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Abstract. The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter,
hole location and stacking layer sequence ([0/45/-45/90], [45/0/-45/90]s and [90/45/-45/0]s) on natural
frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and 100°C) temperatures for
the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free
vibration of symmetric laminated beams is studied by Timoshenko’s first order shear deformation theory.
For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole
diameter, stacking layer sequence and hole location have important effect especially on the second and third
mode natural frequency values for the short beams and the high temperatures affects the natural frequency
values significantly. The results are presented in tabular and graphical form.
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1. Introduction

The application of fiber composites has shown a tremendous growth in many fields ranging
from trivial, industrial products such as boxes and covers produced in enormous numbers each
day, to pipelines and crucial, load bearing parts of large structures. Composites are also
extensively used in the aerospace and marine industries. Some important reasons for this
popularity are: their high strength (and stiffness) to weight ratio; light weight and resistance to
corrosion and chemicals. Cutouts are inescapable in composite structures principally for practical
considerations. However, the vibrations may cause sudden failures in consequence of resonance in
the presence of cutouts. It is therefore very important to predict the natural frequencies of these
structural members precisely. There are many publications in the literature about laminated plate
vibration.

Abramovich (1992) studied symmetrically laminated composite beam with different boundary
conditions on the basis of Timoshenko-type equations. In the analysis, the shear deformation and
the rotary inertia were considered, but with the term representing the joint action of these factors
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neglected in the Timoshenko equations. A detailed analytical analysis was carried out to determine
the natural frequencies of laminated beams. Abramovich et al. (1995) examined the vibrations of
general layered beams by using a novel, precise element method. A dynamic stiffness matrix was
calculated; thereafter the problem was solved for any set of boundary conditions, comprising
elastic connections and different member assemblies. The natural frequencies at which the
dynamic stiffness matrix turned into singular were obtained.

Teh and Huang (1979) investigated a general orthotropic cantilever beam by using two finite-
element models, containing both the shear deformation and the rotary inertia effects. In the
analysis, the first-order shear deformation theory was utilized. Chandrashekhara and Bangera
(1992) presented a refined shear-flexible beam element, including a higher-order shear
deformation theory in the formulation of constitutive equations for the beams. The Poisson effect
was also taken into account which is frequently ignored in a one-dimensional analysis of laminated
beams. They reported the frequencies and the corresponding modal shapes for symmetrically
laminated orthotropic composite beams. Lee et al. (1992) used the finite-element method for the
stress and vibration analysis of composite beams, on the basis of multilayered beam theory. In the
finite-element formulation, the principle of maximum potential energy, the continuity of the
interlaminar shear stress was considered.

Hodges et al. (1991) presented a simple analytical and a detailed cross-sectional finite element
method for analyzing the free vibrations of composite beams. By using these methods, the natural
frequencies and the corresponding modal shapes were acquired. Maiti and Sinha (1994) performed
bending and free vibration analyses of shear-deformable laminated composite beams by
application of the finite-element method. The analysis was based on a higher-order shear-
deformation theory and the conventional first-order theory to develop a finite-element model with
a nine-node isoparametric element. They investigated the effects of various factors, such as fiber
orientation, span/depth ratio, and boundary conditions, on the non-dimensionalized fundamental
frequencies, non-dimensionalized deflections, and stresses. They showed that the differences
between the frequencies and deflections given by the first-order and higher-order shear-
deformation theories were inconsequential in the matter of laminated composite beams. Shi and
Lam (1999) acquired the same result for the fundamental frequency by using a third-order beam
theory.

Khdeir (1994) investigated the free-vibration behavior of cross-ply rectangular beams, with
arbitrary boundary conditions. The author reported that the difference between different shear-
deformation theories was negligible. Teboub and Hajela (1995) integrated the equations of motion
for the free vibration of general layered composite beams on the basis of the first-order shear-
deformation theory. They investigated the effect of Poisson ratio, layer width and stacking, and
boundary conditions on the natural frequencies.

Krishnaswamy et al. (1992) presented analytical solutions to the vibrations problem for general
layered clamped-clamped and clamped-supported composite beams. They used Hamilton’s
principle for the purpose of developing the dynamic equations of free-vibrations. The energy
formulation they used held both the shear deformation and the rotary inertia.

Bezazi et al. (2001, 2003a, b) investigated the effect of the stacking layer sequence over the
damage tolerance and fatigue the cross-ply laminates by utilizing a three-dimensional finite
element analysis. Davidson et al. (1995) reported that the stacking sequence affects the loss rate of
energy. Sun and Jen (1987) and El Mabhi ef al. (1995) studied the influence of the stacking layer
sequence in the event of laminates (0, /90,); and (90, /0,)s. They examined the loss of rigidity and
energy in cross laminates during fatigue tests for tensile loading.
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Rajamani and Prabhakaran (1977) examined the influence of a hole on the natural vibration
characteristics of isotropic and orthotropic plates with simply-supported and clamped boundary
conditions. Sakiyama et al. (2003) investigated the natural vibration characteristics of an
orthotropic plate with a square hole via the Green function supposing that the hole as an extremely
thin plate. Lee (1984) performed vibration experiments on the rectangular plates with a hole in air
and water. Kim et al. (1990) tested the lateral vibrations of rectangular plates by using simple
polynomials in the Rayleigh—Ritz method. Paramasivam (1973) utilized the finite difference
method for a simply-supported and clamped rectangular plate with a rectangular hole. Aksu and
Ali (1976) analyzed a rectangular plate with more than two holes by using the finite difference
method. Ram and Sinha (1992) investigated the effects of moisture and temperature on the free
vibration of laminated composite plates. Numerical results revealed that the increase of moisture
concentration and temperature causes reduction in natural frequencies of symmetric and anti-
symmetric laminates with simply supported and clamped boundary conditions. Sharma and Mittal
(2010) published a review on stress and vibration analysis of composite plates. Alam ef al. (2012)
presented an efficient one dimensional finite element model has been presented for the dynamic
analysis of composite laminated beams, using the efficient layer-wise zigzag theory. Kim and Choi
(2013) derived a super convergent laminated composite beam element for the lateral stability
analysis.

In this study, the effects of the beam aspect ratio (L/4), hole diameter, hole location and
stacking layer sequence ([0/45/-45/90];, [45/0/-45/90]s and [90/45/-45/0];) on natural frequencies
are investigated under room and high (40, 60, 80, and 100°C) temperatures. The first three of out
of plane bending free vibration modes are studied. For the numerical analyses, ANSYS 13.0
software package is used. The numerical results show that the hole diameter, stacking layer
sequence and hole location have significant effect on the second and third mode natural frequency
values especially for the short beams. It is worthy to note that temperature affects the natural
frequency values. The results are presented in tabular and graphical form.

2. Timoshenko theory

The Timoshenko beam theory includes the effect of transverse shear deformation. As a result, a
plane normal to the beam axis before deformation does not remain to the beam axis any longer
after deformation. The energy method is used to derive the finite element matrix equation (Kwon
and Bang 2000).

Let u and v be the axial and transverse displacements of a beam, respectively. Due to the
transverse shear deformation, the slope of beam 8 is different from dv/dx. Instead, the slope equals
(dv/dx)-y where y is the transverse shear strain. As a result, the displacement field in the
Timoshenko beam can be written as

u(x,y)=-y0(x) (1)

v(x)=v )

where the z-axis is located along the neutral axis of the beam and the beam is not subjected to an
axial load such that the neutral axis does not have the axial strain. From Eq. (1) and Eq. (2) the
axial and shear strains are
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where the first term is the bending strain energy and the second term is the shear strain energy.
Besides, b and # are the width and height of the beams respectively, and u is the correction factor
for shear energy.

First, substituting Egs. (3)-(4) into Eq. (5) and taking integration with respect to y gives

T
1 p(doY ..(do ! dv dv
U==|[|<2| B S v+ 5[ | -0+57 | GA| -0+ |dx (6)
290\ dx dx 290 dx dx
where / and A are the moment of inertia and area of the beam cross-section respectively.
In order to derive the element stiffness matrix for the Timoshenko beam, the variables v and 6
need to be interpolated within each element. As seen in Eq. (6), v and @ are independent variables.

That is, we can interpolate them independently using proper shape functions. We use the simple
linear shape functions for both independent variables. That is

V,
v:[Hle]{vl} (7)
2

9=[fAHz]{§,‘} ®)

2

The functions H;(x) and H(x) are called Hermitian shape functions. Using Eq. (7) and Eq. (8)
along with the strain energy expression Eq. (6) yields the following element stiffness matrix for

the Timoshenko beam
(K =& ]+ [ &) ] ©)
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(10)

1
g
L1
Il
&=
(=)
[
oS O o O
|
[



Free vibration analysis of laminated composite beam under room and high temperatures 115

4 20 -4 2
,uGA 20 P =21 1

[ ] 21 4 -2
200 17 20 1P

(11

The bending stiffness term, Eq. (10), is obtained using the exact integration of the bending
strain energy but the shear stiffness term, Eq. (11), is obtained using the reduced integration
technique. Lastly, the diagonalized mass matrix can be written as

390 0 0
pAlO r 0 0

)= 0 39 0 (12)
0o 0 o0 P

For free vibration of a beam, the eigenvalue problem is

([Ke]—wz[Me]){El}ﬂ (13)
where o is the angular natural frequency in radians per second and {d } is the mode shape.

2.1 Calculation of the beam rigidity

In Eq. (10), the term of beam rigidity (£/) is as shown (Kwon and Bang 2000)

El=— (14)
Dll

where D; (i,j =1, 2, 6) denote the elements of the inverse of the bending stiffness matrix [D].

2.2 Calculation of the shear modulus

In Eq. (11), the term of shear modulus (GA) is as shown (Kwon and Bang 2000)

b
GA = T (15)

55

where A; (i, j =4, 5) denote the elements of the inverse of extensional stiffness matrix [4].

3. Numerical verification

In order to validate the finite element model, an example taken from the literature (Hassan et al.
2009) is analyzed and then numerical results are compared with exact solutions. The geometry and
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Fig. 1 Mesh grid of topographic model

Table 1 The mechanical properties of the laminated composite beam used for the verification (Hassan et al.
2009)

E; (GPa) E,;=E;(GPa) G1;=G13(GPa) vp=v13(-)  Gy3(GPa) 23 (-) p (kg/m’)
46.2 14.70 5.35 0.31 7.54 0.41 2040

1-fibres direction, 2-transverse direction, 3-thickness direction.

X, = Element x-axis if ESTYS is not supplied.
x = Element x-axis if ESY'S is supplied.

Fig. 2 3D 8 node layered solid-shell element (SOLSH190)

dimensions of the composite beams used for the validation of finite element method is shown in
Fig. 1.

The composite beams were E glass fiber/epoxy with the dimensions of 400x40x3.2 mm (length
x width x thickness). They were composed of 8 layers with equal thickness. The lamination
scheme of the composite beams was [(0/90)],s. The material properties were given in Table 1.

Modal analysis is carried out by using ANSYS 13.0 software package. As the element type,
solid-shell (SOLSH190) element with six degree of freedom (translations in the nodal x, y, and z
directions and rotations about the nodal x, y, and z-axes) is chosen (see Fig. 2). In total, 8442 nodes
and 1000 elements are used for the beam modeling.

Table 2 shows the comparison of out of plane natural frequencies of the composite beam and
close agreement was found between the numerical and theoretical results.

The out of plane and bending vibration mode shapes of the composite beam are shown in Fig. 3.
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Table 2 Comparison of out of plane bending natural frequencies with the theoretical results

Out-of plane bending frequency (Hz) 1% mode 2" mode 3" mode 4™ mode 5™ mode 6™ mode

Timoshenko theory 13.68 85.72 239.85  469.62 775.55 1157.25
FEM 13.71 85.85 240.21 470.24 776.36  1157.95
I"'mode 13.71 Hz "mode 85.85 Hz 3%mode 240.21 Hz

th th
4" mode 470.24 Hz 5"mode 776.36 Hz 6" "'mode 1157.95 Hz

Fig. 3 The first six out of plane bending vibration mode shapes of composite beam

h=3 mm

L

'Y
»

A

Fig. 4 The laminated composite beam.

4. Statement of the problem

The model is considered as a cantilever laminated composite beam with three different span
lengths as £,=0.3m (L,/A=100); L,=0.225m (L,/h=75); and L;=0.15m (Ls/h=50) respectively, solid
rectangular cross section (width b=0.02m, thickness h=0.003m) and the hole diameters are chosen
as d = 5, 10, 15 mm as shown in Fig. 4. Three different configurations, namely [0/45/-45/90];,
[45/0/-45/90]s and [90/45/-45/0]; is considered.

The thickness of each layer is identical for all layers in the laminates. G,; and v,3 are calculated
by using the following formulas (Kisa 2004)
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p=pV+p,0=V) (16)
E,=EV+E, (1-V) (17)

E,+E, +(E,~E,)V

m

E,=E, 18
2 Ef+Em_(Ef_Em)V (18)
v, =0,V +v, (1-7) (19)
1+v -0 E /E
vy =0,V +0, (1-V) Uz’” O By (20)
l-v " +v,0,E /E,
E
G.. = 22
221+ vy) 21)

where indices m and f denote matrix and fiber, respectively. £, G and v are the modulus of
elasticity, the modulus of rigidity, the Poisson’s ratio respectively. The value of fiber poisson’s
ratio (vy) is taken as 0.23. Material properties of the beams investigated are assumed to be same in
all layers as given in Table 3.

We investigate the effects of beam span length-height ratio (L/%), hole diameter (@d), hole
location (a/L) and different temperatures on the free vibration behavior of the laminated composite
cantilever beams. As in the verification, solid-shell (SOLSH190) element with six degree of
freedom (translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z-
axes) was used. The laminated composite beam is oriented at [90/45/-45/0]; as seen in Fig. 5(a).
Mesh arrangement around the circular hole is shown in Fig. 5(b).

5. Results and discussion
The effect of a/L ratios and hole diameter on the natural frequencies for L/A=100 and stacking

sequence [0/45/-45/90]; is demonstrated in Fig. 6. As shown in Fig. 6(a), the minimum first mode

Table 3 The mechanical properties of the laminated composite beams (Aktas and Karakuzu 2009)

Temperature E; E,=E; G;;=G3 Gy V=5 on p , Ply thickness
(&9 (MPa) (MPa) (MPa) (MPa) (kg/m") (mm)
20 40510 13960 3105 5630 0.22 0.24 1830 0.375
40 39820 11540 2629 4650 0.22 0.24
60 39720 11090 2561 4550 0.21 0.22
80 28270 6110 2053 2500 0.21 0.22

100 19450 5700 813 2350 0.20 0.21
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(b)
Fig. 5 (a) The cantilever laminated composite beam with [0/45/-45/90]; fiber orientation (b) Mesh
structure around the hole

natural frequency is observed when the location of the circular hole is the nearest to the clamped
edge of the beam for the biggest hole diameter. When the biggest hole approaches to the free end
of the beam, the first mode values increase linearly. The maximum first mode natural frequency is
noticed when the location of the circular hole is the nearest to the clamped edge of the beam for
the smallest diameter. Fig. 6(a) also shows decrease in the first mode natural frequency values
when the smallest hole approaches to the right free end of the beam. Moreover, when the hole
diameter is 10 mm, from the hole location a/L=2/6 to the right free end of the beam, the first mode
values increase gradually. As shown in Fig. 6(b), the maximum second mode natural frequency is
observed when the location of the circular hole is the nearest to the clamped edge of the beam for
the smallest diameter. In addition to this, the second mode natural frequencies decrease from the
clamped edge to the free end for the same hole diameter. The same tendency is observed until the
hole approaches to the free end of the beam (a/L=4/6) for the other hole diameters. After that, the
values begin to increase gradually. The minimum second mode frequency is observed when the
hole location is closer to the right free end of the beam (a/L=4/6) for the biggest hole diameter. As
shown in Fig. 6(c), the maximum third mode natural frequency is observed when the location of
the circular hole is the nearest to the clamped edge of the beam for the biggest diameter. And the
minimum third mode natural frequency is observed when the location of the circular hole is the
nearest to the right free end of the beam for the biggest diameter. The third mode natural
frequencies decrease from the clamped edge to the right free end for the other hole diameter.
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Fig. 6 The effect of a/L ratios and hole diameter on the natural frequencies (L/A=100, Stacking
sequence: [0/45/-45/90];, Temperature: 20°C)
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Fig. 7 The effect of a/L ratiosand hole diameter on the natural frequencies (L/A=100, Stacking
sequence: [45/0/-45/90],, Temperature: 20°C)
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Fig. 7 Continued

Table 4 The first three out of plane natural frequencies for L/A=100,Temperature: 20°C

Fiber orientation [0/45/-45/90], [45/0/-45/90], [90/45/-45/0],

Mode number 1 2 3 1 2 3 1 2 3
.f* (Hz) 21.371 133.80 37420 1791 112.16 314.02 15327 96.00 268.640
(without hole)
f (Hz)
(with hole)
d(mm) a/L
1/6 19.46 12892 364.51 17.103 109.96 309.96 16.639 101.25 278.99
2/6 18905 127.33 35198 16.761 10942 304.62 17.766 102.22 286.22
5 3/6 18712 121.87 349.59 16.644 107.08 302.23 18.375 105.70 296.19
4/6  18.679 117.59 336.51 16.623 104.64 297.25 18.625 11240 301.41
5/6 18710 116.66 326.05 16.648 103.88 291.11 18.708 116.27 320.67
1/6 18977 12891 365.32 16.664 109.88 310.80 16.005 100.67 279.83
2/6  18.688 127.12 350.62 16.559 109.32 303.07 17.367 102.20 282.17
10 3/6  18.666 120.56 349.29 16.599 10590 302.13 18.206 103.62 295.82
4/6 18769 11642 33242 16.701 103.53 29343 18.689 109.90 295.89
5/6 18953 116.52 32332 16.847 103.74 288.53 18.928 115.85 314.79
1/6  17.595 128.67 365.67 15405 10947 311.60 14.528 99.32  281.02
2/6  18.011 125.52 344.69 15906 108.15 296.61 16340 101.84 273.21
15 3/6  18.449 119.44 348.24 16387 101.44 301.65 17.808 98.41 294.80
4/6  18.883 11244 319.67 16.798 99.75 281.83 18.739 103.53 284.50
5/6 19319 11585 314.53 17.109 103.11 280.13 19.309 114.46 299.47

The location where the minimum and the maximum natural frequencies is observed does not
change for the cantilever beams with [45/0/-45/90]; fiber orientation compared with cantilever
beams with [0/45/-45/90]s fiber orientation as shown in Fig. 7. However, there is a little deviation
from linear behavior for the first mode natural frequency when the hole location approaches to the
right free end of the beam for the biggest diameter compared with the cantilever beams with
[0/45/-45/90]; fiber orientation. Furthermore, the second mode frequency values decreases more
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Fig. 8 The effect of a/L ratios and hole diameter on the natural frequencies (L/A=100, Stacking
sequence: [90/45/-45/0],, Temperature: 20°C)

sharply when the hole approaches to the right free end of the beam for the biggest diameter. The
third mode frequency values decreases more slightly when the hole approaches to the right free
end of the beam for the biggest diameter. The cantilever beams with [90/45/-45/0], fiber
orientation shows different behaviour compared to the previous laminate sequences. The effect of
a/L ratios and hole diameter on the natural frequencies for L/A=100 and stacking sequence [90/45/-
45/0]s is demonstrated in Fig. 8. For all hole diameter studied, the first mode natural frequencies
increase when the hole location approaches from the clamped edge to the right free end of the
beam and the minimum and maximum first mode natural frequency values are observed for the
biggest hole diameter as shown in Fig. 8(a). The second mode natural frequencies increase rapidly
when the hole approaches from in the middle of the beam to right free end of the beam as shown in
Fig. 8(b). The maximum second and the third mode natural frequency is observed when the hole
location is the nearest to the free end of the beam for the smallest hole diameter as shown in Fig. 8
(b)-(c). The minimum third mode natural frequency value is observed when the hole location is the
closer to the clamped edge of the beam (a/L=2/6) for the biggest hole diameter as shown in Fig. 8(c).
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Fig. 9 The effect of a/L ratios and hole diameter on the natural frequencies (L/A=75, Stacking
sequence: [0/45/-45/90]s, Temperature: 20°C)

The exact natural frequency values are given in Table 4. It is seen that the cantilever beams with
[0/45/-45/90]; fiber orientation have the maximum natural frequencies in all cases. It is also
observed in Table 4 that the existence of the hole decreases natural frequency values for the
cantilever beams with [0/45/-45/90]s and [45/0/-45/90]; fiber orientation compared with no hole.
But the cantilever beams with [90/45/-45/0]; fiber orientation are affected differently by the
existence of the hole which increases the natural frequencies at every hole location, except when
the hole location is the nearest to the clamped edge of the beam for the biggest hole diameter.

The cantilever beams with [90/45/-45/0]s fiber orientation seems to be the most influenced
beams by the existence of the hole. When the beam aspect ratio is L/A=75, the beam behave
differently if the second and the third mode natural frequencies are taken into consideration as
shown in Fig. 9.

As seen in Fig. 9(a), when the biggest hole approaches to the right free end of the beam, first
mode values increase linearly. The maximum and minimum first mode natural frequencies are
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observed for the biggest diameter. The same behavior is noted for the third mode natural frequency
values. As shown in Fig. 9(c), the third mode natural frequency values show similar behavior
when the hole diameter is Smm and 10mm. It can be easily seen in Fig. 9(b), the second mode
values begin to decrease when the hole location approaches from the clamped left edge until in the
middle of the beam for all hole diameter studied. The maximum second mode natural frequency is
observed when the hole is the nearest to the clamped left edge of the beam for the smallest hole
diameter.

The location where the minimum and the maximum natural frequencies is observed doesn’t
change for the cantilever beams with [45/0/-45/90]; fiber orientation compared with [0/45/-45/90]
laminates and the hole location effect on the natural frequencies is identical compared with having
high aspect ratio (L/4=100) and the same fiber orientation beams as shown in Fig. 10.
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Fig. 10 The effect of a/L ratios and hole diameter on the natural frequencies (L/A=75, Stacking
sequence: [45/0/-45/90],, Temperature: 20°C )
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Fig. 11 The effect of a/L ratios and hole diameter on the natural frequencies (L/h=75, Stacking
sequence: [90/45/-45/0];, Temperature: 20°C)

Similarly, the cantilever beams with [90/45/-45/0]; fiber orientation show the same behavior
compared with having high aspect ratio (L/A=100) and the same fiber orientation beams as shown
in Fig. 11. When the beam aspect ratio is decreased (L/2=50), the hole location effect does not
change compared with the previous case. Furthermore, the hole location, where the minimum and
the maximum natural frequencies is observed, does not also change compared with the previous
case. However, there is an exception as follows: the maximum third mode natural frequency is
observed for two hole diameters (10 mm and 15 mm) when the hole location is nearest to the left
clamped edge of the beam. Additionally, it can be concluded that when the beam length is shorter,
the hole location effect become more important especially for the biggest hole diameter compared
with the longer beams. The exact natural frequency values are given in Tables 5 and 6.
Temperature does not change the hole location effect on first three natural frequencies as shown in
Fig. 12. The same behavior is observed for the second and third mode natural frequencies. The
effect of stacking sequence on the first mode natural frequency for different hole location is shown
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Table 5 The first three out of plane natural frequencies for L/A=75,Temperature: 20°C

Fiber orientation [0/45/-45/90] [45/0/-45/90] [90/45/-45/0]
Modenumber 1 2 3 1 2 3 1 2 3
f* (Hz) 38.035 237.937 664.821 31.930 199.842 559.378 27.272 170.748 477.587
f (Hz) (with hole)
d(mm) a/L

1/6 3445 229.16 64730 30456 196.02 551.69 29.474 179.76 496.33

2/6  33.582 22593 624.83 29904 19490 543.13 31.516 182.01 507.47

3/6 33281 21589 620.04 29.691 190.67 537.92 32.669 187.81 525.27

4/6  33.241 213.20 614.08 29.657 185.19 517.33 33.186 202.72 562.55

5 5/6 33342 213.77 61492 29.735 185.15 518.60 33.337 206.56 567,24

1/6  33.332 229.09 649.20 29.426 19576 553.73 28.025 17843 498.10

2/6  33.063 22553 622.12 29416 19471 539.74 30.596 182.0 499.19

3/6  33.172 213.035 619.211 29.582 188.03 537.57 32.341 183.17 524.29

10 4/6 33452 21471 611.08 29.843 182.67 510.16 33.340 196.75 545.94
5/6 33,378 217.16 61547 30211 184.82 512.50 33.865 205.55 553.81

1/6  30.207 228.30 650.19 26.596 194.63 55550 24.804 17547 499.98

2/6 31472 22242 611.59 27.904 192.54 527.85 28.33 181.48 483.67

15 3/6 32651 211.05 616.15 29.071 178.61 53592 31.334 172.70 521.40
4/6 3372 216490 60521 30.070 17436 489.58 33.455 182.62 516.90

5/6 34816 223.03 620.15 31.051 183.26 493.30 34.792 202.16 520.55

Table 6 The first three out of plane natural frequencies for L/4=50,Temperature:

20°C

Fiber orientation [0/45/-45/90] [45/0/-45/90] [90/45/-45/0]
Modenumber 1 2 3 1 2 3 1 2 3
f* (Hz) 85.75 535.198 14912 72227 451.23 1261.7 61.465 384.36 1073.5
S (Hz)
d(mm) a/L

1/6 76939 514.502 14422 68.703 442.785 1242.2 65.857 402.84 1118.2

2/6 75369 505.315 1400.0 67.658 439.04 12262 70.635 410.86 1137.9

3/6 74941 482.16 13832 67.246 429.73 12123 73473 42195 11813

4/6  75.048 476.80 13253 67.259 421.03 1187.1 74.776 44542 1204.2

5 5/6 75361 47875 12942 67.496 41833 1170.3 75.343 463.44 1263.0
1/6  73.289 513771 1449.0 65.258 441.40 1249.0 61.203 398.52 11219

2/6  73.638 504.74 1394.8 65991 43897 1217.8 67.628 41096 1116.7

3/6 74559 47530 1379.3 66.857 421.78 1210.5 72.363 408.04 1176.7

10 4/6 75765 48147 1301.1 67.891 412.58 1162.6 75.284 427.66 1169.0
5/6 77201 490.15 1273.0 69.149 417.18 11499 77.166 45993 1220.8

1/6 64132 509.09 1449.0 56.615 429.87 1251.8 51.887 389.41 11209

2/6  68.553 498.05 1379.5 61.078 434.62 1197.1 60.686 410.51 1090.7

15 3/6 72777 46536 13632 65.084 396.78 1200.9 69.032 381.16 1162.3
4/6  76.662 485.14 1242.1 68.644 387.04 11059 75.619 389.11 1118.1

5/6  80.564 510.08 12125 72.166 411.63 1090.8 80.475 448.07 1127.9
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Fig. 12 The effect of different temperatures on the first mode natural frequencies (L/A=50,
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in Fig. 13. It is seen that if the hole diameter is Smm and 10mm, cantilever beams with [0/45/-45-
90]; fiber orientation show similar behavior when the hole location becomes closer to the right free
end of the beam. However, cantilever beams with [90/45/-45/0], fiber orientation show different
behavior compared with the others. When the hole approaches to the right free end of the beam
(a/L=4/6, and 5/6), cantilever beams with [90/45/-45/0], fiber orientation show similar behavior
compared with the beams having [0/45/-45/90]; orientation. When the hole diameter is biggest, for
all cases, natural frequency values begin to increase from the left clamped edge to right free end of
the beam continuously.

6. Conclusions

The conclusions drawn from the study can be summarized as:

The natural frequencies show important decreases from stacking sequence [0/45/-45/90]s, to
[45/0/-45/90]; and from [45/0/-45/90]; to [90/45/-45/0];. The cantilever beams with [0/45/-45/90];
fiber orientation have the maximum natural frequencies in all cases. When the beam length is
decreased from L/A=100 to L/h=75, and from L/h=75 to L/h=50 the natural frequency values
increase ceaselessly. The cantilever beams with [90/45/-45/0] fiber orientation seems to be the
most influenced beams by the existence of the holes. The existence of the holes increases the
natural frequencies at some locations for [90/45/-45/0]; orientations compared to the cantilever
beams with the same fiber orientation without hole. The hole location and hole diameter have
important influence especially on the second and third mode natural frequencies. The results show
that when the temperature increases, the frequency values decrease for all cases and natural
frequencies show important decreases from 60°C to 80°C, and from 80°C to 100°C. The points
mentioned above show us that the designer can change the laminate stacking sequence, hole
location and hole diameter in order to acquire the desired natural frequencies.



Free vibration analysis of laminated composite beam under room and high temperatures 129

References

Abramovich, H. (1992), “Shear deformation and rotary inertia effects of vibrating composite beams”,
Compos. Struct., 20(3), 165-173.

Abramovich, H., Eisenberger, M. and Shulepov, O. (1995), “Dynamic stiffness matrix for symmetrically
laminated beams using a first order shear deformation theory”, Compos. Struct., 31(4), 265-271.

Aksu, G. and Ali, R. (1976), “Determination of dynamic characteristics of rectangular plates with cut-outs
using a finite difference formulation”, J. Sound Vib., 44(1), 147-158.

Aktas, M. and Karakuzu, R. (2009), “Determination of mechanical properties of glass-epoxy composites in
high temperatures”, Polym. Compos, 30(10), 1347-1441.

Alam, M.N., Upadhyay, N.K. and Anas M. (2012), “Efficient finite element model for dynamic analysis of
laminated composite beam”, Struct. Eng. Mech, 42(4), 471-488.

Bezazi, A., El Mahi, A., Berthelot, J.M. and Bezzazi, B. (2001), “Analyse de I’endommagement des
stratifiés en flexion 3-points”, Proceedings of the XVeme Congrés Frangais de Mécanique, France,
September.

Bezazi, A., El Mahi, A., Berthelot, .M. and Bezzazi, B. (2003a), “Flexural fatigue behavior of cross-ply
laminates: An experimental approach”, Strength Mater., 35(2), 149-161.

Bezazi, A., El Mahi, A., Berthelot, J.M. and Kondratas, A. (2003b), “Investigation of cross-ply laminates
behavior in three-point bending tests. Part II: Cyclic fatigue tests”, Mat. Sci., 9(1), 128-133.

Chandrashekhara, K. and Bangera, K.M. (1992), “Free vibration of composite beams using a refined shear
flexible element”, Comput. Struct., 43(4), 719-727.

Davidson, B.D., Kriiger, R. and Konig, M. (1995), “Three-dimensional analysis of center-delaminated
unidirectional and multidirectional single-leg bending specimens”, Compos. Sci. Technol., 54(4), 385-394.

El Mahi, A., Berthelot, J.M. and Brillaud, J. (1995), “Stiffness reduction and energy release rate of cross-ply
laminates during fatigue tests”, Compos. Struct., 30(2), 123-130.

Hassan, G.A., Fahmy, M.A. and Mohammed, 1.G. (2009), “Effects of fiber orientation and laminate stacking
sequence on out-of plane and in-plane bending natural frequencies of laminated composite beams”,
Proceedings of 9" PEDAC Conference, Egypt, February.

Hodges, H.D., Atilgan, A.R., Fulton, M.V. and Rehfield, L.W. (1991), “Free vibration analysis of composite
beams”, J. Am. Helicopt. Soc., 36(3), 36-47.

Khdeir, A.A. (1994), “Free vibration of cross-ply laminated beams with arbitrary boundary conditions”, Int.
J. Eng. Sci., 32(12), 1971-1980.

Kim, C.S., Young, P.G. and Dickinson, S.M. (1990), “On the flexural vibration of rectangular plates
approached by using simple polynomials in the Rayleigh-Ritz method”, J. Sound Vib., 143(3), 379-394.
Kim, N.I. and Choi D.H. (2013), “Super convergent laminated composite beam element for lateral stability

analysis”, Steel Compos. Struct., 15(2), 175-202.

Kisa, M. (2004), “Free vibration analysis of a cantilever composite beam with multiple cracks”, Compos.
Sci. Technol., 64(9), 1391-1402.

Krishnaswamy, S., Chandrahekhara, K. and Wu, W.Z.B. (1992), “Analytical solution to vibration of
generally layered composite beams”, J. Sound Vib., 159(1), 85-99.

Kwon, Y.W. and Bang, H. (2000), The finite element method using Matlab, 2nd Edition, Dekker Mechanical
Engineering Series, CRC Press, Boca Raton.

Lee, C.Y., Liu, D. and Lu, X. (1992), “Static and vibration analysis of laminated composite beams with an
interlaminar shear stress continuity theory”, Int. J. Numer. Meth. Struct. Eng., 33(2), 409-424.

Lee, H.S. (1984), “Transverse vibration of rectangular plates having an inner cutout in water”, J. Soc. Nav.
Arch. Korea, 21(1), 21-34.

Maiti, K.D. and Sinha, P.K. (1994), “Bending and free vibration analysis of shear deformable laminated
composite beams by finite element method”, Compos. Struct., 29(4), 421-431.

Paramasivam, P. (1973), “Free vibration of square plates with square opening”, J. Sound Vib., 30(2), 173-
178.



130 Yusuf Cunedioglu and Bertan Beylergil

Rajamani, A. and Prabhakaran, R. (1977), “Dynamic response of composite plates with cut-outs. Part II:
Clamped-clamped plates”, J. Sound Vib., 54(4), 565-576.

Ram, K.S. and Sinha, P.K. (1992), “Hygrothermal effects on the free vibration of laminated composite
plates”, J. Sound Vib., 158(1), 133-148.

Sakiyama, T., Huang, M., Matsuda, H. and Morita, C. (2003), “Free vibration of orthotropic square plates
with a square hole”, J. Sound Vib., 259(1), 63-80.

Sharma, A.K. and Mittal, N.D. (2010), “Review on stress and vibration analysis of composite plates”, J.
Appl. Sci., 10(23), 3156-3166.

Shi, G. and Lam, K.Y. (1999), “Finite-element vibration analysis of composite beams based on a higher-
order beam theory”, J. Sound Vib., 219(4), 707-721.

Sun, C.T. and Jen, K.C. (1987), “On the effect of matrix cracks on laminate strength”, J. Reinf. Plast.
Comp., 6(3), 208-223.

Teboub, Y. and Hajela, P. (1995), “Free vibration of generally layered composite beams using symbolic
computations”, Compos. Struct., 33(3), 123-134.

Teh, K.K. and Huang, C.C. (1979), “The vibrations of generally orthotropic beams, a finite element
approach”, J. Sound Vib., 62(2), 195-206.





