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Abstract.  Based on continuum mechanics and the principle of virtual displacements, incremental total 
Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both 
T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical 
matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, 
finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. 
Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam 
element was developed. According to the basic assumption of plane section, the displacement field of an 
arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear 
deformation effect was taken account. Furthermore, a nonlinear finite element method program has been 
developed and several examples were tested to demonstrate the accuracy and generality of the three 
dimensional beam element. 
 

Keywords:  3D Timoshenko fiber beam element; large displacement matrix; finite rotation; total 

Lagrangian formulation and updated Lagrangian formulation; incremental nonlinear finite element method 

 
 
1. Introduction 

 

Framed structures demonstrate highly nonlinear characteristic under ultimate load or strong 

earthquake, due to complicated mechanic performance of the reinforced concrete material, the 

accurate demand of the structural analysis is particularly significant very much. Zeris (1988, 1991) 

and Spacone (1996a, b) proposed fiber-model beam-column element based on flexibility method 

and stiffness method respectively, and then successfully solved the materially nonlinear problem of 

reinforced concrete columns. Nie (2012) used fiber beam element to analyze steel-concrete 

composite structures, and further studied the intrinsic mechanisms and failure law of these 

members. Li et al. (2012) used fiber beam element to simulate spatial concrete structures under 

fire, and found the progressive collapse mechanism and failure law of the structures. Zubydan and 

Elsabbagh (2011) developed a fiber model based on the fiber beam element to evaluate the 

monotonic and cyclic behavior of concrete-filled steel tube (CFST) beam-columns with 

rectangular cross section, and the local buckling effect of the CFST was considered yet. Huu and 
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Seung (2011a, b) had done an effective nonlinear inelastic dynamic analysis of steel frames and 

concrete-filled steel tubular frames under dynamic loadings which considers both geometric and 

material nonlinearities using fiber hinge beam element. Huu and Seung (2012) proposed fiber 

hinge beam element to predict ultimate load-carrying capacity and ultimate behavior of cable-

stayed bridges considering both geometric and material nonlinearities, in which the geometric 

nonlinearity was developed using stability functions obtained from the exact stability solution of a 

beam subjected to the coupling of axial force and bending moments. According to Euler-Bernoulli 

theory, Tort and Hajjar (2010) deduced a beam finite element formulation through adopting a 

mixed finite element method, and analyzed rectangular concrete-filled steel tube (RCFT) beam-

columns, considering geometrical and material nonlinear. Therefore, fiber beam element is one of 

the most effective and accurate elements to analyze the highly nonlinear analysis of framed 

structures, but in view of the pioneering work, there does not appear to have been any attempt to 

develop those results to a three dimensional Timoshenko fiber beam element with shear effect be 

taken into account, and it is my main purpose to fill this gap in the paper.  

Though Eduardo et al.(1988) developed an incremental Total Lagrangian formulation for 

curved beam elements that included the effect of large rotation and the effect shear influence, 

Crivelli and Felippa (1993) used the core-congruential formulation (CCF) to derive the discrete 

equations and studied a three dimensional geometrically nonlinear ,two-node Timoshenko beam 

element based on the Total Lagrangian description, Zhang et al.(2011) presented the small strain 

beam element stiffness by combining Timoshenko beam theory with fiber model which was 

implemented into software MSC. Marc, and then analyzed the nonlinear response of a deep beam, 

at last grave a satisfactory results. While author based on continuum mechanics and the principle 

of virtual displacements, and then developed incremental total Lagrangian formulation (T.L.) and 

incremental updated Lagrangian formulation (U.L.) in this paper respectively, at last presented 

small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam 

element tangent stiffness matrix based on U.L., in which the shear deformation effect was 

considered. In the assumption of the plane cross section, the displacement field of an arbitrary 

fiber was presented in terms of nodal point displacement of centroid of cross-area.  

In addition, a nonlinear finite element method program has been developed, and strong and 

high accuracy and generality were achieved compared to the results of the published references. 

 

 

2. Incremental T.L. and U.L. formulations 
 

Base on continuum mechanics and the principle of virtual displacement, incremental nonlinear 

finite element methods formulation was induced considering the effect of large displacement 

(Bathe 1982) 
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Where 
t+Δt

R was the total external virtual work expression under the surface forces, body 

forces, and nodal point forces in the time t+Δt, 
t+Δt

τij was the Cauchy stress vector in the time t+Δt,
 

δ
t+Δt

τij was the variation of Almansi strain vector in the time t+Δt, 
t+Δt

dv was per differential volume 

variable in the time t+Δt, 
t+Δt

t was per area load in the time t+Δt, 
t+Δt

ρ was the density per volume 
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in the time t+Δt, δuk was variation of virtual displacement vector, daΔtt
 was per differential 

area variable in the time t+Δt, 
t+Δt

fk was per volume load vector in the time t+Δt, , 
t+Δt

q was nodal 

load vector in the time t+Δt. The U.L. and T.L. were derived from the continuum mechanics based 

Lagrangian incremental equilibrium equations referring to the initial and time t configuration 

respectively.  

 

2.1 Incremental T.L. mechanics formulation referring to initial configuration 
 

Eq. (1) was defined in the initial configuration, we gave 
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Where S
tt 

0  was 2nd Piola-Kirchhoff stress vector in the time t+Δt referring to the initial  

configuration time 0 , E
Δtt 

0 was variation of Green strain vector in the time t+Δt referring to 

the initial configuration referring to the papers (Bathe and Wilson 1974, Bathe et al. 1975, Bathe 

and Bolourch 1979), 
0
da was per differential area variable in the time t+Δt referring to time 0,

0
dv 

was per differential volume variable in the time 0 
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Where 
L

ijE  was linearly incremental strains, 
N

ijE was nonlinearly incremental Green  

strain, {S} was 2nd Piola-Kirchhoff stress vector, δ{Δue} is variation of displacement vector of  

element, }{0 q
Δtt 

was nodal load in the time t+Δt referring to time 0, ρΔtt 

0
 was the density per  

volume in the time t+Δt referring to time 0, }{0 k

Δtt
f


was per volume load vector in the time t+Δt 

referring to time 0. Considering δ{Δue} arbitrary, Eq. (3) was simplified as followings, variable 

t+Δt in the top left corner and variable 0 in the lower left corner were neglected in the initial 

configuration 
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Eq. (4) ][ Lk , ][ k , ][ Uk  
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Where, [DT] was the tangent constitutive matrix relating small strain increments to the 

corresponding stress increments. [BL] was linear transform matrix relating to strains to 

displacement. [BN] was nonlinear transform matrix relating to strains to displacement, [G] is 

transform matrix of incremental displacement vector, [M] is stress incremental matrix. [N] was the 

interpolation functions corresponding to the local axes relating to displacement function to the 

nodal point displacement. [kL] was linear strain incremental stiffness matrices. [kζ] was nonlinear 

strain (geometric or initial stress) incremental stiffness matrices. [kU] was large displacement 

matrices caused by incremental displacement of nodal point. 

When Bathe (1982) induced the T.L. formulation, the [kU] was neglected, whereas Hibbitt 

(1970) induced the incremental equilibrium equation, the [kU] was established. Due to the [kU] 

matrix was asymmetric, the matrix was modified to be symmetric in this paper as follows 
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2.2 Incremental U.L. mechanics formulation referring to current time configuration 
 

According to relationship of conjugated energy, Eq. (1) was redefined in the time t 

configuration 
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In accordance with the reference (Bathe 1982) 

dvdadv t

V

t

t

T

L

ttt

t

A

Tttt

t

tt

t

V

Ttt

t

T

eUL

ttt

 




SBtNfNqN

ukkk

][}{][}{][}{][

}]){[][]([





             (10) 

Equations as follows were induced referring to the time t configuration, and then variable t+Δt 

in the top left corner and variable 0 in the lower left corner were neglected in the time t 

configuration, the matrices of [kL], [kζ] and [kU] were defined as follows 
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Fig. 1 Three dimensional Timoshenko fiber beam element 
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[kU] matrix of Eq. (13) was still asymmetric, the author simplified the matrix 
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And then [kU] was made to be symmetric, causing the total of tangent stiffness symmetric, 

whereas Bathe (1982, 1975, 1979) induced the incremental U.L. formulation, the matrix was 

neglected, which was reserved in this paper considering effect of high order displacement. 

Through above mentioned theory, the U.L. and T.L. were induced, furthermore the large 

displacement matrix was modified, which made the storage of tangent stiffness in memory 

favorable in order to have the advantage of solving the equilibrium equations. In essence, the 

incremental T.L. formulation and incremental U.L. formulation were the same, they were 

described based on Lagrangematerial, the former was defined in the initial configuration, while the 

latter was defined in the time t configuration. 

 

 

3. Derivation of 3D Timoshenko fiber beam element stiffness  
 

3.1 Derivation linear strain incremental stiffness matrices  

x 

y 
z 

z 

i-th fiber 
zi 

yi 

Fiber 

section 

y 
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Displacement field of arbitrary point in the element was defined in the local coordinate system 

as follows (Bazoune et al. 2003), see Fig. 1 
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Where, the elements of right side of Eq. (15) can be particularly expressed in following 
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Where L was length of the beam element, x was length along the local coordinate x axis from the 

node one, κy was shear correction factor that accounts for the non-uniform distribution of the shear 

stress over the cross-section A, Iy was the second moment of area about y-axis, Iz was the second 

moment of area about z-axis, v was poisson’s ratio, E was modulus of elasticity, G was shear 

modulus. 

Strain of arbitrary fiber in cross-section was defined as follows 
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Where, ε11 was axial strain, ε12 was shear strain xy, ε13 was shear strain xz, ε23 was shear strain yz 
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corresponding to axial stress ζ11, shear stress xy ηxy, shear stress xz ηxz, shear stress yz ηyz, they were 

defined as follows, where Ei is elastic modulus of i fiber, Gi is shear  

elastic modulus of i fiber. 
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Strain of centroid of cross-section was (ε0 ε12 ε13 ε23), we gave 

dx

du
u 0                                (18) 

Axial strain of arbitrary fiber in the cross-section was defined as follows 

wzvy  011                             (19) 

Where, u, v, w are displacement function along x, y, z direction of local coordinate respectively, 

see Fig. 1. 

Strain of arbitrary fiber of cross-area was defined as follows 
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Where θx, θy, θz are rotational angle variable along x, y, z direction of local coordinate 

respectively, see Fig. 1. Stress of arbitrary fiber in cross-section was defined as follows 
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The {s} of above equation was also redefined as follows 
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On the basis of variational theorem of energy function of the cross-section, we gave 
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Based on the potential energy, the {s} was derived by calculus of variation 
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The Eq. (26) was simplified as follows 

}{}]{[ fsK s
                             (26) 

Where [Ks] was tangent stiffness matrix of cross-section, and then expressed as follows 
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Where Ai was area of area of i fiber, yi, zi were coordinate of i fiber in local coordinate, please 

see Fig. 1. The force vector {fs} of cross-section of beam element was defined as follows 
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By making use of the principle of virtual work and variational theorem, and then according to 

Eq. (11), we gave linear strain stiffness matrix as follows 
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Where [BL] 
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3.2 Derivation geometric stiffness matrix 
 

Nonlinear Green strain εNL was defined as follows 
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Where, θx was torsional displacement about x axis in the local coordinate system, θy was 

rotational displacement about y axis in the local coordinate system, θz was rotational displacement 
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about z axis in the local coordinate system. [θ] can be expressed in the following form 
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Nonlinear Incremental strain ENL can be defined as 
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Eq. (33) was also expressed as following 
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In which, substituting ]][[][][ aMaM
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In which the components of [G] were expressed as following 
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3.3 Derivation large displacement stiffness matrix 
 

Large displacement stiffness matrix 
t
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e
 was induced by only considering the effect of three 

translational displacements of nodal point 
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Where, 
x

u




,

x
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
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Nonlinear Incremental strain εNL can be expressed as the matrix form 
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Where, ]][
~
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In which [a] can be defined as the following matrix, 
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εNL was derived by calculus of variation, we obtain 
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We obtained the linear strain stiffness matrix in local coordinate system 

dx
L
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T

L

e

L

t

 ]][[][][ BkBk                          (41) 

We obtained the large displacement stiffness matrix in the ordinate system 
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We obtained the geometric stiffness matrix in the local ordinate system 
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T

v
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0
GMGGMGk                    (43) 
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Eqs. (41), (42), (43) were transformed to the global coordinate system by multiplying the 

transformation matrix, at last we obtained nonlinear incremental U.L. formulation equilibrium 

equation in the global coordinate system as following 

      tttU

tt

t

tt

tL

tt

t fFUKKK  

 ][][][                    (44) 

Where, ][ L

tt

t K


 was linear strain stiffness matrix in the global coordinate system,  

][ K
tt

t


was geometric stiffness matrix in the global coordinate system, ][ U

tt

t K


was the large 

displacement stiffness matrix in the global coordinate system, {Ft+Δt} was external ft+Δt force vector 

in the global coordinate system, {ft} was resisting force vector of  element.  

The incremental nonlinear equilibrium equation was solved by modified arc-length method 

(Riks 1979, Crisfield 1983). 

 

 

5 Finite rotation by updating of element geometry 
 

Since the law of commutativity remains valid for small rotations about the three axes, the end 

rotational angles of each element can be calculated simply by adding the rotational angles 

increments generated at the current load step to those accumulated up to the previous load step. 

Thus with the assumption of small rotations, the procedure for updating the end orientations 

becomes a trivial task. However, for the cases where finite rotation happens, the above procedure 

for updating the end orientations of each element in the three dimensional space had to be 

developed based on the theory of finite rotation in order to account for the effect of 

noncommutativity. Furthermore the vector finitely rotates about one axes, the rotational angle can 

not be linearly added to those accumulated up to the previous load step (Oran 1973).  

Finite rotation by updating of element geometry was based on the research of Yang (1994). The 

main idea of his research was based on the assumption of rigid joints between the centroid of 

cross-section and nodal point of element, the three translational displacements can be linearly add 

to the previous load step, but the rotational displacements can only be calculated by Euler’s finite 

rotation formula. The coordinate vectors of centroid of cross-section was obtained by 

transformation matrix, and the coordinate vectors of two nodal sections were mapped to the 

normal section of middle point of the connecting line of two deformed end nodal points. The major 

and minor principal directions were obtained of two end nodal points, and then were normalized 

including some geometric settlement in order to deduct the rigid displacements (Argyris et al. 

1982), concrete procedure was derived as following. 

 

5.1 Updating of Nodal point coordinate of element 
 

Nodal translational displacement increment Δu and rotational displacement increment Δθ can 

be expressed as following for the time t configuration to the time t+Δt configuration 

kujuiu zyx u                          (45) 

kji zyx  ζ                          (46) 

The magnitude ϕ and unit direction vector n


 of the rotation increment Δθ were as follows 
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Fig. 2 Finite rotation for element node 
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5.2 Calculation of element natural deformation 
 

For the purpose of calculating the element inner forces at each incremental iteration step, the 

displacement increments {u} solved from the nonlinear incremental equilibrium equation can be 

decomposed (Belytschko and Hsieh 1973, Nour-Omid and Rankin 1991, Crisfield and Moita 1996, 

Li et al. 2011, Cai and Atluri 2012, Pramin and Ki 2012) into two parts: the rigid body 

displacements {u}r and the natural deformations {u}n 

     nr uuu                                (49) 

Through the rigid displacement, 
t
x, 

t
y, 

t
z in the time t configuration was transformed to 

t+Δt
x, 

t+Δt
y, 

t+Δt
z in the time t+Δt configuration, see Fig. 3, natural deformation {u}n was expressed as 

following referring to the time t+Δt configuration 

   T

zjyjxjziyixin u  00000 u                   (50) 
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Fig. 3 Rigid body displacements and natural deformations 

 

 

Where Δu can be written as follows 

LLu ttt                                  (51) 

Where, 
t+Δt

L was the length of element in the t+Δt configuration, 
t
L was the length of element in 

the t configuration, the node i of element rotational displacements were expressed as follows 
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Eqs. (53)-(60), {αi}, {βi}, {γi} was the vector of cross-section centroid coordinate system (αi βi 

γi), Substituting (53)-(60) into Eq. (52), the rotational vector of i nodal point (Node 1) of element. 

Similar procedures can be followed to calculate the natural rotations of the element at node j 

(Node 2). 

 

 

6 Numerical examples and discussion 
 

6.1 Cantilever beam under concentrated moment finite rotation analysis 
 

The example of a cantilever beam subjected to a concentrated moment at the free end was 

illustrated in Fig. 4. This classical problem had been analyzed by many outstanding researchers, 

including Bathe and Bolourch (1979), Schulz and Filippou (2001). It is very clearly that the exact 

solution for the deformed shape of this structure is a perfect circle, since the bending moment is 

constant along the cantilever beam. The length of the beam L was 8 m, and it was discretized into 

eight beam elements, with cross-section 1 m×1 m.The modulus of elasticity was 210 GPa, the 

passion ratio was zero, and shear modulus was 105 GPa. The concentrate bending moment 

M=kπEI/L was applied to the free end, with k=0.1, k=0.9, k=0.8, k=0.7, 

k=0.6, k=0.5, k=0.4, k=0.3, k=0.2, k=0.1 be analyzed respectively. The curves shown Fig. 5 was in 

fantastic agreement with the analytical solution. 

 

 

 

Fig. 4 Cantilever beam subjected to concentrate moment 
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Fig. 5 Configuration of the deformed cantilever beam corresponding to different k 
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Fig. 6 Geometry of William’s toggle frame (Unit: mm) 
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Fig. 7 Load-deflection curves for William’s toggle frame 

 

 

Fig. 8 Plane figure for hexagonal star-shaped shallow dome (Unit: mm) 

 

 

6.2 Williams’s toggle frame analysis 
 

This example, see Fig. 6, had been solved analytically and experimentally tested by Williams 

(1964). It was a toggle frame with two fixed ends, its cross-section was rectangular 19.13 

mm×6.17 mm, and modulus of elasticity was 71018.5 MPa. When Williams analyzed the 

structure, the effects of finite deflections and rotations including flexural shorting of member were 

taken into consideration, including the axial forces on the flexural stiffness. When the structure 

was calculated, every element was devised into six elements, the cross-section was devised into 

three fibers and two fibers along height and along width respectively. The analysis results were in 

strong close agreement with the analytical solved by Williams, please see Fig. 7. 

 

6.3 24-Member shallow dome analysis 
 

The structure shown Fig. 8 and Fig. 9 had been analyzed by many well-known authors  
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Fig. 9 Vertical figure for hexagonal star-shaped shallow dome (Unit: mm) 
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Fig. 10 Load-deflection curves for hexagonal star-shaped shallow dome 

 

 

Fig. 11 Plane figure for hexagonal frame (Unit: mm) 

 

 

(Papadrakakis 1981, Watson and Holzer 1983, Meek and Tan 1984)as a spatial frame or spatial 

truss to trace its load-deflection behavior into the post-buckling range. The boundary condition of 

the structure was hinged, and its cross-section property: Iy=23771 mm
4
, Iz=9181 mm

4
, A=317 mm

2
. 

The property of material: modulus of elasticity was 3030 MPa,shear modulus was 1096 MPa. The 

results presented its post-buckling load-deflection path were in very close agreement with the 

analytical solved by Meek (1984), please see Fig. 10. 

 

6.4 12-Member hexagonal frame analysis 
 

The hexagonal frame shown Fig. 11 and Fig. 12 had been experimentally by studied by Griggs 

(1996), the pre-buckling and post-buckling range behavior had been calculated by Papadrakakis 

(1981), whose results was in exact agreement with that of experimental result, considering the 

effects of large displacement and finite rotation. The boundary condition of the structure was 

hinged, its cross-area was square 17.9 mm×17.9 mm. The modulus of elasticity was 3030 MPa, 

and shear modulus was 1096 MPa, when the structure was calculated by author, every member  
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Fig. 12 Vertical plane figure for hexagonal frame (Unit:mm) 
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Fig. 13 Load-deflection curves for hexagonal frame 

 

 

Fig. 14 Plane figure for Remseth’s framed dome (Unit: mm) 

 

 

was simulated by three elements, the cross-section was segmented into four fibers along height 

and along width respectively, and every member was discretized into four elements. The curve of 

Fig. 15 is excellent agreement with Papadrakakis’ analysis results. Fig. 13 also indicates that the 

fiber beam element can accurately simulate highly nonlinear relationship of load-deflection of the 

pre-buckling and post-buckling of spatial structure under ultimate load, considering large 

displacement and finite rotation. 

 

6.5 Remseth spatial framed dome analysis 
 

Remseth spatial framed dome shown Fig. 14 and Fig. 15 was chosen. The structure was once 

analyzed by Chu and Rampetsreiter (1972), Shi and Atluri (1988), Park and Lee (1996). The six 

boundary nodal points were fixed in all the direction, cross-section was rectangular 0.76 m×1.22 

m. The modulus elasticity was 20690 MPa, shear modulus was 8621 MPa. Each of member was 

simulated by a single fiber beam element, cross-section were subdivided into 8 by 14 fibers. Based 

on the complementary energy approach, Shi analyzed the structure by using an element to simulate  
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Fig. 15 Vertical plane figure for Remseth’s framed dome (Unit: mm) 
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Fig. 16 Load-deflection curves for Remseth’s framed dome 

 
Table 1 Material properties of concrete 

Material parameter fc/MPa ε0 fcu/MPa εu 

Confined concrete area -32.05 -0.0022 -29.20 -0.014 

Unconfined concrete area -29.20 -0.0020 0 -0.006 

 

 

a member considering large displacement, finite rotation, and the nonlinear bending-stretching 

coupling; while Park analyzed the structure by utilizing 16 elements to model a member, and 

cross-section was discretized 14 by 8 Gauss points along wide and narrow principal directions 

respectively considering elastoplastic material and geometric nonlinear, and then the analysis 

result of pre-bulcking and large deflection collapse of spatial framed structures were presented. 

The present analysis result curve shown Fig. 16 was in favorable agreement with Shi’s result and 

Park’s result. 

 

6.6 push-over analysis of reinforced concrete pier column 
 

See Fig. 17 the pier column was numerically simulated by utilizing one fiber beam element, 

and cross-area was discretized twenty-four unconfined concrete fibers, eighteen steel bars, and 

then the confined concrete area in the core was discretized thirty-two confined concrete fibers, 

forty confined concrete fibers, sixty-four confined concrete fibers respectively. Constitutive model 

of unconfined concrete and confined concrete (Taucer et al. 1991) was used. Material parameters, 

such as peak compressive stress fc, peak compressive strain ε0, limit compressive stress fcu, limit 

compressive strain εcu, please see Table 1. Constitutive model of steel bar [42] was used in this 

example. Material parameters, such as initial elastic modulus Es0=200 GPa, yield strength fy=357 

Mpa, stiffness hardening coefficient after yield b=0.01. 
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Fig. 17 Element and section discretization for RC pier (Unit: mm) 
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Fig. 18 Horizontal force - horizontal displacement curves for RC pier 

 

 

In Fig. 18, the numerical results tend to be uniform with the confined concrete area discretized 

thirty-two fibers, forty fibers, and sixty-four fibers respectively. When the displacement of pier top 

reached 0.438 m, the bearing capacity of the pier was close to be the limit state, and the failure 

occurred. Especially, when the displacement of the pier top was close to be 0.012 m~0.438 m, 

strongly nonlinear characteristics occurred. So, the large displacement and finite rotation should be 

considered in the analytical process. 

 

 

7. Conclusions 
 

Firstly, based on continuum mechanics and the principle of virtual displacements, incremental 

T.L. formulation and incremental U.L. formulation were presented, in which the large 

displacement matrix was taken into consideration, and then was modified to be symmetrical 

matrix. Secondly, three dimensional Timoshenko fiber beam element was formulated base on U.L. 
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in the assumption small strain, large displacement, finite rotation. Finally, through several 

examples, some valuable and practical conclusion can be obtained as follows: 

• The three dimensional Timoshenko fiber beam was an accurate beam element to simulate the 

spatial framed structure; large displacement, finite rotation analysis can be solved through 

relatively large load step and large displacement increments. 

• The fiber beam can highly accurately simulate the highly nonlinear pre-buckling and post-

buckling analysis, and structure progressive collapse analysis can be really numerically simulated 

by utilizing this fiber beam element. 

• It can be shown that the fiber beam element can be used efficiently for large displacement 

geometrically nonlinear analysis of spatial framed structures. 
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