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Abstract.  Until now, the finite corner stiffness of the right-angle frames used as horizontal girders in a 
bonnet, have not been considered during the design process to result in not a precise result. This paper 
presents a design equation set for right-angle frames used as horizontal girders in a bonnet assuming rigid 
corner stiffness. By comparing the center stresses of the right-angle frame according to the design equation 
set with the results of the finite element method, the master curves for the empirical corner stiffness can be 
determined as a function of slenderness ratio. A second design equation set for a right-angle frame assuming 
finite corner stiffness was derived and compared with the first equation set. The master curves for the corner 
stiffness and the second design equation set can be used to determine the design moments at the centers of 
the girder so that the bending stresses can be analyzed more precisely. 
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1. Introduction 

 

The continued growth of industry and improvement in living standards have placed new 

demands on water supplies. In particular, large barrages for dam construction, which can be 

several kilometers in length, are being operated for balanced national development and the 

efficient use of water resources in many countries (Shariatmadar 2011). A key component of a 

dam is the gate used to control the flow rates and adjust the water level. Many types of gates with 

their own characteristics have been developed. The slide gate is typically small in size. Although it 

has a high operating resistance, it has a simple structure and relatively low installation cost (Lewin 

2001, Hydraulic and Penstock Association 1986). 

High-pressure gates first appeared with the successful application of the jet flow gate at Shasta 

Dam in the 1940s, and many similar types have been attempted by the US Army Corps of 

Engineers. Similar structures include the ring follower gate, jet flow gate, and roller gate (Kwon et 
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al. 2000, Kwon et al. 2004). These gates all have the structure of a bonnet wrapped around the 

gate. The bonnet of the slide gates is loaded by the internal water pressure. Although an accurate 

evaluation of the corner moment is very important, current design concepts for the bonnet of a 

slide gate are inadequate as they are based on an infinite corner stiffness for frames (Timoshenko 

and Goodier 1970, Reismann and Pawlik 1980, Ugural and Fenster 2003). 

This paper proposes two master curves for the empirical determination of the corner stiffness in 

combination with a theory based on the assumption of finite stiffness (Kwon). The empirical 

corner stiffness was reverse-engineered from the deviation of stresses obtained assuming infinite 

corner stiffness and by the finite element method (FEM). The accuracy of the new procedure for 

stress analysis of a right-angle frame was tested and confirmed through a comparison of the 

resulting stresses with the FEM results. The proposed master curves for the empirical corner 

stiffness were successfully applied to the analysis and design of a right-angle frame in conjunction 

with the theory of the finite referred corner stiffness. 

 

 

2. Structure of bonnet and design equations for right-angle frames 
 

A bonnet is used in a high-pressure slide gate installed deep underwater to resist high water 

pressures and is composed of skins and horizontal girders in the shape of a right-angle frame. In 

the design of a right-angle frame, the stiffness of the corner was assumed to be rigid; the 

corresponding corner moment was confirmed based on this assumption. Using this corner moment, 

the center moments were calculated to evaluate the maximum bending stresses. 

However, these stresses sometimes deviated considerably from the finite element analysis 

(FEA) results. After an extensive trial-and-error process, the deviation seemed to be rooted in the 

inaccurate assumption of infinite corner stiffness. To resolve this problem, the finite corner 

stiffness was evaluated empirically based on the deviation of stresses. For a given cross-section of 

a right-angle frame, a master curve can be obtained as a function of the slenderness ratio regardless 

of the dimensions. More accurate center moments of the right-angle frame and the corresponding 

accurate stresses can be obtained by using this corner stiffness and referring to the design equation 

assuming finite corner stiffness. 

 
2.1 Structure of bonnet 
 

Fig. 1 shows the entire bonnet structure of a high-pressure slide gate. The role of the gate is to 

allow or prevent water flow through its up-and-down motion; the bonnet is wrapped around this  

 

 

 

Fig. 1 High-pressure slide gate system 
 

472



 

 

 

 

 

 

The empirical corner stiffness for right-angle frames of rectangular and H-type cross-sections 

 

Fig. 2 Bonnet structure and the right-angle frames 

 

 
Fig. 3 Side and top views of bonnet with horizontal girders 

 

 

gate. The bonnet structure consists of skin plates and horizontal and vertical stiffness guides 

(Orbanich and Ortega 2013). This structure should be able to support hoisted loads as well as the 

internal water pressure. The horizontal girder is a structure stacked with a number of wide flanges, 

as shown in Fig. 2. Fig. 3 shows the side and top views of the bonnet structure, where c is the 

repeated height of the horizontal girder. The design of the wide flange beam with the proper width 

of the base flange was based on DIN 19704 (DIN 1976). As shown in Fig. 3(b), L (section 2-3) 

and H (section 1-3) represent half-lengths of an internal side wall in perpendicular directions 

loaded directly with water pressure. Similarly, L1 and H1 represent the lengths of perpendicular 

lines passing through the centroid of the cross-section of the horizontal girder. 

 

2.2 Governing equation of corner moment for right-angle frames 
 

In this study, the governing equations were derived by considering the stiffness of the corner 

part to be infinity. This result was compared with the FEA results to evaluate the errors caused by 

the assumption. From these empirical errors, the actual corner stiffness can be evaluated by reverse 

engineering. The corner stiffness for different cross-sectional sizes of the frame can be represented 

by a single master curve for a specific type of cross-section. The accuracy of the design moments 

at the centers of the frame can be evaluated by using this corner stiffness and referring to a design 

equation assuming a finite corner stiffness. 

Consider a right-angle frame that is a quarter model of the bonnet structure, as shown in Fig. 4, 

and the typical formulation for analyzing the conventional bonnet corner part of a slide gate. To  
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Fig. 4 Free body diagram: quarter part of horizontal girder with rigid corner 

 

 

 

Fig. 5 Free body diagram of section 1-3 Fig. 6 Free body diagram of section 2-3 

 

 

simplify the problem, the corner stiffness was assumed to be infinite. The internal pressure P was 

converted to PH, which is the redistributed load to the neutral plane of the horizontal girder’s 

cross-section area and can be written as 

      1 1

H

L H
P P

L H


 


 

(1) 

The intensity of load per unit length can be expressed as 

     H HQ P c 
 (2) 

The tensile loads N1 and N2 can be expressed as 

     1 1HN Q L 
 (3) 

     2 1HN Q H 
 (4) 

The right-angle frame model can be divided into two sections, as shown in Figs. 5 and 6, as 
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free body diagrams. The bending moment in section 1-3 at point x from o can be obtained by the 

moment equilibrium, which can be expressed as 

     

2
1 2

1
( )

2
O HM x M Q x N x  

 
(5) 

The differential equation for the deflection curve is 

     

1"
M

w
EI

 
 

(6) 

where w is the vertical deflection to the section beam. The gradient of deflection can be obtained 

by integrating Eq. (6), which can be written as 

     

3
2 1

1 1 1
' ( )

6 2
O Hw M x Q x N x C

EI
    

 
(7) 

The boundary conditions of the vertical section of beam are 

     
'(0) Aw 

 (8) 

     1'( ) 0w H 
 (9) 

where θA is the deflection angle at point A. By applying these boundary conditions to Eq. (7), the 

following equation should be satisfied 

     

3 2
1 1 2 1

1 1
0

6 2
O H AM H Q H N H EI    

 
(10) 

Similarly, the bending moment in section 2-3 at point x from o can be obtained from 

     

2
2 1

1
( )

2
O HM x M Q x N x  

 
(11) 

The differential equation for the deflection curve is expressed in Eq. (12), where the sign of the 

right-hand term changes from negative in Eq. (6) to positive. The reason for this is that a different 

sign of moment was used for each section to maintain overall consistency of the sign of moments 

throughout the structure. The deflection angle, which is expressed by Eq. (13), is obtained by 

substituting Eq. (11) into Eq. (12). 

     

2"
M

w
EI


 

(12) 

         

3 2
1 2

1 1 1
' ( )

6 2
O Hw M x Q x N x C

EI
   

 
(13) 

where θB is the deflection angle at point B. After the boundary conditions are applied 

     
'(0) Bw 

 (14) 

      1'( ) 0w L 
 (15) 
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Eqs. (13) and (16) must be satisfied. 

     

3 2
1 1 1 1

1 1
0

6 2
O H BM L Q L N L EI   

 
(16) 

From the condition of infinite corner rigidity, Eq. (17) needs to be satisfied: 

     A B 
 (17) 

From this, the corner moment MO can be obtained based on the assumption of infinite corner 

stiffness as follows 

     

3 3
1 1

1 1

( )

3( )

H
O

Q L H
M

L H





 

(18) 

Design equation set I for the moments at the centers of the frame can be expressed by Eqs. (19) 

and (20) 

     

2
1 1 1 2 1

3 3
21 1
1

1 1

1
( )

2

( ) 1

3( ) 2

O H

H
H

M H M Q H N H

Q L H
Q H

L H

  


 


 

(19) 

      

2
2 2 1 2 1

3 3
21 1
1

1 1

1
( )

2

( ) 1

3( ) 2

O H

H
H

M L M Q L N L

Q L H
Q L

L H

  


 


 

(20) 

Therefore, the design of right-angle frames has assumed the corner stiffness to be infinite. 

This design was extended to the case of finite corner stiffness KC. The formula for the corner 

moment MC can be expressed as (Kwon) 

     

3 3
1 1

1 1

( )

3( ) 3 /

H
C

C

Q L H
M

L H EI K




 
 

(21) 

M1(H1) and M2(L1) in design equation set I need to be changed by replacing MO with MC, where 

MC converges to MO if MC approaches infinity. Design equation set II, which is for the moments at 

the centers of the frame assuming finite corner stiffness, can be expressed by Eqs. (22) and (23). 

Once MC is given as in Eq. (21), it replaces MO in Eq. (19) and Eq. (20) to give following  

equations, where, MC could be obtained if we attach a torsional spring of the stiffness KC at point 

O in Fig. 4 instead of the rigid bracket. 

     

2
1 1 1 2 1

3 3
21 1
1

1 1

1
( )

2

( ) 1

3( ) 3 / 2

C H

H
H

C

M H M Q H N H

Q L H
Q H

L H EI K

  


 

 
 

(22) 
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2
2 2 1 2 1

3 3
21 1
1

1 1

1
( )

2

( ) 1

3( ) 3 / 2

C H

H
H

C

M L M Q L N L

Q L H
Q L

L H EI K

  


 

 
 

(23) 

 
 
3. Comparison between K–M equation and FEM result 

 

Fig. 7 shows the FE model, which is composed of many beam elements. The commercial 

program NISA II (EMRC 1994) was used to solve the linear static problem under internal 

pressure. Table 1 lists the geometry, material properties, and applied pressure of this model, where 

a and b denote the width and thickness, respectively, of the rectangular cross-section. A torsion 

spring was applied to the corner to connect two beams and simulate the corner stiffness of the 

right-angle frame. Fig. 8 compares the theoretical result from Eq. (21) using the KC_MC relation 

and the FEA result with the torsional spring. As shown in the graph, the theoretical result was 

consistent with the FEA result, which validates the former. When the torsion stiffness KC is  

 

 
Table 1 Geometry, material properties, and applied pressure 

Length L1 L1 (mm) 1500 

Length H1 H1 (mm) 1500 

Height of the cross-section a (mm) 150 

Width of the cross-section b (mm) 20 

Young’s modulus E (GPa) 207 

Poisson’s ratio ν 0.3 

Inner pressure P (MPa) 1 

Section modulus I (mm
4
) 5,625,000 

 

 
Fig. 7 Finite element beam model of horizontal girder with corner torsional spring of stiffness MC 

using NISA II 
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Fig. 8 Relationship between corner stiffness KC and corner moment MC 

 

 

infinitely large (Fig. 8), the corner moment can be observed, and MC converges to MO=1.5×10
7
 N-

mm. 

Until now, the corner stiffness has typically been assumed to be infinite and used to calculate 

the corner moment and following design moments, as shown in design equation set I. However, 

without an accurate evaluation of the corner stiffness, the correct corner moment and following 

design moments at the centers of the frame cannot be obtained with design equation set II. 

 
 
4. Master curves for empirical corner stiffness and application to design equation 
set II 

 

As discussed in the previous section, design equation set I was derived based on the assumption 

of a rigid corner. As an extension, design equation set II was derived based on the assumption of 

finite corner stiffness. For correct evaluation of the design moments, determining the correct 

corner moment is needed. 

The primary problem raised above was considered for two types of cross-sections: rectangular 

and wide flange beams. The simple approach is as follows. First, the bending stresses are 

compared using design equation set I and FEA. The error is used to reverse-engineer the required 

finite corner stiffness that can nullify the errors for different dimensions of the cross-section of a 

given type. These empirically obtained data points on the corner stiffness can be arranged as a 

function of the slenderness ratio and represented by a single master curve. 

 

4.1 Master curve for right-angle frame of rectangular cross-section 
 
The bending stresses at point A of Fig. 9 for the 18 conditions given in Table 2 were calculated 

using design equation set I with the rigid corner stiffness. These stresses were compared with the 

FEA results. Fig. 10 shows the difference between the theoretical stresses and the FEA results in 
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terms of the slenderness ratio. A small difference in the stresses resulted in a beam with a large 

slenderness ratio. On the other hand, a smaller slenderness ratio of the beam produced a large 

difference (>10%) in the stresses. In other words, Eq. (18) can be used with a slenderness ratio of 

>50, but the error is significant for a slenderness ratio of <50. Fig. 11 shows the dimensionless 

value of RECT
CK

~
 according to the slenderness ratio. This master curve was obtained by reverse-

engineering to nullify the errors in Fig. 10. 

 

 
Table 2 Rectangular beam samples [mm] 

Type a b Size (L=H) 

S1 80 25 500, 1000, 1500, 2000, 

2500, 3000 

P=0.7 MPa, E=207 GPa 

S2 90 22 

S3 100 20 

 

 

Fig. 9 Boundary conditions and schematic diagram of horizontal girder with rectangular cross-section 

 

 

Fig. 10 Error between theoretical stress (point A) assuming rigid corner stiffness and FEA versus 

slenderness ratio of beams with rectangular cross-section 
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Fig. 11 Master curve for RECT
CK

~
 versus slenderness ratio of beams with rectangular cross-section 

 

 

When the slenderness ratio and geometric data are given, the empirical dimensionless corner 

stiffness is taken from the master curve of Fig. 11. With this dimensionless stiffness, the corner 

moment can be evaluated by using Eq. (23). 

     
C

C C

K EI
K

K lK
 

 
(24) 

KC=stiffness at the corner 

K=stiffness for the beam 

E=Young’s modulus 

I=moment of inertia of the section 

l=length of the beam to measure 

     

3 3
1 1

1 1

( )

3[( ) ]

H
C

C

Q L H
M

L H lK




 
 

(25) 

The design moments can be calculated by using design equation set II, and Eq. (23) can be used 

to compute the bending stresses at the centers of the right-angle frame of the rectangular cross-

section. The overall procedure is given below. 

• Evaluate frame properties. 

- Area: A 

- Moment of inertia: I 

- Radius of gyration: k 

- Slenderness ratio: λ=l/k 

- Read the stiffness ratio CK
~

 from the master curve for the given slenderness ratio λ. 

• Compute the corner moment MC for the given load using the stiffness ratio CK
~

. 
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• Compute the center moments M1max and M2max using the corner moment MC. 

• Compute bending stresses at the girder centers by using N, M1max, and M2max to check the safety 

factors. 

For example, in the case that each branch of the frame differs in length, the overall corner 

stiffness CK
~

 can be obtained in analogy with the contact of springs in series as follows 

     

1 2

1 2 1 2

21

1/ 2 1/ 2

Overall C C
C

C C C C

K K
K

K K K K


 

 
 

(26) 

where 1

~
CK  and 2

~
CK  are the corner stiffness values of frames having equal branches. 

 

4.2 Master curve for right-angle frame of wide flange beam 
 
Before the master curve can be obtained for the right-angle frame of a wide flange beam, the 

errors between the results from design equation set I and FEA were first calculated for different 

web sizes and for different flange sizes, as discussed in the sections below. 

 

4.2.1 Comparison between design equation set I and FEA for different web lengths of 
wide flange beam 

The bending stresses at point A in Fig. 12 for the 18 conditions given in Table 3 were 

calculated using design equation set I with rigid corner stiffness. These stresses were compared 

with the FEA results. Fig. 13 shows the difference between the theoretical stresses and the FEA 

results in terms of the slenderness ratio. The errors in bending stresses were large regardless of the 

slenderness ratio. In other words, a design based on the assumption of rigid corner stiffness may 

result in an error of more than 15%. 

 

 
Table 3 Wide flange beam samples of different web lengths [mm] 

Type A B1=B2 T1 T2 Size (L=H) 

S1 200 200 8 12 500, 1000, 1500,  

2000, 2500, 3000 

P=0.7 MPa, E=207 GPa 

S2 300 200 8 12 

S3 400 200 8 12 

 

 E=207 GPa 

Fig. 12 Boundary conditions and schematic diagram of the wide flange beam model of variable size of web A 
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Fig. 13 Error between theoretical center stress (point A) assuming rigid corner stiffness and FEA as 

function of slenderness ratio of wide flange beams for different lengths of web A 

 
Table 4 Wide flange beam samples with upper flange of variable size [mm] 

Type A B1 B2 T1 T2 Size (L=H) 

S4 200 200 200 8 12 500, 1000, 1500, 

2000, 2500, 3000 

P=0.7 MPa, E=207 GPa 

S5 200 150 200 8 12 

S6 200 100 200 8 12 

 

 

Fig. 14 Schematic diagram of wide flange beam model with upper flange B1 of variable size 

 
 
4.2.2 Comparison between design equation set I and FEA for different flange lengths 

of wide flange beam 
The bending stresses at point A in Fig. 12 for the 24 conditions given in Table 4 were 

calculated using design equation set I with rigid corner stiffness. These stresses were compared 

with the FEA results. Fig. 15 shows the difference between the theoretical stresses and the FEA 

results in terms of the slenderness ratio. The errors in the bending stresses were considerable 

regardless of the slenderness ratio. In other words, a design based on the assumption of rigid 

corner stiffness may result in an error of more than 10% in most cases. Fig. 16 shows the 
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dimensionless value of WIDE
CK

~
 according to the slenderness ratio. This master curve was obtained 

by reverse-engineering to nullify the errors in Figs. 13 and 15. 

When the slenderness ratio and geometric data are given, the empirical dimensionless corner 

stiffness is read from the master curve of Fig. 16. With this dimensionless stiffness, the corner 

moment can be evaluated by using Eq. (23). The design moments can be evaluated by using design 

equation set II and Eq. (23) to calculate the bending stresses at the centers of the right-angle frame 

of the wide flange beam. The overall procedure is the same as that given above for the case of a 

rectangular cross-section. 

 

 

 

Fig. 15 Error between theoretical center stress (point A) assuming rigid corner stiffness and FEA 

as function of slenderness ratio of wide flange beam for different lengths of upper flange B1 

 

 

Fig. 16 Master curve for WIDE
CK

~
 versus slenderness ratio of wide flange beam 
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Fig. 17 Schematic diagram of example wide flange beam 

 

 

Fig. 18 Boundary conditions of model and result at point A 

 

 

4.2.3 Example of using WIDE
CK

~
 table for wide flange beam 

A structure comprising a wide flange beam and loaded with an internal pressure of 0.7 MPa 

was considered to test the validity of the master curve in Fig. 16. Fig. 17 shows the geometric data 

of the structure and the boundary conditions. Using design equation set I, the corner stress for the 

wide flange beam was 265 MPa. Using the master curve and design equation set II, the corner 

stress was 216 MPa. The reference stress according to FEA was 214 MPa, as shown in Fig. 18. 

The error of 23% using the former theoretical method was significantly reduced to 0.95% using 

design equation set II, which assumes finite corner stiffness, and the master curve for the empirical 

corner stiffness. 

 
 
5. Conclusions 

 

Until now, the stiffness of the corner of a right-angle frame has been assumed to be infinite. 

However, this assumption sometimes leads to a considerable error. Two master curves for the 

dimensionless corner stiffness were obtained by comparing stresses using the derived corner 

moment for rigid stiffness and FEA. Very accurate design moments and bending stresses of the 

right-angle frame were determined by applying the empirical corner stiffness to design equation 

set II. 

484



 

 

 

 

 

 

The empirical corner stiffness for right-angle frames of rectangular and H-type cross-sections 

The results of this study are summarized as follows. 

• A master curve for the dimensionless corner stiffness was obtained for the right-angle frame 

of a rectangular cross-section. This can be used to evaluate the corner moment based on the 

assumption of finite corner stiffness and to more accurately evaluate the design moments and 

stresses of right-angle frames. 

• A master curve for the right-angle frame of a wide flange beam was obtained. This can be 

used to evaluate the corner and design moments of wide flange beams having various dimensions 

to analyze and design right-angle frames more accurately. 

• For the right-angle frame of a rectangular cross-section with a slenderness ratio of over 50, 

design equation set I can be used without considerable error. On the other hand, the assumption of 

rigid corner stiffness leads to significant error for a rectangular cross-section with a slenderness 

ratio of less than 50 and most cases of wide flange beams. Therefore, the use of the master curves 

is strongly recommended. 
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