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Abstract.  The main goal of this study is to extend the domain of influence result to cover the micropolar
thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field u;, the microrotation
vector ¢;, the temperature 6 and the chemical potential P generate no disturbance outside a bounded domain
B:.
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1. Introduction

The problems connected with the diffusion of matter in thermoelastic bodies and the interaction
of mechano-diffusion processes have become the subject of research by many authors. At elevated
and low temperatures, the processes of heat and mass transfer play the decisive role in many
problems of satellites, returning space vehicles, and landing on water or land. These days, oil
companies are interested in the process of thermodiffusion for more efficient extraction of oil from
oil deposits. Diffusion can be defined as the random walk, of an ensemble of particles, from the
regions of higher concentration to the regions of lower concentration. Thermodiffusion in an
elastic solid is due to coupling of the fields of temperature, mass diffusion and that of strain.
Nowacki (1974), Nowacki (1976) developed the theory of thermoelastic diffusion. In this theory,
the coupled thermoelastic model is used.

Uniqueness and reciprocity theorems for the equations of generalized thermoelastic diffusion
problem, in isotropic media, was proved by Sherief et al. (2004) on the basis of the variational
principle equations, under restrictive assumptions on the elastic coefficients. Aouadi (2009) proved
this theorem in the Laplace transform domain. Aouadi (2010) derived the uniqueness and
reciprocity theorems for the generalized thermoelastic diffusion problem in anisotropic media.

In the paper Chirita and Ciarletta (2007) derived necessary and sufficient conditions for strong
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ellipticity in several classes of anisotropic linearly elastic materials. Other important results
regarding generalized thermoelastic bodies are present in papers Marin et al. (2013), Marin (1994),
Marin (1998), Marin (2010a), Marin (2010b).

Abbas and his co-workers applied finite element method for different problems with different
theories of thermoelasticity in the papers Abbas and Othman (2012 a), Abbas and Othman (2012
b), Abbas (2012), Kumar et al (2013), Abbas and Kumar (2013).

An intelligent supersize finite element method, was employed in the paper Kim et al. (2013) for
the ultimate longitudinal strength analysis.

In the paper Takabatake (2012), the existence and effect of dead loads are proven by numerical
calculations based on the Galerkin method.

In the present paper we first consider the basic equations and conditions of the mixed initial-
boundary value problem in the context of micropolar thermoelastic diffusion. Next we define the
domain of influence B; of the data at time t associated with the problem. We adopt the method used
in Carbonaro and Russo (1984) to establish a domain of influence theorem. The main result asserts
that in the context of theory considered, the solutions of the mixed initial-boundary value problem
vanishes outside B, for a finite time t>0.

2. Basic equations

An anisotropic elastic material is considered. Assume a such body that occupies a properly
regular region B of three-dimensional Euclidian space R® bounded by a piecewise smooth surface
0B and we denote the closure of B by B . We use a fixed system of rectangular Cartesian axes Ox;,
(i=1,2,3) and adopt Cartesian tensor notation. A superposed dot stands for the material time
derivate while a comma followed by a subscript denotes partial derivatives with respect to the
spatial coordinates. Einstein summation on repeated indices is also used. Also, the spatial
argument and the time argument of a function will be omitted when there is no likelihood of
confusion.

The basic equations for micropolar thermoelastic diffusion are

- equations of motion

'[ij'j + pF, = pl;, @
My, +gijk'[jk + oM, = Iij()ij;
- equation of energy
Pl =G i +ph; @
- equation of conservation of mass
M +r=7. ®3)

We complete the above equations with
- the constitutive equations

tij = QjjmnEmn + Bjmnttmn + 047 — Tij 6,

Mij = Biynijémn + Cijmntémn +Cij» — Gij 0,
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pn = fiej + giju; +my +c 6,

0 = K;j 0
7 =i P @
P =bjj&;j + Cijij + py—m 6,
- the kinetic relations
&j = Ui T E€5@r ij = @i 5)

In the above equations we have used the following notations: p-the constant mass density in the
reference state; #-the specific entropy; T-the absolute temperature of the medium; To-the constant
absolute temperature of the body in its reference state; 6-the temperature variation measured from
the reference temperature Ty, lj-coefficients of microinertia; ui-the components of displacement
vector; gi-the components of microrotation vector; &, ui-Kinematic characteristics of the strain; t;-
the components of the stress tensor; mj-the components of the couple stress tensor; Kj-the
components of the thermal conductivity tensor; g;-the components of the heat conduction vector;
nii-the components of the diffusion; Fi-the components of the body forces; M;-the components of
the body couple; dj is the diffusion tensor; h-the heat supply per unit mass and unit time; r is the
diffusion supply per unit of initial volume; C is the concentration of the diffusive material in the
elastic body; P is the chemical potential per unit mass; @jmn, Dijm, ..., @ are the characteristic
functions of the material.

By using the chemical potential as a state variable instead of the concentration of the diffusive
material, we can obtain an alternative form of the above equations. So, the basic equations become

pu =t + ok,
L@ =my i + &ty + oM

. _ (6)
Pl =0 +p
y =1+
The constitutive equations received the form
tij = Aijmngmn + Bijmn:umn + Bijy_ﬂij H’
My = Bonij€mn + Cijmnlumn +Cij7_aij 0,
pn = ﬁijgij + o+ M P+ad, 0
q = Kjj 0
m=dj P

Y= _Bijgij —Cij,uij +| P+ d 6,
where new sizes have the following meanings

1 1
Aﬁjmn = aijmn__ bij bmn’ Bijmn = bijmn - bij Crny
p p



654 Marin Marin, Ibrahim Abbas and Rajneesh Kumar

1

1 1 1
Bi=—b,Ci =—¢;, B = fi —— mb;;, ;i = 9;; —— mg¢;;,
ij P (] ij P ij ij ij P 1jr “ij ij P ij
, . ®)
d =m,a=m—+c,l ==
p p p
We assume that the constitutive coefficients satisfy the following symmetry relations
Ajmn = Anijr Cijmn = Conijr Kij = K, )
B; =B, C; =Cyi, B = By oy = -
The entropy inequality (the second law of thermodynamics) implies that
Kijcic; =0, (10)

for all &,;.
The components of the surface traction, the heat flux and the diffusion flux at regular points of
OB are given by

t=t;n,m=m;n;,q=q,n,S=mnn,
respectively.

By n; we denoted the components of the outward unit normal of surface ¢B.
To the system of field Eq. (7) we adjoin the following initial conditions

l'Ii (X,O) = uio(x)’ l']i (X,O) = uil(X)’ ¢i (X’O) = ¢i0 (X)’

_ (11)
¢, (x,0) = ¢ (x), (x,0)=6°(x), 7(x0)=y"(x), xeB,
and the following prescribed boundary conditions
Ui = UI on 8Bl><[0, to), ti Et”nj :t-i on an X[O, to),
on 0B, x[0,ty), m; = m;n; =m; on oB5 x[0,t,), (12)

=0
6 =0 on 6B, x[0,1,), = q;n; = q on BS x[0, 1),
P =P ondB, x[0,ty), S=7,n =S on B x[0, 1),

where 0B;, 0B,, 0B; and 0B, with respective complements 6B, oB5, oB; and oBg are subsets of
OB, so that

dB, L dB{ = 3B, U dBS = 0B, L dBS = 8B, U dB = B,

OB, MBS = 6B, MBS = 9B, M OB = 8B, N oBS = &,

n; are the components of the unit outward normal to 0B, t, is some instant that may be infinite,
u’,u, @, ¢t 6°, 6%, ot U, t, @, m, &, 0,qandh are prescribed functions in their domains.
Introducing the constitutive Eq. (7) into Eq. (6) we obtain the following system of equations
pli; = (Aijmngmn + Bijmnttmn + Bjj P _ﬂije)y j + pF;,

lii#j = Bmnij€mn + Cijmntémn + Cij P —@i0), j +
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+5ijk(Ajkmn€mn + Bjimntmn * Bjk P—ﬁjk9)+ M,

-1 P . . 3
30= (K0 1), -y sy =4 P (13)
| P = dij P,ij + Bljglj +Cij/aij —d é+ r.

By a solution of the mixed initial boundary value problem of the micropolar thermoelastic
diffusion in the cylinder Qq-Bx[0,t;] we mean an ordered array (u;, ¢;, 6, P) which satisfies the
system of Eq. (13) for all (x,t) € Q2,, the boundary conditions (12) and the initial conditions (11).

3. Main result

In the beginning of this section we define the notion of the domain of influence. Next, we will
establish a domain of influence inequality, which is a counterpart of the inequality established in
Hetnarski and Ignaczak (1999) and which is the basis of demonstration of main result of this
study: the domain influence theorem in the context of micropolar thermoelastic diffusion.

We shall use the following assumptions on the material properties

|) p>0,|ij>0,T0>0,a>0;
ii) Aijmnxij Xmn + 2Bijmnxij Ymn +Cijmnyij Ymon + ZBij Xijw"'

+2C;y;0+1 o* > oc(xijxij +Yii Vi +a)2) forall x;, yij,

i) Kymn; >com,  forall n with ¢, >0.
These assumptions are in agreement with the usual restrictions imposed in the mechanics of
continua. The assumption iii) represent a considerable strenghtening of the consequence (10) of

the entropy production inequality.
For a sufficiently small >0, let W,(z) be a smooth nondecreasing function, defined as follows

0 ,ze(-o¢]
1 ,ze[g,).

wo-|
For 0<s<t we define the function G(x, s) by
G(x,5) :WS(E+I—S) (14)

c

for some fixed positive R and t, where r=|x—Xq|, Xo is an arbitrary fixed point, ¢ is a positive
constant to be determined later.

G(x, s) is a smooth function defined on Bx[0, t], vanishing outside the set X, where X is defined
as

== [JSIx, R+c(t-s)].

sel0,t]

Here S(xo, R) is a sphere of the form
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S(X,,R) ={xeR%®| x—x, |<R}. (15)
Let U(x, s) be the function defined by

ir7 .. ..
U(x,s)= E[puiui + o5 + @ 0% +1 F’2+'°$jmn5ij5mn+

(16)
+2Bjjmn€ijHmn + CijmntlijHmn + 2By Péjj +2C;; P:uij:kxl s).
We also define the function K(x, s) by
ir ... .

Taking into account the assumptions i), ii) and iii) from the form (16) and (17) of the functions
U(x, s) and K(x, s), respectively, we deduce

K(x,s) <U(x,9). (18)

In the next theorem we prove the domain of influence inequality which is a necessary step to
prove the main result.
Theorem 1. Let (u;, ¢;, 9, P) be a solution to the system of Eq. (13) with the initial conditions

(11) and the boundary conditions (12). Then for any R>0, t>0 and X, € B, we have that

1 ¢t
U((x, t)dV +— Ki:@.0:dV < U (x,0)dV
J.D[XO,R] 0 +TO .[OID[XO,R+C(t—s)] e Dlxy, R+ct] (x0)dV +
t 1
Fu+M. ¢o+—h@ P |dvd 19
* J-OJ.D[XO, R+C(t—s)r{ Ui M o +TO r J . (19)

t ~ 1 3
fit; + Mgy + —qO&+S P |dSds,
" +.fo.[ao[xo,R+c(t—s){ 'u'+ml¢.+T0q + } s

where
D(Xy,R) ={xeB: x—X%; < R},
OD(xg,R) ={xeB:| x—X; |< R}.
Proof. Multiplying the Eq. (13); by Gu, and making use of the constitutive Eq. (7)., we
obtain

1_.d, .. . . .
G—(ptiu;) = PGF Y +(Gtijui), ; ~ G, it -

27 dt (20)
_G<Aijmngmn + Bijmnttmn + Bjj P _ﬂije)éij'

Multiplying the Eq. (13), by G¢, and making use of the constitutive Egs. (7), and (7)., we
obtain

1.d .. . . .
EGa(lij(ﬂufﬂj): PCMig; + (GMy@y) ;=G ;i —

_G(anijgmn +Cijmnttmn + G P _aije)ﬂij +

) (21)
+5ijk(Ajkmn5mn + Bjimnttmn + Bjx P= By O
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Multiplying the Eq. (13); by G& and making use of the constitutive Egs. (7); and (7),, we are
lead to

%G%(aﬁ) = 9+p—TO[(G 0q),-G,; 0]

1 . . :
0

At last, multiplying the Eq. (13), by GP and making use of the constitutive Eqgs. (7)s and (7)e,
we obtain

d
1e9(p2)=GrrP+G(y P), -G,y P-
2 d ( ) r + ( 1 ),| , 1 UI (23)
Adding Egs. (20), (21), (22) and (23) together, we are lead to
1

2 S (puu + i +a 0%+ p2)=pGFiui+pGMi¢>,+

+GrP+—Gh0+G(tu+m,J¢;+ L 0q;j+1n; PJ -
TO pTO L

_GlAijmngmn‘éij + Bijmn(gmnﬂij +‘émmuij)+ Cijmntnnttj +

-G jm;o -G im; P_p_TOG‘i Gi e_p_.I_OGKij 00
The relation (24) may be restated as follows

1 d
2 dt (pUU +|Ij¢|¢j+a02+l p + Ajmnémnéij +

+ 2Bjjmntimnéij + Cijmnttmnij + 2Bjjeij P+ 2G4 P) =

:pG(Fiui+Mi(j)i+Tih¢9+r P]+
0
1 (25)
pTO i

. . 1 1
-G jtt; -G jmyey —G,ip—.I_OHQi -G i7; P_p_TO Kij 00 ;.

Taking into account the definition (16) of function H(x, s) we can rewrite relation (25) in the
form

—GU+ Kij @i 0 = PG| Ry +M,¢;+ h9+rP
2 pTO
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+G(tu+m”¢>+ L 04d;+n; PJ -
,DT() i
(26)

PTo T

Integrating both sides of Eq. (26) over Bx[0, t] and making use of the divergence theorem and
the boundary conditions (12), we deduce that

1 t
[cuebav +p—TOL |6 K00 avds = [ GUXKOAV +
! R
+.[0J.aBG(tiui + M@, +,0_T0 qo+Ss PJdVds+
! : 1
+I0IBpG Fiu; + Mg, +ﬁh9+rp dvds+

(27)
te . t 1
+J‘OJ.BGU(x,s)dVds—J‘OJ‘BGV (t Gy M+ 0y 0 PJ dvds.

Taking into account the definition (16) of the function G, we find that

0

. . 1
—(;Y ]tljul —Gv Jm”gﬁl _pTG‘iqu_G' il P‘ =

lW Jtu+1W 11

£ ij i I]I

q 49+—W —;7, P‘

1.1 .
—Wg—[(pﬁjmngmnxj + BijmntimnXj + Bjj P X; = f; 0 Xj)"i +
c “r (28)

+(' anijgmn Xj +C|jmnlumn Xj +Cij P Xj _ﬁij 0 Xj)‘ﬁi +

+de+lK99x}
Pl

where

Wg = M
dr

We now make use of arithmetic-geometric mean inequality
2
ab<l(a—+b2 pzj (29)
2(p

where p is an arbitrarly positive parameter.
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If we use this inequality to the last terms of relation (28) and by choosing suitable parameters p we
can find c such that

. .1 :
‘_G’ Jt”ul _G' ]mugol _T_G’i qi H_G’i i P SWS K(X, S), (30)
0

and that

0 t . 1
jojBGU (X’S)dVdS_J'[)J.B(G‘ Jt”ul +G’ JmlJ(Di-’TOG’I qi9+G’i i PJdVdSS

t '
< J.OJ.BWS(X' s)[K(x,5)-U(x,s)]dvds <. 31)
From Eq. (27), taking into account the inequality (31), we deduce that

1 t
IBGU (x,t)dV e jo J-BG K;;60:60 jdVds < jBGu (x,0)dV +
1

P 2To

+j;ijG(Fiui M@ +——hO+r deVds+

(32)
t oL, 1 _ _
+J‘0LBG[tiui + M@, +P_T0 qoé+S PJdeS.

Letting e—0 into relation (32), G tends boundedly to the characteristic function of £ and we get
the inequality (19) and the proof of Theorem 1 is complete.

Based on the above estimations, we can now prove the main result of our study: the domain of
influence theorem.

Let B(t) be the set of points X € B such that:

() xeB=ul=00ru =00r g’ =00r g #00r8° =00r y° =0 or
37 €[0,t] suchthat K (x,7) #0or M;(x,7) #0or h(x,z) #0or r(x,z) #0;

(2 xeoB, =37 €<[0,t] such that G,(x,7) =0;

(3) xedBy =3re[0,t]such that t(x,7)=0;

(4 xeoB, =37 <[0,t] such that ¢ (x,7)#0;

(5) xeoB; =37 €[0,t]such that m,(x,7) =0;

(6) xedB; =37 <[0,t] such that&(x,z) #0;

(7) xedB =37 [0,t] such thatg(x,z) =0;

(8) xedB, =37 e[0,t] such thatP(x,7) #0;

(9) xedBS =37 [0,t] such thatS(x,z) 0.

The domain of influence of the data at instant t is defined as

B, ={X, € B : B(t) " S(x,ct) # D}, (33)

where @ is the empty set.
In the next theorem ve prove the existence of the domain of influence in the context of
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micropolar thermoelastic diffusion.
Theorem 2. Let (u;, ¢, 6, P) be a solution to the system of Eq. (13) with the initial conditions
(11) and the boundary conditions (12). Then we have

U =0, ¢ =0, #=0, P=0, on {B\B}x[01].
Proof. For any x,eB\B, and r€[0,t], by using the inequality (19) with t=z and

R=c(t—1), we obtain

1,
'[D[XO’ C(t—T)] Ux 7)dv +T_O.[0 -[D[XO, c(t-s)] K;j 0; 0 ;dVds <

SJ.D[Xo, Ct)] v (X,O)dV+j;ID[XO, C(t—S)] /O(Fiui"'l\/I 1258 Ti ho+r P]dVdS+

0

(34)
+rj pt‘.u.+m¢.+iqe+§P dSds.
0 aD[xo, C(t—S)] T
Since X, € B\B,, we have x e D(x,,ct) = x ¢ B(t) and hence
jD[XO’ t) U (x,0)dV =0. (35)
Moreover, since D[X,, c(t —s)] < D(X,,ct), we have
. . .1 _
jo jD[XO’ o(t-9)] p(Fiui +M.g, T h+r PJdVds =0, (36)
and
H fu.+m¢.+iqe+§P dvds = 0. (37)
0 D[XO, C(t—S)] i i T,
Taking into account the assumption iii) and the relations (34) - (38) we obtain
jD[XO’ (7)) U (x,7)dV <0. (39)
Based on inequality (18), we deduce that
jD[XO’ o(t7)] K(x,7)dV <0, (40)

By using the definition (17) of the function K(x, t) we are lead to
Ui(XO,T) =0, l]i(xo,r)= 0, H(XO,T)= 0, P(XO,T)= 0,
forany (x,,7)e{B\B}x[0,1].
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Finally, since U, (%,,0) =0, ¢ (X,,0)=0 forany x,eB\B,, we deduce
U, (X%, 7) =0, ¢ (%,7) =0, 8(X,,7) =0, (X, 7) =0,

forany (X,,7) €{B\B}x[0,t] and the proof of Theorem 2 is complete.

4. Conclusions

In fact, the main result of the paper is an extension of known Saint-Venant's principle from
classical Elasticity. We have shown in the paper that this principle remains valid even if we
exceeded the framework of classical mechanics.

The essence of the principle remains the same even if we have taken into consideration and the
effect of thermal treatment, the effect of micropolar structure and the effect of diffusion.
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