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Abstract.  The pullout capacity of plate anchors has been studied extensively over the past 40 years. 
However, very few studies have attempted to calculate the pullout capacity of anchors in sandy slopes. In 
this paper, three upper bound approaches are used to study the effect of a sloping ground surface and friction 
angle on pullout capacity and failure of plate anchors. This includes the use of; simple upper bound 
mechanisms; the block set mechanism approach; and finite element upper bound limit analysis. The aim of 
this research is to better understand the various failure mechanisms and to develop a simple methodology for 
estimating the pullout capacity of anchors in sandy slopes. 
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1. Introduction 

 

Plate anchors are employed as foundation systems for structures requiring uplift resistance such 

as transmission towers, earth-retaining walls and mooring systems for offshore floating oil and gas 

facilities. For anchors buried in sand, most approaches involve the use of the limit equilibrium 

method (Meyerhof and Adams 1968, White et al. 2008), or are based on formulae derived from 

laboratory model test (Das and Seeley 1975, Rowe and Davis 1982, Murray and Geddes 1989, 

Khing et al. 1994, Dickin and Laman 2007). The use of numerical methods for anchors in sands 

has been summarised by Merifield et al. (2006), Merifield and Sloan (2006). 

Depending on the project site condition or type of structure requiring support, anchors may be 

installed in sloping sea bed or sand-hills in desert areas (work as a part of transmission tower 

foundation). Although there have been many studies undertaken to investigate the pullout capacity 

of anchors in sand, very limited information or guidance is available with considering the 

situations that anchors were installed in sandy slopes. By using the limit equilibrium method, 

Choudhury and Subba Rao (2007) presented seismic uplift capacity of strip anchors in c−φ soils 

with inclined slope. With the exception of Kumar (1997), who proposed a simple rigid block  
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Appendix A 
 

As shown in Fig. 2(b), the pullout capacity of anchor can be divided into three parts, which are 
come from logspiral shear zone, isosceles trapezoid OCEF and triangle FED. 

For the logspiral shear zone, the total work done by the weight of soil W1 is 

         3 tan2 3 tan
1 0 2 2

sin 3tan cos sin 3tan cos1

2 1 9 tan 1 9 tan
W B e e        

 
 

       
       

                                                                           (A1) 

Substituting Eq. (A1) to Eq. (4), the pullout factor of this part can be expressed as  

         3 tan3 tan
1 2 2

sin 3tan cos sin 3tan cos

2 1 9 tan 1 9 tan

B
N e e

H
 



     
 

       
      

                               (A2) 

For the isosceles trapezoid OCEF  
H’ is the vertical distance from the point O to the ground surface. 

1 1
cos tan sin

2 2
H H B B                         (A3) 

 

2
2 2

2

1 cot ( )

cot( ) tan
OF H

 
  

  
  

                    (A4) 

The total work done by the weight of soil W2 is   

   tan 2 tan
2 0cos sin cos cosW Be OF OF v e                  (A5) 

   2 tan 2 tan

2

cos cos sin cos cose OF OF e
N

H BH

 



       
        (A6) 

For the triangle FED  

2 2 2 tan 2 2 tan4 sin 4 sinEF B e OF Be OF                     (A7) 

The area of triangle FED is 

   
 

2 2 tan 2 2 tan cos sin1
4 sin 4 sin

2 cosEFDS B e OF Be OF    
 

  
 




  

  
    (A8) 

The total work done by the weight of soil W3 is 

tan
3 0cos( )EFDW S v e   

                          (A9) 
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Fig. B2 Parameters of triangular wedge i 
 

(a) ξi+1≥0 (b) ξi+1<0 

Fig. B3 Velocity hodograph of basic block set 
 
 

2 2 2
1

1

arccos( )
2

i i i
i

i i

d

d

 





 
                         (B2) 

iii                               (B3) 

iii   1                             (B4) 

11   iii                               (B5) 

where ζi is the azimuth of velocity νi in the polar coordinate system, and ζ1=θ1+π−β1+φ. 
As shown in Fig. B3, the velocity hodograph for two adjacent rigid wedges can be divided into 

two cases. The velocity of each triangular rigid wedge in basic block set can be determined in a 
certain order. 

Case 1: ξi+1≥0 

From the velocity hodograph of Fig. B3(a), the angle between νi and νi+1 is ξi+1; and the angle 
between νi and νr(i+1) is αi+2φ. Thus, the velocities νi+1 and νr(i+1) can be calculated from the velocity 
νi as follows 

1
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sin( 2 )
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i i
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v v
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1
( 1)

1
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sin( 2 )
i i

r i i
i

v v
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 










                         (B7) 

where i takes values from 1 to N-1 and N is the total number of triangular rigid wedges used in the 
basic block set. 

Case 2: ξi+1<0 
From the velocity hodograph of Fig. B3(b), the angle between νi and νi+1 is −ξi+1; the angle 

between νi and νr(i+1) is π−αi. Thus, the velocities νi+1 and νr(i+1) are 

1
1

sin

sin
i

i i
i

v v

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

                              (B8) 

1
( 1)

1
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sin( )
i i

r i i
i

v v
 








                           (B9) 

For the basic block set, the total internal energy dissipated on the velocity discontinuities is 
given by the sum of the product of cohesion of soil c, relative velocity, length of each discontinuity 
and cosφ, i.e. 

( )
1 2

cos cos
N N

i i i r iE cd v c v                         (B10) 

and the total work done by the weight of soil is 

 1
1

1
sin( ) sin

2

N

i i i i iW v                          (B11) 

where c and φ is the cohesion and internal friction angle of soil; and γ is the unit weight of soil. 
Since the directions of gravity for both the clockwise and counterclockwise cases are the same 

as 3π/2, Eqs. (B10) and (B11) are also applicable in the case of counterclockwise polar coordinate 
system. 
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