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Abstract.  The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, 
hole location and stacking layer sequence ([0/45/-45/90]s, [45/0/-45/90]s and [90/45/-45/0]s) on natural 
frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and 100°C) temperatures for 
the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free 
vibration of symmetric laminated beams is studied by Timoshenko’s first order shear deformation theory. 
For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole 
diameter, stacking layer sequence and hole location have important effect especially on the second and third 
mode natural frequency values for the short beams and the high temperatures affects the natural frequency 
values significantly. The results are presented in tabular and graphical form. 
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1. Introduction 

 
The application of fiber composites has shown a tremendous growth in many fields ranging 

from trivial, industrial products such as boxes and covers produced in enormous numbers each 
day, to pipelines and crucial, load bearing parts of large structures. Composites are also 
extensively used in the aerospace and marine industries. Some important reasons for this 
popularity are: their high strength (and stiffness) to weight ratio; light weight and resistance to 
corrosion and chemicals. Cutouts are inescapable in composite structures principally for practical 
considerations. However, the vibrations may cause sudden failures in consequence of resonance in 
the presence of cutouts. It is therefore very important to predict the natural frequencies of these 
structural members precisely. There are many publications in the literature about laminated plate 
vibration. 

Abramovich (1992) studied symmetrically laminated composite beam with different boundary 
conditions on the basis of Timoshenko-type equations. In the analysis, the shear deformation and 
the rotary inertia were considered, but with the term representing the joint action of these factors 
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neglected in the Timoshenko equations. A detailed analytical analysis was carried out to determine 
the natural frequencies of laminated beams. Abramovich et al. (1995) examined the vibrations of 
general layered beams by using a novel, precise element method. A dynamic stiffness matrix was 
calculated; thereafter the problem was solved for any set of boundary conditions, comprising 
elastic connections and different member assemblies. The natural frequencies at which the 
dynamic stiffness matrix turned into singular were obtained. 

Teh and Huang (1979) investigated a general orthotropic cantilever beam by using two finite-
element models, containing both the shear deformation and the rotary inertia effects. In the 
analysis, the first-order shear deformation theory was utilized. Chandrashekhara and Bangera 
(1992) presented a refined shear-flexible beam element, including a higher-order shear 
deformation theory in the formulation of constitutive equations for the beams. The Poisson effect 
was also taken into account which is frequently ignored in a one-dimensional analysis of laminated 
beams. They reported the frequencies and the corresponding modal shapes for symmetrically 
laminated orthotropic composite beams. Lee et al. (1992) used the finite-element method for the 
stress and vibration analysis of composite beams, on the basis of multilayered beam theory. In the 
finite-element formulation, the principle of maximum potential energy, the continuity of the 
interlaminar shear stress was considered.  

Hodges et al. (1991) presented a simple analytical and a detailed cross-sectional finite element 
method for analyzing the free vibrations of composite beams. By using these methods, the natural 
frequencies and the corresponding modal shapes were acquired. Maiti and Sinha (1994) performed 
bending and free vibration analyses of shear-deformable laminated composite beams by 
application of the finite-element method. The analysis was based on a higher-order shear-
deformation theory and the conventional first-order theory to develop a finite-element model with 
a nine-node isoparametric element. They investigated the effects of various factors, such as fiber 
orientation, span/depth ratio, and boundary conditions, on the non-dimensionalized fundamental 
frequencies, non-dimensionalized deflections, and stresses. They showed that the differences 
between the frequencies and deflections given by the first-order and higher-order shear-
deformation theories were inconsequential in the matter of laminated composite beams. Shi and 
Lam (1999) acquired the same result for the fundamental frequency by using a third-order beam 
theory.  

Khdeir (1994) investigated the free-vibration behavior of cross-ply rectangular beams, with 
arbitrary boundary conditions. The author reported that the difference between different shear-
deformation theories was negligible. Teboub and Hajela (1995) integrated the equations of motion 
for the free vibration of general layered composite beams on the basis of the first-order shear-
deformation theory. They investigated the effect of Poisson ratio, layer width and stacking, and 
boundary conditions on the natural frequencies. 

Krishnaswamy et al. (1992) presented analytical solutions to the vibrations problem for general 
layered clamped-clamped and clamped-supported composite beams. They used Hamilton’s 
principle for the purpose of developing the dynamic equations of free-vibrations. The energy 
formulation they used held both the shear deformation and the rotary inertia.  

Bezazi et al. (2001, 2003a, b) investigated the effect of the stacking layer sequence over the 
damage tolerance and fatigue the cross-ply laminates by utilizing a three-dimensional finite 
element analysis. Davidson et al. (1995) reported that the stacking sequence affects the loss rate of 
energy. Sun and Jen (1987) and El Mahi et al. (1995) studied the influence of the stacking layer 
sequence in the event of laminates (0m /90n)s and (90n /0n)s.  They examined the loss of rigidity and 
energy in cross laminates during fatigue tests for tensile loading. 
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Rajamani and Prabhakaran (1977) examined the influence of a hole on the natural vibration 
characteristics of isotropic and orthotropic plates with simply-supported and clamped boundary 
conditions. Sakiyama et al. (2003) investigated the natural vibration characteristics of an 
orthotropic plate with a square hole via the Green function supposing that the hole as an extremely 
thin plate. Lee (1984) performed vibration experiments on the rectangular plates with a hole in air 
and water. Kim et al. (1990) tested the lateral vibrations of rectangular plates by using simple 
polynomials in the Rayleigh–Ritz method. Paramasivam (1973) utilized the finite difference 
method for a simply-supported and clamped rectangular plate with a rectangular hole. Aksu and 
Ali (1976) analyzed a rectangular plate with more than two holes by using the finite difference 
method. Ram and Sinha (1992) investigated the effects of moisture and temperature on the free 
vibration of laminated composite plates. Numerical results revealed that the increase of moisture 
concentration and temperature causes reduction in natural frequencies of symmetric and anti-
symmetric laminates with simply supported and clamped boundary conditions. Sharma and Mittal 
(2010) published a review on stress and vibration analysis of composite plates. Alam et al. (2012) 
presented an efficient one dimensional finite element model has been presented for the dynamic 
analysis of composite laminated beams, using the efficient layer-wise zigzag theory. Kim and Choi 
(2013) derived a super convergent laminated composite beam element for the lateral stability 
analysis. 

In this study, the effects of the beam aspect ratio (L/h), hole diameter, hole location and 
stacking layer sequence ([0/45/-45/90]s, [45/0/-45/90]s and [90/45/-45/0]s) on natural frequencies 
are investigated under room and high (40, 60, 80, and 100°C) temperatures. The first three of out 
of plane bending free vibration modes are studied. For the numerical analyses, ANSYS 13.0 
software package is used. The numerical results show that the hole diameter, stacking layer 
sequence and hole location have significant effect on the second and third mode natural frequency 
values especially for the short beams. It is worthy to note that temperature affects the natural 
frequency values. The results are presented in tabular and graphical form. 
 
 
2. Timoshenko theory 

 
The Timoshenko beam theory includes the effect of transverse shear deformation. As a result, a 

plane normal to the beam axis before deformation does not remain to the beam axis any longer 
after deformation. The energy method is used to derive the finite element matrix equation (Kwon 
and Bang 2000). 

Let u and v be the axial and transverse displacements of a beam, respectively. Due to the 
transverse shear deformation, the slope of beam θ is different from dv/dx. Instead, the slope equals 
(dv/dx)-γ where γ is the transverse shear strain. As a result, the displacement field in the 
Timoshenko beam can be written as 

     ( , ) ( )u x y y x   (1)

        ( )v x v  (2)

where the z-axis is located along the neutral axis of the beam and the beam is not subjected to an 
axial load such that the neutral axis does not have the axial strain. From Eq. (1) and Eq. (2) the 
axial and shear strains are 
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d
y

dx

    (3)

          

dv

dx
     (4)

The strain energy for an element of length l is 

          

/ 2 / 2

0 / 2 0 / 22 2

l h l hT T

h h

b b
U E dydx G dydx

  
 

      (5)

where the first term is the bending strain energy and the second term is the shear strain energy. 
Besides, b and h are the width and height of the beams respectively, and µ is the correction factor 
for shear energy. 

First, substituting Eqs. (3)-(4) into Eq. (5) and taking integration with respect to y gives 

          
0 0

1

2 2

TT
l ld d dv dv

U EI dx GA dx
dx dx dx dx

                       
          (6)

where I and A are the moment of inertia and area of the beam cross-section respectively. 
In order to derive the element stiffness matrix for the Timoshenko beam, the variables v and θ 

need to be interpolated within each element. As seen in Eq. (6), v and θ are independent variables. 
That is, we can interpolate them independently using proper shape functions. We use the simple 
linear shape functions for both independent variables. That is  

             

  1
1 2

2

v
v H H

v

 
  

 
 (7)

              
 1

1 2
2

H H




 

  
 

 (8)

The functions H1(x) and H2(x) are called Hermitian shape functions. Using Eq. (7) and Eq. (8) 
along with the strain energy expression Eq. (6) yields the following element stiffness matrix for 
the Timoshenko beam 

          
e e e

b sK K K             (9)

where 

          

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

e
b

EI
K

l

 
       
  

 (10)
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 (11)

The bending stiffness term, Eq. (10), is obtained using the exact integration of the bending 
strain energy but the shear stiffness term, Eq. (11), is obtained using the reduced integration 
technique. Lastly, the diagonalized mass matrix can be written as 

         

2

2

39 0 0 0

0 0 0

0 0 39 078

0 0 0

e lAl
M

l


 
 
      
 
 

 (12)

For free vibration of a beam, the eigenvalue problem is  

          
 

_
2 0e eK M d            

 (13)

where ω is the angular natural frequency in radians per second and { d } is the mode shape. 
 
2.1 Calculation of the beam rigidity 
 
In Eq. (10), the term of beam rigidity (EI) is as shown (Kwon and Bang 2000) 

         
*
11

b
EI

D
  (14)

where
*
ijD (i, j = 1, 2, 6) denote the elements of the inverse of the bending stiffness matrix [D]. 

 
2.2 Calculation of the shear modulus 
 
In Eq. (11), the term of shear modulus (GA) is as shown (Kwon and Bang 2000) 

         
*
55

b
GA

A
  (15)

where
*
ijA  (i, j = 4, 5) denote the elements of the inverse of extensional stiffness matrix [A]. 

 
 
3. Numerical verification 
 

In order to validate the finite element model, an example taken from the literature (Hassan et al. 
2009) is analyzed and then numerical results are compared with exact solutions. The geometry and  

115



 

 
Table 1
2009) 

E1 (

4

1-fibres

 

 

 
 

dimens
Fig. 1.

The
x widt
schem

Mo
solid-s
directi
and 10

Tab
close a

The

1 The mechan

(GPa) E2

46.2 

s direction, 2-

sions of the 
  
e composite 
th x thickne
e of the com

odal analysis
shell (SOLSH
ons and rota

000 elements
ble 2 shows 
agreement w
e out of plane

h=
3.

2 

Clamped 
side 

nical propertie

2= E3 (GPa) 

14.70 

transverse dir

Fig. 2 3D

composite b

beams were 
ess). They w

mposite beam
s is carried o
H190) eleme

ations about t
s are used for
the compari
as found bet
e and bending

z 

Yusuf Cuned

Fig. 1 Mesh 

es of the lamin

G12=G13 (GPa

5.35 

rection, 3-thick

D 8 node layer

beams used f

E glass fiber
were compos
s was [(0/90

out by using
ent with six 
the nodal x, y
r the beam m
ison of out o
ween the num
g vibration m

 
 
 
 
 
 

dioglu and Ber

grid of topog

nated compos

a) υ12= υ13 (-

0.31

kness directio

red solid-shell

for the valid

r/epoxy with
sed of 8 lay
)]2s. The mat

g ANSYS 13
degree of fre
y, and z-axes

modeling.  
of plane natu
merical and 

mode shapes 

L=400 

rtan Beylergil

raphic model

site beam used

-) G23 (GP

7.54

on. 

 

l element (SO

dation of fini

h the dimensi
yers with eq
terial propert
3.0 software 
eedom (trans

s) is chosen (

ural frequenc
theoretical re
of the compo

y 

xo = Elem
x = Elem
 

l

d for the verif

a) υ23 (

0.41

LSH190) 

ite element m

ions of 400×
qual thicknes
ties were giv
package. As

slations in th
see Fig. 2). I

cies of the co
esults.  
osite beam ar

All dimensio

ment x-axis if ESY
ment x-axis if ESY

fication (Hassa

(-) ρ (kg

1 20

method is sh

×40×3.2 mm 
ss. The lam

ven in Table 
s the elemen
he nodal x, y
In total, 8442

omposite bea

re shown in F

x 

ons in millimeters

YS is not supplie
YS is supplied.  

an et al. 

g/m3) 

040 

hown in 

(length 
mination 

1. 
nt type, 
y, and z 
2 nodes 

am and 

Fig. 3. 

s 

d.  

116



 

Table 2

Out-o

 

 
 

 
 

 

 
 
4. Sta
 

The
lengths
rectang
as Ød 
[45/0/-

The
by usin

1

4thm

Free vibra

2 Comparison 

of plane bend

Timoshen
FE

Fig. 3 T

atement of 

e model is c
s as L1=0.3m
gular cross s
= 5, 10, 15 

-45/90]s and 
e thickness o
ng the follow

1stmode  13.71

mode  470.24 

a 

ation analysis 

of out of plan

ding frequenc

nko theory 
EM 

The first six ou

the proble

considered as
m (L1/h=100)
section (widt

mm as show
[90/45/-45/0

of each layer 
wing formula

1 Hz 

Hz 

of laminated c

ne bending nat

cy (Hz) 1st m
13
13

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

ut of plane ben

Fig. 4 The la

m 

s a cantileve
); L2=0.225m
th b=0.02m, 
wn in Fig. 4
0]s is conside

is identical 
as (Kisa 2004

2nd

5th

L

 
 
 
 
 
 

composite bea

  

atural frequenc

mode 2nd mo
.68 85.72
.71 85.85

ending vibratio

 

aminated com

er laminated
m (L2/h=75); 

thickness h=
. Three diffe

ered.  
for all layers
4) 

dmode  85.85 

hmode 776.36

am under room

cies with the th

ode 3rd mode
2 239.85
5 240.21

on mode shap

mposite beam.

d composite b
and L3=0.15

=0.003m) and
erent configu

s in the lamin

Hz 

6 Hz 

m and high tem

heoretical resu

e 4th mode 5
469.62
470.24

es of composi

beam with t
5m (L3/h=50)
d the hole di
urations, nam

nates. G23 an

3

6

b 

emperatures 

ults 

5th mode 6th

775.55 11
776.36 11

ite beam 

three differen
) respectively
iameters are 
mely [0/45/-4

nd υ23 are cal

3rdmode  240.2

6thmode  1157

h=3 m

h mode
157.25
157.95

nt span 
y, solid 
chosen 

45/90]s, 

lculated 

21 Hz 

7.95 Hz 

mm 

117



 
 
 
 
 
 

Yusuf Cunedioglu and Bertan Beylergil 

           
(1 )f mV V    

  (16)

           
 11 1f mE E V E V    (17)

          

 
 22

f m f m

m

f m f m

E E E E V
E E

E E E E V

   
  

    
 (18)

             
 12 1f mV V      (19)

           

  12 11
23 2

12 11

1 /
1

1 /
m m

f m
m m m

E E
V V

E E

   
  

  
      

 (20)

          

22
23

232(1 )

E
G





 (21)

where indices m and f denote matrix and fiber, respectively. E, G and υ are the modulus of 
elasticity, the modulus of rigidity, the Poisson’s ratio respectively. The value of fiber poisson’s 
ratio (υf) is taken as 0.23. Material properties of the beams investigated are assumed to be same in 
all layers as given in Table 3. 

We investigate the effects of beam span length-height ratio (L/h), hole diameter (Ød), hole 
location (a/L) and different temperatures on the free vibration behavior of the laminated composite 
cantilever beams. As in the verification, solid-shell (SOLSH190) element with six degree of 
freedom (translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z-
axes) was used. The laminated composite beam is oriented at [90/45/-45/0]s as seen in Fig. 5(a). 
Mesh arrangement around the circular hole is shown in Fig. 5(b). 

 
 

5. Results and discussion 
 

The effect of a/L ratios and hole diameter on the natural frequencies for L/h=100 and stacking 
sequence [0/45/-45/90]s is demonstrated in Fig. 6. As shown in Fig. 6(a), the minimum first mode 

 
 

Table 3 The mechanical properties of the laminated composite beams (Aktas and Karakuzu 2009) 

Temperature 
(°C) 

E1 

(MPa)
E2 = E3 

(MPa) 
G12 =G13

(MPa) 
G23 

(MPa) 
υ12 = υ13 υ23 

ρ 
(kg/m3) 

Ply thickness
(mm) 

20 40510 13960 3105 5630 0.22 0.24 1830 0.375 
40 39820 11540 2629 4650 0.22 0.24   
60 39720 11090 2561 4550 0.21 0.22   
80 28270 6110 2053 2500 0.21 0.22   

100 19450 5700 813 2350 0.20 0.21   
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Table 5 The first three out of plane natural frequencies for L/h=75,Temperature: 20°C 

Fiber orientation [0/45/-45/90]s [45/0/-45/90]s [90/45/-45/0]s 
Modenumber 1 2 3 1 2 3 1 2 3 

f* (Hz) 38.035 237.937 664.821 31.930 199.842 559.378 27.272 170.748 477.587
f (Hz) (with hole) 

d(mm) a/L 
1/6 34.45 229.16 647.30 30.456 196.02 551.69 29.474 179.76 496.33
2/6 33.582 225.93 624.83 29.904 194.90 543.13 31.516 182.01 507.47

5 

3/6 33.281 215.89 620.04 29.691 190.67 537.92 32.669 187.81 525.27
4/6 33.241 213.20 614.08 29.657 185.19 517.33 33.186 202.72 562.55
5/6 33.342 213.77 614.92 29.735 185.15 518.60 33.337 206.56 567,24
1/6 33.332 229.09 649.20 29.426 195.76 553.73 28.025 178.43 498.10
2/6 33.063 225.53 622.12 29.416 194.71 539.74 30.596 182.0 499.19

10 
3/6 33.172 213.035 619.211 29.582 188.03 537.57 32.341 183.17 524.29
4/6 33.452 214.71 611.08 29.843 182.67 510.16 33.340 196.75 545.94
5/6 33,378 217.16 615.47 30.211 184.82 512.50 33.865 205.55 553.81

15 

1/6 30.207 228.30 650.19 26.596 194.63 555.50 24.804 175.47 499.98
2/6 31.472 222.42 611.59 27.904 192.54 527.85 28.33 181.48 483.67
3/6 32.651 211.05 616.15 29.071 178.61 535.92 31.334 172.70 521.40
4/6 33.72 216.490 605.21 30.070 174.36 489.58 33.455 182.62 516.90
5/6 34.816 223.03 620.15 31.051 183.26 493.30 34.792 202.16 520.55

 
Table 6 The first three out of plane natural frequencies for L/h=50,Temperature: 20°C 

Fiber orientation [0/45/-45/90]s [45/0/-45/90]s [90/45/-45/0]s 
Modenumber 1 2 3 1 2 3 1 2 3 

f* (Hz) 85.75 535.198 1491.2 72.227 451.23 1261.7 61.465 384.36 1073.5
f (Hz) 

d(mm) a/L 
1/6 76.939 514.502 1442.2 68.703 442.785 1242.2 65.857 402.84 1118.2
2/6 75.369 505.315 1400.0 67.658 439.04 1226.2 70.635 410.86 1137.9

5 

3/6 74.941 482.16 1383.2 67.246 429.73 1212.3 73.473 421.95 1181.3
4/6 75.048 476.80 1325.3 67.259 421.03 1187.1 74.776 445.42 1204.2
5/6 75.361 478.75 1294.2 67.496 418.33 1170.3 75.343 463.44 1263.0
1/6 73.289 513.71 1449.0 65.258 441.40 1249.0 61.203 398.52 1121.9
2/6 73.638 504.74 1394.8 65.991 438.97 1217.8 67.628 410.96 1116.7

10 
3/6 74.559 475.30 1379.3 66.857 421.78 1210.5 72.363 408.04 1176.7
4/6 75.765 481.47 1301.1 67.891 412.58 1162.6 75.284 427.66 1169.0
5/6 77.201 490.15 1273.0 69.149 417.18 1149.9 77.166 459.93 1220.8

15 

1/6 64.132 509.09 1449.0 56.615 429.87 1251.8 51.887 389.41 1120.9
2/6 68.553 498.05 1379.5 61.078 434.62 1197.1 60.686 410.51 1090.7
3/6 72.777 465.36 1363.2 65.084 396.78 1200.9 69.032 381.16 1162.3
4/6 76.662 485.14 1242.1 68.644 387.04 1105.9 75.619 389.11 1118.1
5/6 80.564 510.08 1212.5 72.166 411.63 1090.8 80.475 448.07 1127.9
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