary conditions (12). Then for any R>0, t>0 and Bx 0 , we have that  
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Proof. Multiplying the Eq. (13)1 by iuG   and making use of the constitutive Eq. (7)1, we 

obtain 
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Multiplying the Eq. (13)2 by iG  and making use of the constitutive Eqs. (7)1 and (7)2, we 

obtain 
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Multiplying the Eq. (13)3 by Gθ and making use of the constitutive Eqs. (7)3 and (7)4, we are 

lead to 

     iiii qGqG
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At last, multiplying the Eq. (13)4 by GP and making use of the constitutive Eqs. (7)5 and (7)6, 

we obtain 
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Adding Eqs. (20), (21), (22) and (23) together, we are lead to 
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The relation (24) may be restated as follows 
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Taking into account the definition (16) of function H(x, s) we can rewrite relation (25) in the 

form 
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Integrating both sides of Eq. (26) over B×[0, t] and making use of the divergence theorem and 

the boundary conditions (12), we deduce that 
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Taking into account the definition (16) of the function G, we find that 

=
1

,,
0

,, PGqG
T

mGutG iiiiiijjiijj 


    

       =
11111

= ''

0

'' P
r

x
W

c
q

r

x
W

Tc
m

r

x
W

c
ut

r

x
W

c
i

i
i

i
iij

j
iij

j



     

       ijijjijjmnijmnjmnijmn uxxPBxBxA
r

W
c



11
= '  

    

 

,
1

,
0

,, 







jjijijij

ijijjijjmnijmnjmnmnij

xK
T

Pxd

xxPCxCxB










 

(28) 

where 

.='
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We now make use of arithmetic-geometric mean inequality 
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where p is an arbitrarly positive parameter. 
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If we use this inequality to the last terms of relation (28) and by choosing suitable parameters p we 

can find c such that  
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and that  














  dVdsPGqG

T
mGutGdVdssxUG iiiiiijjiijj

B

t

B

t

 ,,
0

,,
00

1
),(   

  0.),(),(),('

0
  dVdssxUsxKsxW

B

t

                        (31) 

From Eq. (27), taking into account the inequality (31), we deduce that  
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Letting ε→0 into relation (32), G tends boundedly to the characteristic function of Ʃ and we get 

the inequality (19) and the proof of Theorem 1 is complete.  

Based on the above estimations, we can now prove the main result of our study: the domain of 

influence theorem. 

Let B(t) be the set of points Bx  such that: 
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The domain of influence of the data at instant t is defined as  

},),()(:{= 00  ctxStBBxBt                        (33) 

where Ф is the empty set. 

In the next theorem ve prove the existence of the domain of influence in the context of 
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micropolar thermoelastic diffusion. 

Theorem 2. Let (ui, φi, θ, P) be a solution to the system of Eq. (13) with the initial conditions 

(11) and the boundary conditions (12). Then we have  
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Since ,\0 tBBx   we have )(),( 0 tBxctxDx   and hence  
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 Taking into account the assumption iii) and the relations (34) - (38) we obtain 
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Based on inequality (18), we deduce that  
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 By using the definition (17) of the function K(x, t) we are lead to  

        0,=,0,=,0,=,0,=, 0000  xPxxuxu ii
  

for any   ][0,}\{,0 tBBx t  . 
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Finally, since 0=,0)(0,=,0)( 00 xxu ii   for any ,\0 tBBx   we deduce  

0,=),(0,=),(0,=),(0,=),( 0000  xxxxu ii  

for any ][0,}\{),( 0 tBBx t   and the proof of Theorem 2 is complete.  

 
 

4. Conclusions 
 

In fact, the main result of the paper is an extension of known Saint-Venant's principle from 

classical Elasticity. We have shown in the paper that this principle remains valid even if we 

exceeded the framework of classical mechanics. 

The essence of the principle remains the same even if we have taken into consideration and the 

effect of thermal treatment, the effect of micropolar structure and the effect of diffusion. 
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