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Abstract.  In this study, optimal distribution of springs which supports a cantilever beam is investigated to 
minimize two objective functions defined. The optimal size and location of the springs are ascertained to 
minimize the tip deflection of the cantilever beam. Afterwards, the optimization problem of springs is set up 
to minimize the tip absolute acceleration of the beam. The Fourier Transform is applied on the equation of 
motion and the response of the structure is defined in terms of transfer functions. By using any structural 
mode, the proposed method is applied to find optimal stiffness and location of springs which supports a 
cantilever beam. The stiffness coefficients of springs are chosen as the design variables. There is an active 
constraint on the sum of the stiffness coefficients and there are passive constraints on the upper and lower 
bounds of the stiffness coefficients. Optimality criteria are derived by using the Lagrange Multipliers. 
Gradient information required for solution of the optimization problem is analytically derived. Optimal 
designs obtained are compared with the uniform design in terms of frequency responses and time response. 
Numerical results show that the proposed method is considerably effective to determine optimal stiffness 
coefficients and locations of the springs. 
 

Keywords:  optimal stiffness; beam vibrations; transfer functions; optimal support location; support 

stiffness 

 
 
1. Introduction 

 

Beams are widely used in different engineering applications. They are basic structural 

components. Dynamic beam problems have been investigated by researchers. In practice, the 

design of structural supports is equally of great importance. This may arise in most structural 

engineering designs, especially in building constructions, work piece machining fixture, welding 

or rivet joints of marine and aircraft structures. It is well known that support conditions play a 

crucial role in structural analysis. A small amount of adjustments in support positions can 

influence the structural performance significantly and should be designed carefully in favor of the 

structural performance. Supports are not only expected to hold a structure firmly, but can also be 

redesigned to improve the structural performance. 

In vibration optimization problems, Eigenfrequencies are usually maximized in optimization 

since resonance phenomena in a mechanical structure must be avoided, and maximizing 
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Eigenfrequencies can provide a high probability of dynamic stability. However, vibrating 

mechanical structures can provide additional useful dynamic functions or performance, if the 

desired Eigen frequencies and Eigen mode shapes in the structures can be implemented. Support 

position optimization may arise in almost all structural design projects, especially in building 

constructions, workpiece machining, printed circuit boards, marine and aircraft structures. 

However, support position optimization for decreasing structural deflections has not been fully 

investigated yet. It still remains the most challenging task for researchers, because the maximum 

deflection of a structure, as the objective function of the problem in this paper, is highly nonlinear 

and non-glossy with respect to support positions. Design variables are generally chosen such as 

structural topology, geometry and size of structural elements in optimization of dynamic structural 

systems. The support location and stiffness can also be taken as design variables to minimize the 

proposed structural dynamic response. The variation of support location and stiffness can cause an 

important influence (positive or negative) on the dynamic response of the structure. Moreover, the 

support location and the stiffness should be taken as factors to be considered for structural design. 

There are some investigations about optimal design for beam structures including position and 

stiffness of supports (Mroz and Rozvany 1975, Rozvany 1975, Prager and Rozvany 1975, Szelag 

and Mroz 1978, Mroz and Lekszycki 1982, Garstecki and Mroz 1987, Dems and Turant 1997, 

Bojczuk and Mroz 1998, Mroz and Haftka’s 1994, Akessson and Olhof 1988, Wang 1993, Wang 

and Chen 1996, Wang 2003 ). Bojczuk and Mroz (1998) had presented a method for trusses. 

Chuang and Hou (1992) developed various sensitivity equations for eigenvalue sensitivity analysis 

of planar frames with variable joint and support locations. Liu et al. (1996) presented a method to 

derive the equations of eigenvalue rate with respect to the support location using the generalized 

variational principles of the Rayleigh quotient. Son and Kwak (1993) developed a sensitivity 

formula of eigenvalues with respect to the change of boundary conditions by using material 

derivative concept based on variational formulation. Won and Park (1998) presented a procedure 

to find the loci of optimal support positions for a structure to maximize its fundamental eigenvalue 

by increasing the support stiffness. A theoretical formulation was presented by Sinha and Friswell 

(2001) for estimating support location. A different approach was proposed by Imam and Shihri 

(1996) to determine the optimum topological locations of supports or columns in a structure. 

Marcelin (2001) used genetic algorithms to find support positions in machining of mechanical 

parts. Olhof and Akesson (1991) studied support optimization of a column to maximize the 

buckling load. Buhl (2001) demonstrated a method for support distribution using a continuum type 

topology optimization. Olhof and Taylor (1998) studied optimal design of non-uniform, elastic, 

continuous columns with unspecified number of available interior supports. Jihong and Weihong 

(2006) studied to maximize the natural frequency of structures and presented the support layout 

design that corresponds to optimization of boundary conditions. The position optimization of 

simple support was studied by Wang et al. (2004) to maximize the fundamental frequency of a 

beam or plate structure. Albaracin et al. (2004) investigated the problem of a uniform beam with 

intermediate constraints and ends elastically restrained against rotation and translation. Friswell 

and Wang (2007) developed a procedure to calculate the minimum stiffness and the optimal 

position of one or two elastic supports lying along the free edge opposite to the restrained 

boundary edge of the plate. In order to improve the structural performance, an optimization 

scheme of minimization of maximal absolute bending moment in a planar frame was presented by 

Wang (2006) to find optimal design of the support position. In another study, Wang (2004) 

investigated the design sensitivity analysis for the deflection of a beam or plate structure with 

respect to the position of a simple support using the discrete method. The minimum stiffness of a 
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simple support that increase a natural frequency of a beam to its upper limit was developed by 

Wang et al. (2006) for various boundary conditions. Kong (2009) analysed the vibration of plates 

with various boundary and internal support conditions and proposed a computational technique to 

determine the optimal location and stiffness of discrete elastic supports in maximizing the 

fundamental frequency of both isotropic plates and composite plates. Wang et al. (2010) applied 

the Rayleigh-Ritz method to analyse the optimal configuration of additional supports in plates. The 

magnitude of mass and stiffness of a linear spring that supports a beam element are well known 

key parameters affecting the free vibration characteristics of a beam in the existing literature. In 

addition to this respect, the offset of each linear spring, which supports a beam, is also the 

predominant parameter (Lin 2010). Zhu and Zhang (2010) proposed an integrated layout 

optimization method to deal with the simultaneous design of structure and support layout. Fayyah 

and Razak (2012) studied the effect of deterioration in the elastic bearing support stiffness on the 

dynamic properties of structural elements, in order to determine the sensitivity of dynamic 

properties as a tool for monitoring the condition of supports. 

In this study, a new method is proposed to find the optimal location and size of the stiffness 

coefficient of the supporting springs. The transfer function amplitudes of the tip displacement 

evaluated at one of the undamped natural frequency of a cantilever beam is chosen as the first 

objective function; and afterwards, the second objective function is taken as the transfer function 

amplitude of the absolute acceleration of the tip of cantilever beam evaluated at one of the 

undamped natural frequency. The objective functions defined are minimized being subjected to a 

constraint on the sum of the stiffness coefficients of the springs that support the cantilever beam. 

The dynamic response of the beam is defined by the transfer functions based on one of the 

undamped natural frequencies of the cantilever beam. Optimality conditions are derived by using 

the Lagrange Multipliers. In order to find the optimal designs for two objectives under constraints, 

the first and second order sensitivity formulations are derived, and the steepest direction search 

algorithm, which was proposed by Takewaki (1998) to determine the optimal damper position in a 

cantilever beam, is used to find optimal spring stiffness and locations in case of tip deflection 

minimization in the first mode. Moreover, two simple algorithms, which are used as the first order 

sensitivities, are proposed to determine optimal spring distribution. A simple algorithm is 

presented in Section 3.5 to find the optimal spring coefficient in case of tip deflection evaluated at 

the second and third natural circular frequencies of the beam. A new simple algorithm for finding 

optimal spring allocation is also proposed to minimize the tip absolute acceleration. Numerical 

results show that the proposed algorithms can be effective to find optimal placement of elastic 

springs supporting a cantilever beam. 

 

 

2. Formulation of problem 
 

Consider a cantilever Timoshenko beam of length L, solid square cross section A and bending 

stiffness EI; and elastic springs supporting the beam. The beam is subjected to base acceleration. 

There is a lumped mass at tip of the beam shown in Fig. 1 as well. In order to model the cantilever 

beam and the supporting springs, the cantilever beam is divided into n FE elements of equal 

length, and the potential locations of the springs are defined at each node. The initial node is 

defined from the left except for the fixed end. The spring supports act only in the vertical direction. 

In the specified locations of the beam, stiffness coefficients k={kj} of supporting springs indicate 

the design variables; and n presents the number of design variables.  
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Fig. 1 Cantilever beam supported by elastic springs 

 

 

Let uj and j be assigned as the dynamic transverse displacement and the angle of rotation at the 

j
th
 node of the beam. As shown in Fig. 1, while the dynamic displacement vector can be presented 

as u={u1, 1 … uj, j … un, n}
T
,  M denotes the mass matrix and C denotes the structural damping 

matrix that are determined as either mass proportional damping or stiffness proportional damping.  

The element stiffness matrix for Timoshenko beams is given as (Prezemieniecki 1968) 
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where I denote the second moment of area and    
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In case of without elastic springs, the equation of motion is given as 

  ̈      ̇              ̈                              (4) 

where       ̇         ̈    denote displacement, velocity and acceleration vector of the beam 

model, M, C and K denote mass matrix, damping matrix and stiffness matrix of structural model. 

Let   {     }  denote the influence coefficient vector and  ̈     be a fixed base 

acceleration. Let  denote the circular frequency of the base excitation.  

The Fourier transform of Eq. (4) can be presented as  
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                    ̈                    (5) 

where      and  ̈     denote the Fourier transform of      and  ̈    ; and   √   is the 

imaginary unit. 

If the beam is supported by the elastic springs as shown in Fig. 1, Eq. (5) can be rearranged as 

((     )         )           ̈                  (6) 

where Ksp is the stiffness matrix that belongs to the supporting springs and covers the design 

parameters k={kj}. It is given as 

    

[
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              (7) 

where        represents the Fourier Transform of the displacement vector with added springs. A 

new quantity defined by Takewaki (1998) is given as 

 ̂    
      

 ̈    
                (8) 

where  is equal to s, the support motion will have a harmonic excitation frequency that equals to 

s
th
 natural frequency of the beam. Eq. (6) can be rewritten by using Eq. (8)  

  ̂                                                                         (9) 

where  

                 
               (10) 

Let  ̂     denote the transfer function of displacement which is independent from excitation. Eq. 

(9) may be rearranged as follows 

 ̂                      (11) 

It can be seen that M, C and K are prescribed, and    may be calculated when a total stiffness 

matrix (K+Ksp) is given. At the optimization stages presented in this paper, while Ksp changes in 

each step the new value of    is recalculated accordingly. 

The formulations so far were derived without Ksp by applying Takewaki (1998) to find the 

optimal damping coefficients of dampers supporting a cantilever beam. Recently, these 

formulations were also used in some optimization studies (Aydin et al. 2007, Aydin and 

Boduroglu 2008).  

The transfer function vector of the absolute acceleration at the s
th
 natural frequency of a shear 

building structure was derived by Cimellaro (2007) to find the placement of the optimal visco-

elastic dampers. The transfer function vector of absolute acceleration can be written for a 

cantilever beam supported by elastic springs as follows 
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     ̂̈      (          ) ̂            (12) 

 

 
3. Problem of optimal spring location for a cantilever beam 
 

3.1 Definition of the optimal support location problem 
 

A general structural optimization problem is defined to minimize/maximize one or multi 

objective functions that show the structural performance and cost under constraints on design 

variables and structural response. There are many possible objective functions for structural 

optimization, such as weight, stiffness, displacement, stress, vibration frequency, buckling load, 

cost, acceleration, force and specified damage index. 

In this section, the objective functions required for the supporting design of vibrating beam are 

formulated. The key idea is that these objective functions, when implemented with the proposed 

method, minimize the transfer function of both tip deflection and tip absolute acceleration in a 

cantilever beam.  

The optimization problem can be stated mathematically as 

   Minimum                                                       (13) 

subjected to the inequality constraints both on the upper and lower bounds of stiffness coefficients 

of each spring as follows 

      ̅   (j=1,2,…,n)                                    (14) 

where  ̅  is the upper bound for stiffness coefficient of the spring in j
th
 node, and an equality 

constraint on the sum of stiffness coefficients is written as 

∑     ̅ 
                                                      (15) 

where  ̅ is the total stiffness coefficients of supporting springs.  

To find the optimal support position by minimizing the dynamic response in a cantilever beam 

as mentioned before, the objective functions are chosen as tip displacement (Takewaki 1998) and 

tip absolute acceleration (Cimellaro 2007) in this study.  

The first optimization problem based on the minimization of the transfer function amplitude of 

the tip displacement for cantilever beam is expressed as 

    min    | ̂     |  (j=1,2,..., n)             (16) 

where | ̂     | corresponds to the transfer function amplitude of the tip displacement evaluated at 

any s
th
 natural frequency which is shown in displacement vector  ̂.  

The second optimization problem based on the minimization of the transfer function amplitude 

of the tip absolute acceleration at any s
th
 natural frequency of the cantilever beam is described as 

follows 

    min    | ̂̈     |  (j=1,2,..., n)              (17) 

where | ̂̈     | corresponds to the transfer function amplitude of the tip absolute acceleration 

evaluated at the s
th
 undamped natural frequency of the cantilever beam which is shown in vector 

 ̂̈. This objective function was proposed to calculate the optimal distribution of the visco-elastic 
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dampers in shear building structures (Cimellaro 2007). The first objective function was used to 

find the optimal damper positioning for a cantilever beam (Takewaki 1998). These performance 

functions are adapted to find optimal supporting spring positions in the current study. 

 

3.2 Optimality criteria  
 

The optimality criteria for the optimal supporting spring problem can be derived using the 

Lagrange Multipliers Method. The generalized Lagrangian, L for the problem of optimal spring 

placement for each of the objective functions can be written in terms of the Lagrange Multipliers 

,  and  as follows 

 (          )         (∑      ̅ 
    )   ∑        

 
     ∑        ̅ 

 
              (18) 

where h can be equal to either 1 or 2 which corresponds to each one of the objective functions. The 

optimality criteria without upper and lower bound constraints on the stiffness coefficients can be 

derived from the stationary conditions of the Lagrangian L(=0, =0) with respect to  and ki 

 
   

   
                    ̅                                           (19) 

     ∑     ̅ 
                   (20) 

where 
   

   
 represents partial differentiation of the h

th
 objective function with respect to the design 

variable kj. When the upper and lower bound constraints are available, Eq. (19) can be rewritten as 

    
   

   
                                       (21) 

    
   

   
                          ̅              (22) 

These nonlinear equations can be solved by the steepest direction search algorithm (SDSA) 

(Takewaki 1998). Sensitivities should be derived to be used in the optimization algorithm. 

 

3.3 Derivation of the sensitivity formulations  
 

To determine the optimal position of spring supports, both the sensitivity of objective functions 

and the natural frequency corresponding to the position of the support must be estimated. This 

sensitivity information allows both the search direction and the optimal position of the spring 

support to be determined.  

If Eq. (9) is differentiated with respect to ki as given below 

  

   
 ̂   

  ̂

   
   (j=1…,n)                                              (23) 

The first order sensitivity of  ̂ is written as: 

  ̂

   
       

   
 ̂                                                      (24) 

Eq. (23) and Eq. (24) were derived by Takewaki (1998). The first order derivatives of the absolute 

accelerations  ̂̈ at the s
th
 undamped natural circular frequency was derived by a partial differential 
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of Eq. (12) (Cimellaro 2007) as follows 

  ̂̈

   
       

   
  

                                                        (25) 

The quantities of  ̂   and  ̂̈ , which are shown in Eqs. (9) and (12), can be written as 

 ̂    [ ̂ ]    [ ̂ ]                                                      (26) 

 ̂̈    * ̂̈ +    * ̂̈ +                                                     (27) 

where  ̂    and  ̂̈  are the transfer function values of the i
th 

node displacement and i
th 

node absolute 

acceleration, respectively in complex form. The first order sensitivities of the quantities  ̂ , and  ̂̈ , 

in Eqs. (24)-(25), can be expressed as 

  ̂ 
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]                                                  (28) 
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]                                                  (29) 

The absolute values of  ̂  and  ̂̈  can be written as: 

| ̂ |  √     ̂   
       ̂   

                                           (30) 

| ̂̈ |  √     ̂̈   
       ̂̈   

                                           (31) 

If | ̂ |  and | ̂̈ | are differentiated with respect to the j
th
 stiffness coefficient kj, the first order 

sensitivities of the absolute values of transfer function amplitude of the i
th 

node displacement 

(Takewaki 1998) and the i
th
 absolute acceleration (Cimellaro 2007) are found to be 
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Partial differentiation of Eqs. (32)-(33) with respect to the other design parameter kl leads to 
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In Eq. (34),   [
   ̂ 

      
]and   [

   ̂ 

      
]  are calculated from Eq. (35) which are the second 

derivatives of   ̂  and  ̂̈ , respectively. Eqs. (23)-(37) were derived by Takewaki (1998). The 

absolute acceleration was incorporated into these equations for absolute accelerations by Cimellaro 

(2007). The differentiations of Eqs. (24)-(25) with respect to kl are expressed in the following form 

384



 

 

 

 

 

 

Minimum dynamic response of cantilever beams supported by optimal elastic springs 

   ̂

      
      

   
     

   
 ̂       

   

  ̂

   
                                (35) 

The components of matrix A consist of K, Ksp, M, C and s. The added spring matrix Ksp, the 

damping matrix C and the s
th
 natural circular frequency of the beam s are functions of design 

variables. In order to derive the first order sensitivity of matrix A, the partial derivative with 

respect to design variables kj should be obtained.  

For a cantilever beam model, both eigenvector and eigenvalues are calculated from the 

following equation 

(     )                                                      (36) 

where    and    are the s
th
 eigenvector and the s

th
 eigenvalue of the beam structure, respectively. 

If both sides of Eq. (36) are multiplied by   
 , Eq. (36) can be rearranged as follows 

  
               

                                             (37) 

Let  ̅    
     and  ̅    

           denote modal mass and modal stiffness evaluated 

at the s
th
 mode of the beam. Eq. (37) can be rewritten in the following form 

   
 ̅ 

 ̅ 
                                                             (38) 

The first order sensitivity of the eigenvalue    with respect to design variable kj is given as  

   

   
 

 

 ̅ 

  ̅ 

   
                                                              (39) 

where sensitivity of the modal stiffness with respect to design parameter kj can be given as  

  ̅ 

   
   

         

   
                                                       (40) 

When s=s
2
 is substituted in Eq. (38), the first order sensitivity of the s

th
 natural circular 

frequency of the cantilever beam can be obtained in the following form: 

   

   
 

 

  ̅   

  ̅ 

   
                                                    (41) 

To derive the first order sensitivity of the matrix A, in addition to the sensitivity of the 

eigenvalue and the natural circular frequency, the sensitivity of the damping matrix C should be 

obtained. Structural damping can be taken as either mass proportional or stiffness proportional 

damping. For both of the cases, structural damping matrix can be written as 

                                                                               (42) 

         
   

  
                                                            (43) 

where    denotes the damping ratio in the s
th
 mode. The partial derivatives of Eqs. (42)-(43) with 

respect to design variable kj can be obtained as follows 
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where the elements of matrix Ksp are linear functions of design parameters kj and the partial 

derivative of each term of Ksp matrix with respect to both k1 and kj can be obtained for the 

cantilever beam as 
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The first order sensitivity of the matrix A can be obtained by using the sensitivity formulations  
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 , 

   

   
 and 

   

   
  as follows 

  

   
 

    

   
    

   

   
     

  

   
 

   

   
                                     (47) 

In case of mass proportional structural damping, Eq. (47) can be written as  

  

   
 

    

   
    

 

  ̅   

  ̅ 

   
             

   

   
  

 

 ̅ 

  ̅ 

   
              (48) 

If the structural damping is chosen to be proportional to stiffness, Eq. (47) is as follows 
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3.4 Solution algorithm based on second order approximation for tip deflection (for 

    ̅ ) 

 
Step 1. Assume the stiffness coefficients of all springs to be   kj=0 where   j=1,...,n. 

Assume    
 ̅

 
   where m is the design step number.  

Step 2. Compute 
   

   
 using Eq (32). 

Step 3. Find the index z satisfying  
   

   
    ( 

   

   
)  

Step 4. Update f by     
   

   
    where        

Step 5. Update 
   

   
  by 

   

   
 

    

      
    using Eq. (34). 

Step 6. In Step 5, if there is a spring of an index i such that the following condition is satisfied: 

 
   

   
         ( 

   

   
), then stop tentatively. Compute    

̅̅ ̅̅ ̅ and update 
   

   
 by 

    

      
   
̅̅ ̅̅ ̅  using 

Eq (34). 

Step 7. Continue Steps 2 through 6 until the constraint ∑   
 
     ̅ is satisfied. 

In Steps 3 and 4, under the constraint ∑    
 
      , the objective function is reduced and 
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updates the direction according to index z. This algorithm was presented by Takewaki (1998). If 

there are multiple indices z1…zm, the objective function and its first derivative must be updated as 

      ∑
   

   

  
    

                                                 (50) 

   

   
 

   

   
 ∑

    

      

  
    

                                                     (51) 

In this study, this method is used to control the first mode in case of the tip deflection 

minimization. To control optimally second and third modes of the cantilever beam supported by 

the springs in case of the tip deflection minimization, a new search method is proposed such that it 

uses a first order approximation. In addition to minimizing the tip displacement of the beam, the 

tip absolute acceleration of the beam is minimized by adding the springs optimally for the control 

of the first three modes. For this purpose, a solution algorithm is also proposed in this study.  

 

3.5 Solution algorithm based on first order approximation for tip deflection (for     ̅ ) 

 
Step 1. Assume the stiffness coefficients of all springs to be   kj=0  where j=1,...,n. 

Assume    
 ̅

 
   where m is the design step number.  

Step 2. Compute 
   

   
 using Eqs. (32). 

Step 3. Find the index z satisfying  
   

   
    ( 

   

   
).  

Step 4. Update f by     
   

   
    where        

Step 5. Continue Steps 2 through 4 until the constraint ∑   
 
     ̅ is satisfied. 

A simplified feasible direction search algorithm can be used to calculate the optimal placement 

of springs using only the first order approximation. The classical Steepest Direction Search 

Algorithm is invalid, when it is applied to the optimal spring distribution problem based on the tip 

deflection for second and third mode control. To find the values of the stiffness coefficients of 

each spring in the first algorithm, in the case of adding the stiffness coefficient more than one in 

any step of the algorithm, the optimality conditions based on the second order sensitivity of the 

objective function are used. This algorithm does not use the second order sensitivity. Therefore, 

the increment of the stiffness coefficient added in each step is fixed by   . The objective function 

is reduced and updated according to direction obtained until the constraint ∑   
 
     ̅ is satisfied. 

 

3.6 Solution Algorithm based on first order approximation for tip absolute acceleration 

(for     ̅ ) 

 

Step 1. Assume the stiffness coefficients of all springs to be   kj=0  where j=1,...,n. 

Assume firstly     
 ̅

 
   where m is the design step number.  

Step 2. Compute 
   

   
 using Eqs. (33). 

Step 3. Find the index z satisfying  
   

   
    (

   

   
).  

Step 4. Update f by     
   

   
    where        
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Step 5. If the new value of    is higher than the previous value of   , stop the process and 

calculate the new ∑   
 
     ̅ as a summation of    values at that step. 

Step 6. If the condition in Step 5 is not satisfied; continue Steps 2 through 4 until the constraint 

∑   
 
     ̅ is satisfied. 

This algorithm does not also use the second order sensitivity. Therefore, the increment of the 

stiffness coefficient added in each step is fixed by   . The objective function is reduced and 

updated according to direction obtained until the constraint ∑   
 
     ̅ is satisfied. Moreover, if 

the condition in Step 5 is satisfied, the process should be stopped. When the process is continued 

after this step, the objective function will increase and it moves away from the minimum point. If 

the process is stopped in Step 5, the total stiffness capacity  ̅  chosen in initial stage of the 

algorithm will change. Accordingly, the minimum response of the beam depends on the total 

stiffness capacity.  

In this study, a gradient based method is proposed. There are many optimization methods to 

solve engineering problem. The gradient based methods need sensitivity information. Sensitivities 

give us sensitive design parameters and sensitive locations above the structural response. These 

sensitivities may be discontinuous for various objective functions and constraints. The sensitivities 

in this paper are continuous for the proposed objective function and constraints. If the opposite 

situation is appeared, this difficulty can be overcome by using direct search approaches for 

optimization because direct search algorithms do not have many mathematical requirements (no 

derivatives needed, etc.) for the optimization problems. Also there are other optimization 

algorithms such as genetic algorithms, ant colony algorithms, particle swarm optimization that are 

capable of finding optimal design. 

 

 
4. Numerical example  
 

A fixed support Timoshenko cantilever beam which has a length of 6 m is shown in Fig. 1. It is 

selected in order to show the application of proposed methods on a numerical example (Takewaki 

1998). The beam is modelled using finite elements of 1 m length for each. Considering a vertical 

and an angular displacement at each node, a total of 12 degrees of freedom are defined in the 

system. Material density, =7.8 10
3
 kg/m

3
, elasticity modulus, E=2.06 10

11
 N/m

2
, shear modulus, 

G=7.94 10
10

 N/m
2
, shear correction factor, =5/6, cross sectional area, A=0.05m

2
, second moment 

of area, I=2.08 10
-4

 m
4
, and damping ratio for the first three modes, =0.02 are selected for beam 

identification. In addition; a lumped mass of 100 kg’s is added to the beam end. Structural 

damping matrix is calculated such that it is proportional to the mass matrix. Potential nodes to 

which springs will be placed or supported are defined as nodal points. The six spring stiffness 

coefficients, k={k1, k2, k3, k4, k5, k6} are defined as design variables. First three natural circular 

frequencies of the beam are calculated as 1= 29.87 rad/s, 2=187 rad/s, and 3 = 526.31 rad/s. 

Objective functions given by Eqs. (16) and (17) are minimized at the optimization stage. 

Firstly, the sum of spring stiffness coefficients is taken as  ̅               in the first mode 

control. The amplitude of transfer functions for the tip deflection evaluated at the first natural 

circular frequency is minimized by calculating optimum spring stiffness coefficients using the 

SDSA method.  

In the case of optimal control of tip deflection at the first mode, total spring stiffness is placed 

to the tip of beam using the optimization algorithm given in Section 3.4, that is to say     ̅ as  

388



 

 

 

 

 

 

Minimum dynamic response of cantilever beams supported by optimal elastic springs 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 2 Optimal spring designs for first-three modes 
 

 

shown in Fig 2(a). Meanwhile; the other spring stiffness coefficients are equal to zero. This 

emphasizes that total stiffness should be placed to the end of cantilever beam in order to minimize 

the tip deflection response at the first mode. Afterwards, the optimal location of springs is 

determined by minimizing the transfer function amplitude of tip absolute acceleration provided 

that total stiffness coefficient is equal to  ̅             . As a result of application of the 

optimization algorithm given in Section 3.6, optimal spring stiffness coefficients are found as 

                 and     ̅ which is same as the spring design for tip deflection 

optimization (Fig. 2(a)).  

    ̅   value at each design step is distributed equally to each one of six springs; and a 

uniform design is defined, in order to make another comparison. At the end of uniform design, 

                  
          

 
N/m; and these values are shown in Fig. 2(a). The 

amplitude of tip deflection at the first mode according to the redesign step number for each one of  
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(a) 

 
(b) 

 
(c) 

Fig. 3 Variation of objective function for tip deflection with respect to redesign step number in the 

first-three modes 

 

 

three designs is shown in Fig. 3(a). The same design results are observed in Fig. 3(a) showing the 

change of objective function f1 for the minimization of tip deflection and tip absolute acceleration. 

Optimum designs show a better performance compared to uniform design. Fig. 4(a) shows the 

transfer function amplitude of tip absolute acceleration for three designs composed of two optimal  
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(a) 

 
(b) 

 
(c) 

Fig. 4 Variation of objective function for tip absolute acceleration with respect to redesign step 

number in the first-three modes 

 

 

and one uniform designs. When compared with the uniform design, it is observed that both of the 

two optimal designs show a better performance with respect to the transfer function amplitude of 

the tip absolute acceleration at the first mode. It is shown in Fig. 5(a) that the first natural circular  
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(a) 

 
(b) 

 
(c) 

Fig. 5 Variation of natural circular frequency with respect to redesign step number in the first-three modes 

 

 

frequency is maximized during the optimal design at the first mode. The changes in partial 

differentials of f1 at the first mode are plotted in Fig. 6(a) from which the convergence of 

optimization can be proven. A similar situation is shown in Fig. 7(a) in which the first order 

sensitivities of f2 converge to zero at the end of design step. After the optimal and uniform designs 

at the first mode are evaluated, the change in transfer function amplitude of tip deflections  
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(a) (b) 

 
(c) 

Fig. 6 Variation of the first order sensitivity of the amplitude of tip deflection with respect to redesign 

step number in the first-three modes 

 

  
(a) (b) 

 
(c) 

Fig. 7 Variation of the first order sensitivity of the amplitude of tip absolute acceleration with respect to 

redesign step number in the first-three modes 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Variation of transfer function amplitude of tip deflection with respect to excitation frequency 

 

 

according to excitation frequency is plotted in Fig. 8(a) for three designs. The black line shows the 

case when no springs exist. When there are no springs, the tip deflection transfer function 

amplitude reduces to a minimum level after the optimal design is performed at the excitation 

frequency where first resonance occurs.  

Target point in Fig. 8(a) shows the resonance point in optimal design. It is observed that 

optimal design for tip deflection reduces objective function at the resonance point better compared  
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(a) 

 
(b) 

 
(c) 

Fig. 9 Variation of transfer function amplitude of tip absolute acceleration with respect to excitation 

frequency 

 

 

to uniform design. In addition; frequency behaviours at the first mode for the control of tip 

deflection regarding optimal design and other designs at the second and third resonance regions 

are shown in Fig. 8(a). While in the second resonance region optimal design shows a better 

performance compared to other designs, in the third resonance region it is observed that all three 
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designs show similar behaviours.  

In Fig. 9(a), optimal design for tip absolute acceleration, uniform design and design without 

springs are plotted for change of transfer function amplitude of tip absolute acceleration with the 

excitation frequency. It is observed that optimal design evaluated for acceleration minimization 

reduces acceleration behaviour more compared to both uniform design and design without spring 

at the first resonance region. In Fig. 9 (a), it can be seen that optimal design evaluated at the first 

mode also shows a better performance compared to other designs at the second resonance region. 

In the same figure, it is observed that in the third resonance region the frequency behaviour of 

optimal design is slightly larger than the others.  

At the second stage; optimal location and number of springs are calculated by minimizing both 

absolute acceleration and tip deflection of cantilever beam at the second mode. Simple algorithm 

shown in Section 3.5 is used in order to minimize transfer function amplitude of tip deflection at 

the second mode. In order that partial differential equations of objective function, f1 converge to 

zero;  ̅ value selected at the first mode is changed as  ̅=2.1946 10
7
 N/m.  

As shown in Fig. 2(b), optimal spring distribution which will minimize transfer function 

amplitude of tip deflection at the second mode is found.  For this case; all of the springs are 

located at the tip of cantilever beam, as it was the case at the first mode (k1=k2=k3=k4=k5=0 and 

k6=2.1946 10
7
 N/m). Simple algorithm in Section 3.6 is used, in order to find spring distribution 

which will minimize tip acceleration transfer function amplitude as shown in Fig. 2(c) 

(k1=k2=k3=k4=k5=0 and k6=1.96784 10
7
 N/m). Even though, locations of spring distribution are the 

same for both design which minimizes tip deflection and design which minimizes tip absolute 

acceleration, there is a difference in the total springs coefficient.  

When the algorithm in Section 3.6 is used, if the value of objective function increases with 

respect to the previous step (in accordance with the constraint at Step 5 in Section 3.6) at any stage 

of design, the process should be stopped. During the minimization of acceleration, the process is 

stopped at Step 270 since the value of objective function, f2 increased compared to the objective 

function value at the previous step. The calculated values of kj until that step are taken as optimal 

values.  

If the algorithm was also applied after the 270
th
 step, the objective function, f2 will increase and 

will diverge from the minimum value. Accordingly, in the obtained optimal designs regarding the 

control of second mode; even though locations of springs are the same, there is a difference in 

their stiffness coefficients. As total spring coefficient values increase, tip deflection response will 

continuously decrease. However; the same situation does not occur for the absolute acceleration. 

Even though increase in total stiffness constant  ̅ decreases the objective function, f2 down to a 

certain point, it increases the objective function after that point. Because of this situation, the 

constraint given in Step 5 of Section 3.6 is placed in the algorithm. This causes a difference in  ̅ 

values of optimal design in each one of two objective functions. 

In Fig. 3(b), the variation of f1 with respect to redesign step number is plotted for the 

minimization of both of two objective functions. In addition; the variation of this function can be 

seen for the case of uniform spring design in Fig. 3(b). The transfer function value of absolute 

acceleration up to 270
th
 design step for all three design cases are plotted in Fig. 4(b). It is observed 

that both of the optimal designs show a better performance compared to uniform design. In Fig. 

5(b), it is shown that optimal designs increase second natural circular frequency, 2 more than 

uniform design. 

Fig. 6(b) shows the change in first order sensitivities of f1 with respect to design variables for 

the control of second mode. It is observed that convergence is satisfied at the end of design. The 
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change in first order sensitivities of f2 with respect to design variables can be seen in Fig. 7(b). It 

can be seen that convergence is also satisfied during the optimization process which occurs until 

the 270
th
 step.  

For the case of second mode control, if the amplitude of transfer function of tip deflection is 

investigated for excitation frequency in Fig. 8(b), it is observed that the target point value at 

optimal case is significantly reduced. In the same figure, the optimal design amplitude is larger 

than other design response amplitudes at the third resonance region. Fig. 9(b) shows the frequency 

behaviour of transfer function amplitude of absolute acceleration in different designs for the case 

of second mode control. If the second resonance region is investigated, it is seen that optimal 

design behaviour shows a significantly better performance compared to other designs. If the first 

and third resonance regions are examined in the same figure, it can be said that optimal design 

shows a good performance in the first resonance region, while it shows a bad performance in the 

third resonance region. 

In the first two modes of cantilever beam; after being controlled by the springs, in the third 

stage the optimal distribution of springs, which minimizes f1 and f2 evaluated at the third mode, are 

investigated. Figs. 2(d) and 2(e) show optimal placement of spring constants for minimization of f1 

and f2. In the third mode; when f1 is minimized, the optimal spring constants are found to be 

k3=1.45608 10
6
N/m and k4=1.0775 10

8
 N/m. The stiffness constants of other springs are found to 

be zero. At this stage; it can be seen that total spring constant value is increased, in order to control 

the third mode. At the end of design, most of the total stiffness is added to the spring at the 4
th
 

node; while a small part of it is added to the spring at the 3
rd

 node. The optimal spring design 

which minimizes f2 in the third mode is shown in Fig. 2(e). According to optimal design result 

which minimizes f2, it is found that total spring stiffness,  ̅=9.6465 10
7
 N/m should be added to 

the spring at the 4
th
 node. When this design is compared with the optimal design based on tip 

deflection, total  ̅ is added only to the 4
th
 node. In addition; total spring constant,  ̅ is smaller than 

the total spring constant for tip deflection minimization. 

In the numerical examples, the total stiffness  ̅  changes according to both types of the 

objective functions and the mode number of the beam. Increase in total stiffness constant  ̅ 

generally decreases the objective function until convergence is satisfied. The objective functions 

increase after that point, if the total stiffness is increased. In this point, when the convergence is 

satisfied, the algorithm should be stopped. This situation causes various in  ̅ values of optimal 

design in each one of two objective functions and in each one of the different mode.  

In Figs. 3(c) and 4(c), the change of f1 and f2 according to the design steps at all three designs 

are shown for the third mode control case. It is observed in Fig. 5(c) that optimal designs increase 

third natural circular frequency, 3 better compared to uniform design. 

Figs. 6(c) and 7(c) show the variation of first order sensitivities of f1 and f2 with respect to 

design variables during third mode control. It can be seen that convergence is satisfied for both of 

the optimizations.  

Fig. 8(c) shows the change in f1 with respect to excitation frequency optimal design and other 

designs calculated for third mode displacement control. When the third resonance region is 

examined, the resonance point for the case of without spring decreases significantly after being 

controlled regarding f1. Optimal design evaluated for the third mode shows a good performance in 

the second resonance region, while it has a bad performance in the first resonance region for f1.  

The change of f2 with respect to excitation frequency can be seen in Fig. 9 (c) for the control of 

third mode. It is observed that optimal design shows a significantly better performance than design 

with no spring and uniform design.  
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(a) (b) 

Fig. 10 Time history of the tip deflection of the beam under the sinusoidal base excitation for the first 

mode control 

 

  
(a) (b) 

  
(c) (d) 

Fig. 11 Time history of the tip deflection of the beam under the sinusoidal base excitation for the second 

mode control 

 

 

In this paper, optimum locations and sizes of springs supporting a cantilever beam are 

investigated for the first three modes to minimize the transfer function amplitude of tip deflection 

and tip absolute acceleration. At the optimization stages applied for the control of first three 

modes; f1, f2, first three natural circular frequencies and their first order sensitivities with respect to 

design variables are provided. In addition; the calculated optimal design is compared with design 

with no spring and uniform design cases considering excitation frequency parameter for the first 

three modes.  
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(a) (b) 

  
(c) (d) 

Fig. 12 Time history of the tip deflection of the beam under the sinusoidal base excitation for the third 

mode control 

 

 
In addition; time history analyses are performed under a sinusoidal support movement to test 

the calculated optimum spring designs. Initially, tip deflection and absolute acceleration of optimal 

designs for the control of first mode and other designs are examined under base acceleration, 

 ̈         which defines the resonance case. In Figs. 10(a) and 10(b), it is seen that optimal 

designs which are calculated both for displacement and acceleration, and are equal to each other 

show a significantly good performance at resonance situation both for tip deflection and tip 

absolute acceleration. The optimal designs calculated for the second mode are tested using time 

history analyses in Figs. 11 (a) - (d) for the selected base excitation,  ̈         . It is observed 

that optimal design reduces the behaviour of both tip deflection and tip absolute acceleration 

considerably. Optimal designs at the third mode control are tested by time history analyses under 

the selected base excitation,  ̈        , and it is observed in Figs. 12 (a)-(d) that they show a 

remarkably good performance for both tip deflection and tip absolute acceleration. 

The resonance presents the worst case in terms of structural response in the dynamic analyses. 

The engineering design problems are generally based the resonance cases. In this study, three 

excitation frequencies, which is equal the first three natural frequencies of the beam are selected. 

The proposed method can be applied to obtain optimal design for the any other modes. One of the 

structural modes can be used to obtain the optimal design. Then the optimal design obtained can 

be tested using harmonic loadings according to that mode. 
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5. Conclusions 
 

Support conditions of beams change their dynamic responses which are encountered for many 

engineering problems. In this paper; optimal locations and sizes of springs which support a 

cantilever Timoshenko beam for the first three modes are investigated. In the optimization 

problem; transfer function amplitudes of both tip deflection and tip absolute acceleration are 

selected as the objective functions. Objective functions are minimized in order to find the optimal 

spring distribution. While SDSA method proposed by Takewaki (1998) is used for the 

minimization of tip deflection transfer function amplitude at the first mode, a simple first order 

approximation is proposed in this paper for the minimization of tip deflection in the second and 

third modes. Moreover, a simple first order algorithm is proposed to minimize the transfer function 

of tip absolute acceleration. Some sensitivity equations needed for optimization are derived. 

Optimal designs on a cantilever Timoshenko beam are examined and numerical results are plotted. 

Optimal designs calculated for two different objective functions for the first three modes of beam 

with 12 degrees of freedom are found. Both frequency responses and time responses of the 

calculated optimal designs are investigated, and it is shown that they give a good performance. 

The following conclusions can be drawn according to the numerical analyses results: 

• In the first mode, the spring designs, which minimize both tip deflection and tip absolute 

acceleration, are equivalent regarding both spring locations and their sizes. 

• In the second mode, even though designs which minimize both of the defined objective 

functions have the same support location for springs, they show a difference at the total spring 

stiffness coefficients. The total stiffness,  ̅ value, which is calculated for the optimization of tip 

absolute acceleration, is less.  

• In the third mode, for the calculated design to minimize tip deflection while total stiffness,  ̅ 

is allocated at the third and fourth nodes (mostly at the fourth node, while a small part of it is 

allocated at the third node.), for the design which minimize tip absolute acceleration  ̅ is located 

only at the fourth node. In addition; total stiffness,  ̅ values are different for each one of two 

optimizations. 

• The calculated optimal designs and defined uniform designs are also investigated in terms of 

frequency behaviours and time responses. Especially at the resonance cases, the behaviours are 

examined for the first three modes, and it is shown that optimal designs reduce the defined 

dynamic behaviours effectively. 

In this paper; the optimal design of springs referring to any mode behaviour, spring locations 

and sizes which minimize tip deflection and tip absolute acceleration for cantilever beams are 

investigated. The methods taken from the literature and the proposed methods in this paper are for 

general use; and they can be applied on other structural systems. 
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